Spaces:
Sleeping
Sleeping
File size: 15,296 Bytes
44a2e1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
import gradio as gr
import os
import sys
from datetime import datetime
import traceback
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from rag_functions import get_direct_answer, get_answer_with_query_engine
from utils import get_index
print("β
Successfully imported RAG functions")
class PregnancyRiskAgent:
def __init__(self):
self.conversation_history = []
self.current_symptoms = {}
self.risk_assessment_done = False
self.user_context = {}
self.last_user_query = ""
self.symptom_questions = [
"Are you currently experiencing any unusual bleeding or discharge?",
"How would you describe your baby's movements today compared to yesterday?",
"Have you had any headaches that won't go away or that affect your vision?",
"Do you feel any pressure or pain in your pelvis or lower back?",
"Are you experiencing any other symptoms? (If yes, please describe briefly)"
]
self.current_question_index = 0
self.waiting_for_first_response = True
def add_to_conversation_history(self, role, message):
self.conversation_history.append({
"role": role,
"message": message,
"timestamp": datetime.now().isoformat()
})
if len(self.conversation_history) > 20:
self.conversation_history = self.conversation_history[-20:]
def get_conversation_context(self):
context_parts = []
recent_history = self.conversation_history[-10:]
for entry in recent_history:
if entry["role"] == "user":
context_parts.append(f"User: {entry['message']}")
else:
context_parts.append(f"Assistant: {entry['message'][:200]}...")
return "\n".join(context_parts)
def is_follow_up_question(self, user_input):
follow_up_indicators = [
"what about", "can you explain", "what does", "why", "how",
"tell me more", "what should i", "is it normal", "should i be worried",
"what if", "when should", "how long", "what causes", "is this"
]
user_lower = user_input.lower()
return any(indicator in user_lower for indicator in follow_up_indicators)
def process_user_input(self, user_input, chat_history):
try:
self.last_user_query = user_input
self.add_to_conversation_history("user", user_input)
if self.waiting_for_first_response:
self.current_symptoms[f"question_0"] = user_input
self.waiting_for_first_response = False
self.current_question_index = 1
if self.current_question_index < len(self.symptom_questions):
bot_response = f"{self.symptom_questions[self.current_question_index]}"
else:
bot_response = self.provide_risk_assessment()
self.risk_assessment_done = True
self.add_to_conversation_history("assistant", bot_response)
return bot_response
elif self.current_question_index < len(self.symptom_questions) and not self.risk_assessment_done:
self.current_symptoms[f"question_{self.current_question_index}"] = user_input
self.current_question_index += 1
if self.current_question_index < len(self.symptom_questions):
bot_response = f"{self.symptom_questions[self.current_question_index]}"
else:
bot_response = self.provide_risk_assessment()
self.risk_assessment_done = True
self.add_to_conversation_history("assistant", bot_response)
return bot_response
else:
bot_response = self.handle_follow_up_conversation(user_input)
self.add_to_conversation_history("assistant", bot_response)
return bot_response
except Exception as e:
print(f"β Error in process_user_input: {e}")
traceback.print_exc()
error_response = "I encountered an error. Please try again or consult your healthcare provider."
self.add_to_conversation_history("assistant", error_response)
return error_response
def handle_follow_up_conversation(self, user_input):
try:
print(f"π Processing follow-up question: {user_input}")
symptom_summary = self.create_symptom_summary()
conversation_context = self.get_conversation_context()
if any(word in user_input.lower() for word in ["last", "previous", "what did i ask", "my question"]):
if self.last_user_query:
return f"Your last question was: \"{self.last_user_query}\"\n\nWould you like me to elaborate on that topic or do you have a different question?"
else:
return "I don't have a record of your previous question. Could you please rephrase what you'd like to know?"
rag_response = get_direct_answer(user_input, symptom_summary, conversation_context=conversation_context, is_risk_assessment=False)
if "Error" in rag_response or len(rag_response) < 50:
print("π Trying alternative method...")
rag_response = get_answer_with_query_engine(user_input)
bot_response = f"""Based on your symptoms and medical literature:
{rag_response}"""
return bot_response
except Exception as e:
print(f"β Error in follow-up conversation: {e}")
return "I encountered an error processing your question. Could you please rephrase it or consult your healthcare provider?"
def create_symptom_summary(self):
if not self.current_symptoms:
return "No specific symptoms reported yet"
summary_parts = []
for i, (key, response) in enumerate(self.current_symptoms.items()):
if i < len(self.symptom_questions):
question = self.symptom_questions[i]
summary_parts.append(f"{question}: {response}")
return "\n".join(summary_parts)
def parse_risk_level(self, text):
import re
patterns = [
r'\*\*Risk Level:\*\*\s*(Low|Medium|High)',
r'Risk Level:\s*\*\*(Low|Medium|High)\*\*',
r'Risk Level:\s*(Low|Medium|High)',
r'\*\*Risk Level:\*\*\s*<(Low|Medium|High)>',
r'Risk Level.*?<(Low|Medium|High)>',
]
for pattern in patterns:
match = re.search(pattern, text, re.IGNORECASE)
if match:
risk_level = match.group(1).capitalize()
print(f"β
Successfully parsed risk level: {risk_level}")
return risk_level
print(f"β Could not parse risk level from: {text[:200]}...")
return None
def provide_risk_assessment(self):
all_symptoms = self.create_symptom_summary()
rag_query = f"Analyze these pregnancy symptoms for risk assessment:\n{all_symptoms}\n\nProvide risk level and medical recommendations."
detailed_analysis = get_direct_answer(rag_query, all_symptoms, is_risk_assessment=True)
print(f"π RAG Response: {detailed_analysis[:300]}...")
llm_risk_level = self.parse_risk_level(detailed_analysis)
if llm_risk_level:
risk_level = llm_risk_level
if risk_level == "Low":
action = "β
Continue routine prenatal care and self-monitoring"
elif risk_level == "Medium":
action = "β οΈ Contact your doctor within 24 hours"
elif risk_level == "High":
action = "π¨ Immediate visit to ER or OB emergency care required"
else:
print("β οΈ RAG assessment failed, using fallback")
risk_level = "Medium"
action = "β οΈ Contact your doctor within 24 hours"
symptom_list = []
for i, (key, symptom) in enumerate(self.current_symptoms.items()):
question = self.symptom_questions[i] if i < len(self.symptom_questions) else f"Question {i+1}"
symptom_list.append(f"β’ **{question}**: {symptom}")
assessment = f"""
## π₯ **Risk Assessment Complete**
**Risk Level: {risk_level}**
**Recommended Action: {action}**
### π **Your Reported Symptoms:**
{chr(10).join(symptom_list)}
### π¬ **Medical Analysis:**
{detailed_analysis}
### π‘ **Next Steps:**
- Follow the recommended action above
- Keep monitoring your symptoms
- Contact your healthcare provider if symptoms worsen
- Feel free to ask me any follow-up questions about pregnancy health
"""
return assessment
def reset_conversation(self):
self.conversation_history = []
self.current_symptoms = {}
self.current_question_index = 0
self.risk_assessment_done = False
self.waiting_for_first_response = True
self.user_context = {}
self.last_user_query = ""
return get_welcome_message()
def get_welcome_message():
return """Hello! I'm here to help assess pregnancy-related symptoms and provide risk insights based on medical literature.
I'll ask you a few important questions about your current symptoms, then provide a risk assessment and recommendations. After that, feel free to ask any follow-up questions!
**To get started, please tell me:**
Are you currently experiencing any unusual bleeding or discharge?
---
β οΈ **Important**: This tool is for informational purposes only and should not replace professional medical care. In case of emergency, contact your healthcare provider immediately."""
def create_new_agent():
return PregnancyRiskAgent()
agent = create_new_agent()
def chat_interface_with_reset(user_input, history):
global agent
if user_input.lower() in ["reset", "restart", "new assessment"]:
agent = create_new_agent()
return get_welcome_message()
response = agent.process_user_input(user_input, history)
return response
def reset_chat():
global agent
agent = create_new_agent()
return [{"role": "assistant", "content": get_welcome_message()}], ""
custom_css = """
body, .gradio-container {
color: yellow !important;
}
.header {
background: linear-gradient(135deg, #ff9a9e 0%, #fecfef 100%);
padding: 2rem;
border-radius: 1rem;
text-align: center;
margin-bottom: 2rem;
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
}
.header h1 {
color: black !important;
margin-bottom: 0.5rem;
font-size: 2.5rem;
}
.header p {
color: black !important;
font-size: 1.1rem;
margin: 0.5rem 0;
}
.warning {
background-color: #fff4e6;
border-left: 6px solid #ff7f00;
padding: 15px;
border-radius: 5px;
margin: 10px 0;
}
.warning h3 {
color: black !important;
margin-top: 0;
}
.warning p {
color: black !important;
line-height: 1.6;
}
div[style*="background-color: #e8f5e8"] {
color: black !important;
}
div[style*="background-color: #e8f5e8"] h3 {
color: black !important;
}
div[style*="background-color: #e8f5e8"] li {
color: black !important;
}
.chatbot {
color: black !important;
}
.message {
color: black !important;
}
/* Hide Gradio footer elements */
.footer {
display: none !important;
}
.gradio-container .footer {
display: none !important;
}
footer {
display: none !important;
}
.api-docs {
display: none !important;
}
.built-with {
display: none !important;
}
.gradio-container > .built-with {
display: none !important;
}
.settings {
display: none !important;
}
div[class*="footer"] {
display: none !important;
}
div[class*="built"] {
display: none !important;
}
*:contains("Built with Gradio") {
display: none !important;
}
*:contains("Use via API") {
display: none !important;
}
*:contains("Settings") {
display: none !important;
}
"""
with gr.Blocks(css=custom_css) as demo:
gr.HTML("""
<div class="header">
<h1>π€± Pregnancy RAG Chatbot</h1>
<p><strong style="color: black !important;">Proactive RAG-powered pregnancy risk management</strong></p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.HTML("""
<div class="warning">
<h3>β οΈ Medical Disclaimer</h3>
<p>This AI assistant provides information based on medical literature but is NOT a substitute for professional medical advice, diagnosis, or treatment.</p>
<p><strong style="color: black !important;">In emergencies, call emergency services immediately.</strong></p>
</div>
""")
chatbot = gr.ChatInterface(
fn=chat_interface_with_reset,
chatbot=gr.Chatbot(
value=[{"role": "assistant", "content": get_welcome_message()}],
show_label=False,
type='messages'
),
textbox=gr.Textbox(
placeholder="Type your response here...",
show_label=False,
max_length=1000,
submit_btn=True
)
)
with gr.Row():
reset_btn = gr.Button("π Start New Assessment", variant="secondary")
reset_btn.click(
fn=reset_chat,
outputs=[chatbot.chatbot, chatbot.textbox],
show_progress=False
)
def check_groq_connection():
try:
from backend.utils import llm
test_response = llm.complete("Hello")
print("β
Groq connection successful")
return True
except Exception as e:
print(f"β Groq connection failed: {e}")
return False
def refresh_page():
"""Force a complete page refresh"""
return None
if __name__ == "__main__":
print("π Starting GraviLog Pregnancy Risk Assessment Agent...")
check_groq_connection()
is_hf_space = os.getenv('SPACE_ID') is not None
if is_hf_space:
print("π Running on Hugging Face Spaces")
print("π Each page refresh will start a new conversation")
demo.queue().launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=False
)
else:
print("π Running locally")
print("π Using Groq API for LLM processing")
print("π Make sure your GROQ_API_KEY is set in environment variables")
print("π Make sure your Pinecone index is set up and populated")
demo.queue().launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
debug=True,
show_error=True
) |