File size: 51,920 Bytes
807e22d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb004cb
807e22d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7783353
 
 
 
 
 
 
 
 
 
 
 
 
 
807e22d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e9bbe3
 
 
 
807e22d
 
4e9bbe3
807e22d
 
 
 
 
 
 
 
 
 
 
 
4e9bbe3
807e22d
4e9bbe3
 
 
 
 
 
 
 
 
 
 
 
 
 
807e22d
405e7a2
 
 
 
eb004cb
405e7a2
 
 
 
 
 
 
 
 
 
807e22d
41afb02
 
 
 
 
 
 
 
 
 
 
 
 
981c28c
41afb02
 
7783353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb004cb
120e45a
7783353
120e45a
7783353
981c28c
 
120e45a
 
7783353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb004cb
7783353
 
120e45a
7783353
 
 
 
 
 
41afb02
7783353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
807e22d
946610b
807e22d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c85fdf
 
807e22d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb004cb
4d2d119
807e22d
 
405e7a2
807e22d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a212dd
 
5a597d8
 
44ff8c1
 
5a212dd
be2abb0
b0750de
5a212dd
 
bb3e4c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be2abb0
 
8db7ccf
be2abb0
e2c9956
807e22d
 
 
 
 
 
 
 
 
 
 
 
 
8c82e9b
807e22d
8c82e9b
 
 
807e22d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7783353
807e22d
 
 
 
 
 
 
d58b4eb
 
 
807e22d
 
d58b4eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
807e22d
 
 
 
 
 
 
 
 
 
 
 
 
405e7a2
 
 
807e22d
 
 
 
 
7783353
 
 
 
 
 
 
d58b4eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
807e22d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c82e9b
 
807e22d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
405e7a2
 
 
 
 
 
 
 
5a212dd
 
 
 
 
 
41afb02
7783353
 
 
 
 
 
5a212dd
 
 
 
 
 
7783353
120e45a
7783353
120e45a
7783353
120e45a
 
 
4e9bbe3
 
 
 
 
 
405e7a2
 
807e22d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb004cb
807e22d
 
eb004cb
807e22d
 
 
 
 
 
 
 
 
07a4ce0
8c82e9b
 
4e9bbe3
8c82e9b
4e9bbe3
8c82e9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e9bbe3
07a4ce0
 
 
807e22d
07a4ce0
d58b4eb
807e22d
4e9bbe3
7783353
4e9bbe3
 
15229aa
3c85fdf
807e22d
 
 
4e9bbe3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
import os
import logging
import logging.config
from typing import Any
from uuid import uuid4, UUID
import json
import sys

import gradio as gr
from dotenv import load_dotenv
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage, ToolMessage
from langgraph.types import RunnableConfig
from pydantic import BaseModel
from pathlib import Path


import subprocess

# def update_repo():
#     try:
#         subprocess.run(["git", "fetch", "origin"], check=True)
#         subprocess.run(["git", "reset", "--hard", "origin/main"], check=True)
#         subprocess.run([sys.executable, "-m", "pip", "install", "-r", "requirements.txt"], check=True)
#         subprocess.run([sys.executable, "app.py"], check=True)
#     except Exception as e:
#         print(f"Git update failed: {e}")

# update_repo()

load_dotenv()



# There are tools set here dependent on environment variables
from graph import graph, weak_model, search_enabled # noqa

FOLLOWUP_QUESTION_NUMBER = 3
TRIM_MESSAGE_LENGTH = 16  # Includes tool messages
USER_INPUT_MAX_LENGTH = 10000  # Characters

# We need the same secret for data persistance
# If you store sensitive data, you should store your secret in .env
BROWSER_STORAGE_SECRET = "itsnosecret"

with open('logging-config.json', 'r') as fh:
    config = json.load(fh)
logging.config.dictConfig(config)
logger = logging.getLogger(__name__)

def load_initial_greeting(filepath="greeting_prompt.txt") -> str:
    """
    Loads the initial greeting message from a specified text file.
    """
    try:
        with open(filepath, "r", encoding="utf-8") as f:
            return f.read().strip()
    except FileNotFoundError:
        # Use a logger if you have one configured, otherwise print
        # logger.warning(f"Warning: Prompt file '{filepath}' not found.")
        print(f"Warning: Prompt file '{filepath}' not found. Using default.")
        return "Welcome to the application! (Default Greeting)"

async def chat_fn(user_input: str, history: dict, input_graph_state: dict, uuid: UUID, prompt: str, search_enabled: bool, download_website_text_enabled: bool):
    """
    Args:
        user_input (str): The user's input message
        history (dict): The history of the conversation in gradio
        input_graph_state (dict): The current state of the graph. This includes tool call history
        uuid (UUID): The unique identifier for the current conversation. This can be used in conjunction with langgraph or for memory
        prompt (str): The system prompt
    Yields:
        str: The output message
        dict|Any: The final state of the graph
        bool|Any: Whether to trigger follow up questions

        We do not use gradio history in the graph since we want the ToolMessage in the history
        ordered properly. GraphProcessingState.messages is used as history instead
    """
    try:
        # logger.info(f"Prompt: {prompt}")
        input_graph_state["tools_enabled"] = {
            "download_website_text": download_website_text_enabled,
            "tavily_search_results_json": search_enabled,
        }
        if prompt:
            input_graph_state["prompt"] = prompt

        if input_graph_state.get("awaiting_human_input"):
            input_graph_state["messages"].append(
                ToolMessage(
                    tool_call_id=input_graph_state.pop("human_assistance_tool_id"),
                    content=user_input
                )
            )
            input_graph_state["awaiting_human_input"] = False
        else:
            # New user message
            if "messages" not in input_graph_state:
                input_graph_state["messages"] = []
            input_graph_state["messages"].append(
                HumanMessage(user_input[:USER_INPUT_MAX_LENGTH])
            )
            input_graph_state["messages"] = input_graph_state["messages"][-TRIM_MESSAGE_LENGTH:]

        config = RunnableConfig(
            recursion_limit=20,
            run_name="user_chat",
            configurable={"thread_id": uuid}
        )

        output: str = ""
        final_state: dict | Any = {}
        waiting_output_seq: list[str] = []

        async for stream_mode, chunk in graph.astream(
                    input_graph_state,
                    config=config,
                    stream_mode=["values", "messages"],
                ):
            if stream_mode == "values":
                final_state = chunk
                last_message = chunk["messages"][-1]
                if hasattr(last_message, "tool_calls"):
                    for msg_tool_call in last_message.tool_calls:
                        tool_name: str = msg_tool_call['name']

                        if tool_name == "tavily_search_results_json":
                            query = msg_tool_call['args']['query']
                            waiting_output_seq.append(f"Searching for '{query}'...")
                            yield "\n".join(waiting_output_seq), gr.skip(), gr.skip()

                        # download_website_text is the name of the function defined in graph.py
                        elif tool_name == "download_website_text":
                            url = msg_tool_call['args']['url']
                            waiting_output_seq.append(f"Downloading text from '{url}'...")
                            yield "\n".join(waiting_output_seq), gr.skip(), gr.skip()

                        elif tool_name == "human_assistance":
                            query = msg_tool_call["args"]["query"]
                            waiting_output_seq.append(f"πŸ€–: {query}")

                            # # Save state to resume after user provides input
                            # input_graph_state["awaiting_human_input"] = True
                            # input_graph_state["human_assistance_tool_id"] = msg_tool_call["id"]

                            # # Indicate that human input is needed
                            # yield "\n".join(waiting_output_seq), input_graph_state, gr.skip(), True
                            # return  # Pause execution, resume in next call
                            # FIX 1: Modify `final_state`, which contains the latest AIMessage from the graph.
                            final_state["awaiting_human_input"] = True
                            final_state["human_assistance_tool_id"] = msg_tool_call["id"]

                            # FIX 2: Yield a 3-item tuple to match your 3 Gradio outputs.
                            # The 'end_of_response' flag is False because the stream is pausing, not ending.
                            yield "\n".join(waiting_output_seq), final_state, False
                            return  # Pause execution, resume in next call

                        else:
                            waiting_output_seq.append(f"Running {tool_name}...")
                            yield "\n".join(waiting_output_seq), gr.skip(), gr.skip()

            elif stream_mode == "messages":
                msg, metadata = chunk
                # print("output: ", msg, metadata)
                # assistant_node is the name we defined in the langgraph graph
                if metadata.get('langgraph_node') == "assistant_node": # Use .get for safety
                    current_chunk_text = ""
                    if isinstance(msg.content, str):
                        current_chunk_text = msg.content
                    elif isinstance(msg.content, list):
                        for block in msg.content:
                            if isinstance(block, dict) and block.get("type") == "text":
                                current_chunk_text += block.get("text", "")
                            elif isinstance(block, str): # Fallback if content is list of strings
                                current_chunk_text += block

                    
                    if current_chunk_text: # Only add and yield if there's actually text
                        output += current_chunk_text
                        yield output, gr.skip(), gr.skip()

        # Trigger for asking follow up questions
        # + store the graph state for next iteration
        # yield output, dict(final_state), gr.skip()
        yield output + " ", dict(final_state), True
    except Exception:
        logger.exception("Exception occurred")
        user_error_message = "There was an error processing your request. Please try again."
        yield user_error_message, gr.skip(), False

def clear():
    return dict(), uuid4()

class FollowupQuestions(BaseModel):
    """Model for langchain to use for structured output for followup questions"""
    questions: list[str]

async def populate_followup_questions(end_of_chat_response: bool, messages: dict[str, str], uuid: UUID):
    """
    This function gets called a lot due to the asynchronous nature of streaming

    Only populate followup questions if streaming has completed and the message is coming from the assistant
    """
    if not end_of_chat_response or not messages or messages[-1]["role"] != "assistant":
        return *[gr.skip() for _ in range(FOLLOWUP_QUESTION_NUMBER)], False
    config = RunnableConfig(
        run_name="populate_followup_questions",
        configurable={"thread_id": uuid}
    )
    weak_model_with_config = weak_model.with_config(config)
    follow_up_questions = await weak_model_with_config.with_structured_output(FollowupQuestions).ainvoke([
        ("system", f"suggest {FOLLOWUP_QUESTION_NUMBER} followup questions for the user to ask the assistant. Refrain from asking personal questions."),
        *messages,
    ])
    if len(follow_up_questions.questions) != FOLLOWUP_QUESTION_NUMBER:
        raise ValueError("Invalid value of followup questions")
    buttons = []
    for i in range(FOLLOWUP_QUESTION_NUMBER):
        buttons.append(
            gr.Button(follow_up_questions.questions[i], visible=True, elem_classes="chat-tab"),
        )
    return *buttons, False

async def summarize_chat(end_of_chat_response: bool, messages: dict, sidebar_summaries: dict, uuid: UUID):
    """Summarize chat for tab names"""
    # print("\n------------------------")
    # print("not end_of_chat_response", not end_of_chat_response)
    # print("not messages", not messages)
    # if messages:
    #     print("messages[-1][role] != assistant", messages[-1]["role"] != "assistant")
    # print("isinstance(sidebar_summaries, type(lambda x: x))", isinstance(sidebar_summaries, type(lambda x: x)))
    # print("uuid in sidebar_summaries", uuid in sidebar_summaries)
    should_return = (
        not end_of_chat_response or
        not messages or
        messages[-1]["role"] != "assistant" or
        # This is a bug with gradio
        isinstance(sidebar_summaries, type(lambda x: x)) or
        # Already created summary
        uuid in sidebar_summaries
    )
    if should_return:
        return gr.skip(), gr.skip()

    filtered_messages = []
    for msg in messages:
        if isinstance(msg, dict) and msg.get("content") and msg["content"].strip():
            filtered_messages.append(msg)
    
    # If we don't have any valid messages after filtering, provide a default summary
    if not filtered_messages:
        if uuid not in sidebar_summaries:
            sidebar_summaries[uuid] = "Chat History"
        return sidebar_summaries, False


    config = RunnableConfig(
        run_name="summarize_chat",
        configurable={"thread_id": uuid}
    )
    try:
        weak_model_with_config = weak_model.with_config(config)
        summary_response = await weak_model_with_config.ainvoke([
            ("system", "summarize this chat in 7 tokens or less. Refrain from using periods"),
            *filtered_messages,
        ])
        
        if uuid not in sidebar_summaries:
            sidebar_summaries[uuid] = summary_response.content
    except Exception as e:
        logger.error(f"Error summarizing chat: {e}")
        # Provide a fallback summary if an error occurs
        if uuid not in sidebar_summaries:
            sidebar_summaries[uuid] = "Previous Chat"
    
    return sidebar_summaries, False

async def new_tab(uuid, gradio_graph, messages, tabs, prompt, sidebar_summaries):
    new_uuid = uuid4()
    new_graph = {}
    if uuid not in sidebar_summaries:
        sidebar_summaries, _ = await summarize_chat(True, messages, sidebar_summaries, uuid)
    tabs[uuid] = {
        "graph": gradio_graph,
        "messages": messages,
        "prompt": prompt,
    }
    suggestion_buttons = []
    for _ in range(FOLLOWUP_QUESTION_NUMBER):
        suggestion_buttons.append(gr.Button(visible=False))
    new_messages = {}

    # --- MODIFICATION FOR GREETING IN EVERY NEW CHAT ---
    greeting_text = load_initial_greeting() # Get the greeting
    # `gr.Chatbot` expects a list of tuples or list of dicts.
    # For `type="messages"`, it's list of dicts: [{"role": "assistant", "content": "Hello"}]
    # Or list of tuples: [(None, "Hello")]
    # Let's assume your chatbot is configured for list of tuples (None, bot_message) for initial messages
    new_chat_messages_for_display = [{"role": "assistant", "content": greeting_text}]
    # If your chat_interface.chatbot_value expects list of dicts:
    # new_messages_history = [{"role": "assistant", "content": greeting_text}]
    # --- END MODIFICATION ---

    new_prompt = "You are a helpful assistant."
    return new_uuid, new_graph, new_chat_messages_for_display, tabs, new_prompt, sidebar_summaries, *suggestion_buttons

def switch_tab(selected_uuid, tabs, gradio_graph, uuid, messages, prompt):
    # I don't know of another way to lookup uuid other than
    # by the button value

    # Save current state
    if messages:
        tabs[uuid] = {
            "graph": gradio_graph,
            "messages": messages,
            "prompt": prompt
        }

    if selected_uuid not in tabs:
        logger.error(f"Could not find the selected tab in offloaded_tabs_data_storage {selected_uuid}")
        return gr.skip(), gr.skip(), gr.skip(), gr.skip()
    selected_tab_state = tabs[selected_uuid]
    selected_graph = selected_tab_state["graph"]
    selected_messages = selected_tab_state["messages"]
    selected_prompt = selected_tab_state.get("prompt", "")
    suggestion_buttons = []
    for _ in range(FOLLOWUP_QUESTION_NUMBER):
        suggestion_buttons.append(gr.Button(visible=False))
    return selected_graph, selected_uuid, selected_messages, tabs, selected_prompt, *suggestion_buttons

def delete_tab(current_chat_uuid, selected_uuid, sidebar_summaries, tabs):
    output_messages = gr.skip()
    if current_chat_uuid == selected_uuid:
        output_messages = dict()
    if selected_uuid in tabs:
        del tabs[selected_uuid]
    if selected_uuid in sidebar_summaries:
        del sidebar_summaries[selected_uuid]
    return sidebar_summaries, tabs, output_messages

def submit_edit_tab(selected_uuid, sidebar_summaries, text):
    sidebar_summaries[selected_uuid] = text
    return sidebar_summaries, ""

def load_mesh(mesh_file_name):
            return mesh_file_name

def display_initial_greeting(is_new_user_state_value: bool):
    """
    Determines if a greeting should be displayed and returns the UI updates.
    It also returns the new state for 'is_new_user_for_greeting'.
    """
    if is_new_user_state_value:
        greeting_message_text = load_initial_greeting()
        # For a chatbot, the history is a list of tuples: [(user_msg, bot_msg)]
        # For an initial message from the bot, user_msg is None.
        initial_chat_history = [(None, greeting_message_text)]
        updated_is_new_user_flag = False # Greeting shown, so set to False
        return initial_chat_history, updated_is_new_user_flag
    else:
        # Not a new user (or already greeted), so no initial message in chat history
        # and the flag remains False.
        return [], False

def get_sorted_3d_model_files():
    """
    Gets all 3D model files and sorts them by creation time (latest first).
    """
    examples_dir = Path("./generated_3d_models")
    if not examples_dir.exists():
        examples_dir.mkdir(parents=True, exist_ok=True) # Create dir if it doesn't exist
        return []

    model_files = [
        file for file in examples_dir.glob("*")
        if file.suffix.lower() in {".obj", ".glb", ".gltf"}
    ]

    sorted_files = sorted(
        model_files,
        key=lambda x: x.stat().st_ctime,
        reverse=True
    )
    return sorted_files

def get_3d_model_examples():
    """
    Returns a list of file paths for the gr.Examples component.
    """
    return [str(file) for file in get_sorted_3d_model_files()]

def get_latest_3d_model():
    """
    Returns the path to the most recently created 3D model.
    """
    sorted_files = get_sorted_3d_model_files()
    if sorted_files:
        return str(sorted_files[0])
    return None

def update_3d_models_on_load():
    """
    Gets the latest 3D model to display and updates the examples radio list on app load.
    """
    print("\n🍱🍱 Loading generated 3d models")
    sorted_files = get_sorted_3d_model_files()
    
    latest_model = str(sorted_files[0]) if sorted_files else None
    
    example_paths = [str(file) for file in sorted_files]
    
    # Return the latest model to the 3D viewer, and update the choices 
    # and selected value of the Radio component.
    return latest_model, gr.update(choices=example_paths, value=latest_model)


def update_generated_image_on_state_change(state: dict):

    
    """
    Checks the langgraph state for a generated image URL and updates the UI if found.
    """
    # The key comes from your `prompt_planning_node`
    image_url = state.get("generated_image_url_from_dalle") 
    if image_url:
        print(f"πŸ–ΌοΈ Found image URL in state, updating UI: {image_url}")
        return image_url
    else:
        # If the key doesn't exist or is None, don't update the image component.
        print(f"πŸ–ΌοΈ Image is not generated yet")
        return gr.skip()

# #! fix this shit
# def update_prompt_with_last_ai_message(state: dict):
#     """
#     Finds the last AI message WITH VISIBLE CONTENT in the state and updates the prompt textbox.
#     """
#     if not state or "messages" not in state or not state["messages"]:
#         print('πŸ§™πŸ§™ No messages found to display')
#         return gr.skip()

#     # Iterate backwards through the history to find the latest AI message with text
#     for message in reversed(state["messages"]):

#         print("\n")
#         print('message in message state--> ', message)
        
#         # ======================= ✨ START OF CHANGES ✨ =======================

#         # FIX: Make the check robust. Handle both AIMessage objects (live state)
#         # and dictionaries (state restored from browser).
#         is_ai_message = isinstance(message, AIMessage) or \
#                         (isinstance(message, dict) and message.get("type") == "ai")
        
#         if is_ai_message:
#             text_content = ""
            
#             # Use dictionary-style access, which is safer and works for both objects and dicts.
#             msg_content = message.get("content") if isinstance(message, dict) else message.content
            
#             # Tool calls can be in different locations after deserialization.
#             tool_calls = []
#             if isinstance(message, dict):
#                 # Check both common locations for tool calls in a deserialized message dict
#                 tool_calls = message.get("tool_calls") or message.get("additional_kwargs", {}).get("tool_calls", [])
#             else:
#                 tool_calls = getattr(message, "tool_calls", [])

#             # Check for regular text content
#             if isinstance(msg_content, str) and msg_content.strip():
#                 text_content = msg_content
#             # ALSO check for text inside a human_assistance tool call
#             elif tool_calls:
#                 for tool_call in tool_calls:
#                     if tool_call.get("name") == "human_assistance":
#                         args = tool_call.get("args", {})
#                         # The arguments might be a stringified JSON, so we parse it safely.
#                         if isinstance(args, str):
#                             try:
#                                 args = json.loads(args)
#                             except json.JSONDecodeError:
#                                 continue # Skip if args are not valid JSON
                        
#                         query = args.get("query")
#                         if query:
#                             text_content = query
#                             break # Found the query in the tool call

#             # If we found any displayable text, update the textbox and exit.
#             if text_content:
#                 print(f"πŸ€– Found last displayable AI message: '{text_content}'")
#                 return gr.update(value=text_content)
        
#         # ======================== ✨ END OF CHANGES ✨ ========================

#     # If the loop finishes without finding any displayable AI message
#     print('πŸ§™πŸ§™ Retunring without any found messages')
#     return gr.skip()

def update_build_plan_display(state: dict):
    print('\nπŸ“ Loading build plan')
    """
    Searches the message history for the build plan and updates the Markdown display.
    """
    if not state or "messages" not in state:

        print('\nπŸ“ Start the chat to create a build plan')
        return gr.skip()

    # Search backwards through messages to find the one with the plan
    for message in reversed(state.get("messages", [])):
        # Handle both live AIMessage objects and deserialized dicts
        is_ai_message = isinstance(message, AIMessage) or \
                        (isinstance(message, dict) and message.get("type") == "ai")

        if is_ai_message:
            content = message.get("content") if isinstance(message, dict) else message.content
            # Check for unique keywords that identify the build plan
            if isinstance(content, str) and "Materials" in content:
                
                # Extract only the plan part, stopping before the 3D prompt section
                # plan_start_marker = "1. **Materials Needed**"
                # plan_end_marker = "Now, let's create a 3D model prompt"

                # plan_start_index = content.find(plan_start_marker)
                # if plan_start_index != -1:
                #     plan_end_index = content.find(plan_end_marker)
                #     # Take the substring containing the plan
                #     plan_text = content[plan_start_index:plan_end_index if plan_end_index != -1 else None].strip()
                    
                    print(f"πŸ“ Found and displaying Build Plan.")
                    return gr.update(value=content) # Update the Markdown component
    print('πŸ“ Build plan is not generated yet')

    return gr.skip() # Return skip if no plan is found

def update_model_prompt_display(state: dict):
    """
    Searches the message history for the 3D model prompt and updates the Textbox display.
    """
    if not state or "messages" not in state:
        return gr.skip()

    prompt_marker = "ACCURATE PROMPT FOR MODEL GENERATING:"

    # Search backwards through messages
    for message in reversed(state.get("messages", [])):
        is_ai_message = isinstance(message, AIMessage) or \
                        (isinstance(message, dict) and message.get("type") == "ai")
        
        if is_ai_message:
            content = message.get("content") if isinstance(message, dict) else message.content
            if isinstance(content, str) and prompt_marker in content:
                
                # Extract the text that comes after the marker
                prompt_start_index = content.find(prompt_marker) + len(prompt_marker)
                prompt_text = content[prompt_start_index:].strip()
                
                print(f"πŸ§™πŸ§™ Found and displaying 3D Model Prompt.")
                return gr.update(value=prompt_text) # Update the Textbox component

    return gr.skip() # Return skip if no prompt is found
CSS = """
footer {visibility: visible}
.followup-question-button {font-size: 12px }
.chat-tab {
    font-size: 12px;
    padding-inline: 0;
}
.chat-tab.active {
    background-color: #654343;
}
#new-chat-button { background-color: #0f0f11; color: white; }

.tab-button-control {
    min-width: 0;
    padding-left: 0;
    padding-right: 0;
}




"""

# We set the ChatInterface textbox id to chat-textbox for this to work
TRIGGER_CHATINTERFACE_BUTTON = """
function triggerChatButtonClick() {

  // Find the div with id "chat-textbox"
  const chatTextbox = document.getElementById("chat-textbox");

  if (!chatTextbox) {
    console.error("Error: Could not find element with id 'chat-textbox'");
    return;
  }

  // Find the button that is a descendant of the div
  const button = chatTextbox.querySelector("button");

  if (!button) {
    console.error("Error: No button found inside the chat-textbox element");
    return;
  }

  // Trigger the click event
  button.click();
}"""



TOGGLE_SIDEBAR_JS = """
function toggleSidebarVisibility() {
    console.log("Called the side bar funnction");
    const sidebar = document.querySelector(".sidebar svelte-7y53u7 open");
    if (!sidebar) {
        console.error("Error: Could not find the sidebar element");
        return;
    }
    sidebar.classList.toggle("sidebar-collapsed");
}
"""

if __name__ == "__main__":
    logger.info("Loading Interface")
    with gr.Blocks(title="DIYO is here",fill_height=True, css=CSS, elem_id="main-app") as demo:
        is_new_user_for_greeting = gr.State(True)
        chatbot_message_storage = gr.State([])
        model_update_trigger = gr.State()
        current_prompt_state = gr.BrowserState(
            storage_key="current_prompt_state",
            secret=BROWSER_STORAGE_SECRET,
        )
        current_uuid_state = gr.BrowserState(
            uuid4,
            storage_key="current_uuid_state",
            secret=BROWSER_STORAGE_SECRET,
        )
        current_langgraph_state = gr.BrowserState(
            dict(),
            storage_key="current_langgraph_state",
            secret=BROWSER_STORAGE_SECRET,
        )
        end_of_assistant_response_state = gr.State(
            bool(),
        )
        # [uuid] -> summary of chat
        sidebar_names_state = gr.BrowserState(
            dict(),
            storage_key="sidebar_names_state",
            secret=BROWSER_STORAGE_SECRET,
        )
        # [uuid] -> {"graph": gradio_graph, "messages": messages}
        offloaded_tabs_data_storage = gr.BrowserState(
            dict(),
            storage_key="offloaded_tabs_data_storage",
            secret=BROWSER_STORAGE_SECRET,
        )

        chatbot_message_storage = gr.BrowserState(
            [],
            storage_key="chatbot_message_storage",
            secret=BROWSER_STORAGE_SECRET,
        )
        with gr.Row(elem_id="header-image"):
            header_image = gr.Image(value="https://yqewezudxihyadvmfovd.supabase.co/storage/v1/object/public/product_images/hodabass/header.png")
        with gr.Row(elem_id="system-prompt-input"):
            prompt_textbox = gr.Textbox(show_label=False, interactive=True,visible=False)
        with gr.Row(elem_id="image_prompt"):
            with gr.Column(scale=1):
                build_plan_display = gr.Markdown(label="Build Plan", elem_id="build-plan")
                model_prompt_display = gr.Textbox(label="Image generation prompt", interactive=False, lines=7, elem_id="model-prompt")

            with gr.Column(scale=1):
                generated_image = gr.Image()
        
        with gr.Row():
            checkbox_search_enabled = gr.Checkbox(
                value=True,
                label="Enable search",
                show_label=True,
                visible=search_enabled,
                scale=1,
            )
            checkbox_download_website_text = gr.Checkbox(
                value=True,
                show_label=True,
                label="Enable downloading text from urls",
                scale=1,
            )
        
        with gr.Row():
            guidelines = gr.Textbox(lines=2, label="ℹ️Readmeℹ️",value="Just a heads-up! πŸ’‘ You can tell the agent to finalize the plan at the any stage of the process to immediately start generating model. πŸ’‘ It takes an average of 300 seconds to generate a 3d model. πŸ’‘ Click the logs button to view the progress. πŸ’‘ If the header component isnt visible on screen please resize your browser window twice. πŸ’‘New chat need to be started once a 3d model has been generated. ✨")

        with gr.Row():
            with gr.Column(scale=2):
                model_3d_output = gr.Model3D(
                    clear_color=[0.0, 0.0, 0.0, 0.0],
                    label="3D Model",
                )
            with gr.Column(scale=1):
                # Input for the 3D model
                # Using UploadButton is often clearer for users than a clickable Model3D input
                model_3d_upload_button = gr.UploadButton(
                    "Upload 3D Model (.obj, .glb, .gltf)",
                    file_types=[".obj", ".glb", ".gltf"],
                    # scale=0 # make it take less space if needed
                )
                output_list = gr.Radio(
                    label="Example 3D Models",
                    choices=[], # Will be populated on load
                    type="value",
                    info="Select a model to view. The list updates on page load."
                )
        with gr.Row(): 
            multimodal = False
            textbox_component = (
                gr.MultimodalTextbox if multimodal else gr.Textbox
            )    
        
            textbox = textbox_component(
                    show_label=False,
                    label="Message",
                    placeholder="Type a message...",
                    scale=1,
                    autofocus=True,
                    submit_btn=True,
                    stop_btn=True,
                    elem_id="chat-textbox",
                    lines=1,
                )
            chatbot = gr.Chatbot(
                    type="messages",
                    scale=0,
                    show_copy_button=True,
                    editable="all",
                    elem_classes="main-chatbox"
                )
            
        

            
        tab_edit_uuid_state = gr.State(
            str()
        )
        prompt_textbox.change(lambda prompt: prompt, inputs=[prompt_textbox], outputs=[current_prompt_state])

        MAX_CHATS_IN_SIDEBAR = 25

        with gr.Sidebar() as sidebar:
            new_chat_button = gr.Button("New Chat", elem_id="new-chat-button")
            
            # --- This is the "Component Pool" ---
            # We create a fixed number of rows for our chats and hide them initially.
            sidebar_chat_rows = []
            for i in range(MAX_CHATS_IN_SIDEBAR):
                with gr.Row(visible=False, elem_classes="chat-tab-row") as row:
                    # We need a gr.State to hold the unique ID for each chat in the list
                    chat_id_state = gr.State()

                    # The main button to switch to the chat
                    chat_button = gr.Button(scale=2)
                    
                    # The delete button for the chat
                    delete_button = gr.Button("πŸ—‘", scale=0, elem_classes=["tab-button-control"])

                    sidebar_chat_rows.append({
                        "row": row,
                        "chat_id_state": chat_id_state,
                        "chat_button": chat_button,
                        "delete_button": delete_button
                    })
        
        def update_sidebar_display(sidebar_summaries, all_tabs_data, active_uuid):
            updates = []
            
            # Use reversed to show the newest chats on top
            chat_uuids_to_display = list(reversed(list(all_tabs_data.keys())))

            for i in range(MAX_CHATS_IN_SIDEBAR):
                if i < len(chat_uuids_to_display):
                    # If we have a chat for this slot, we make the row visible and update it.
                    chat_uuid = chat_uuids_to_display[i]
                    chat_name = sidebar_summaries.get(chat_uuid, f"Chat {i+1}")
                    
                    elem_classes = ["chat-tab", "active"] if chat_uuid == active_uuid else ["chat-tab"]
                    
                    updates.extend([
                        gr.update(visible=True), # Show the row
                        chat_uuid,               # Set the UUID for this row
                        gr.update(value=chat_name, elem_classes=elem_classes), # Update the button text/style
                        gr.update(visible=True)  # Show the delete button
                    ])
                else:
                    # If there's no chat for this slot, we hide the entire row.
                    updates.extend([
                        gr.update(visible=False), # Hide the row
                        None,                     # Clear the state
                        gr.update(value=""),      # Clear button text
                        gr.update(visible=False)  # Hide delete button
                    ])
            return updates
        
        chat_interface = gr.ChatInterface(
            chatbot=chatbot,
            fn=chat_fn,
            additional_inputs=[
                current_langgraph_state,
                current_uuid_state,
                prompt_textbox,
                checkbox_search_enabled,
                checkbox_download_website_text,
            ],
            additional_outputs=[
                current_langgraph_state,
                end_of_assistant_response_state,
            

            ],
            multimodal=multimodal,
            textbox=textbox,
        )

        with gr.Row():
                    followup_question_buttons = []
                    for i in range(FOLLOWUP_QUESTION_NUMBER):
                        btn = gr.Button(f"Button {i+1}", visible=False)
                        followup_question_buttons.append(btn)


        # --- Define all event listeners ONCE, outside of any update function ---
        for components in sidebar_chat_rows:
            # Event listener for switching to a different chat
            components["chat_button"].click(
                fn=switch_tab,
                inputs=[
                    components["chat_id_state"], # The UUID of the clicked tab
                    offloaded_tabs_data_storage,
                    current_langgraph_state,
                    current_uuid_state,
                    chatbot,
                    prompt_textbox
                ],
                outputs=[
                    current_langgraph_state,
                    current_uuid_state,
                    chat_interface.chatbot,
                    offloaded_tabs_data_storage,
                    prompt_textbox,
                    *followup_question_buttons,
                ]
            )

            # Event listener for deleting a chat
            components["delete_button"].click(
                fn=delete_tab,
                inputs=[
                    current_uuid_state,
                    components["chat_id_state"], # The UUID of the tab to delete
                    sidebar_names_state,
                    offloaded_tabs_data_storage
                ],
                outputs=[
                    sidebar_names_state,
                    offloaded_tabs_data_storage,
                    chat_interface.chatbot
                ]
            )

        # --- This section replaces the @gr.render decorator ---
        # We trigger the update function whenever the underlying data changes.
        sidebar_update_triggers = [
            sidebar_names_state, 
            offloaded_tabs_data_storage, 
            current_uuid_state,
        ]
        
        # The list of all components we need to update
        sidebar_update_outputs = []
        for comp_dict in sidebar_chat_rows:
            sidebar_update_outputs.extend(comp_dict.values())

        for trigger in sidebar_update_triggers:
            trigger.change(
                fn=update_sidebar_display,
                inputs=[sidebar_names_state, offloaded_tabs_data_storage, current_uuid_state],
                outputs=sidebar_update_outputs,
                show_progress="hidden"
            )
        
        # Also trigger an update when the app loads
        demo.load(
            fn=update_sidebar_display,
            inputs=[sidebar_names_state, offloaded_tabs_data_storage, current_uuid_state],
            outputs=sidebar_update_outputs,
            show_progress="hidden"
        )



        new_chat_button.click(
            new_tab,
            inputs=[
                current_uuid_state,
                current_langgraph_state,
                chatbot,
                offloaded_tabs_data_storage,
                prompt_textbox,
                sidebar_names_state,
            ],
            outputs=[
                current_uuid_state,
                current_langgraph_state,
                chat_interface.chatbot_value,
                offloaded_tabs_data_storage,
                prompt_textbox,
                sidebar_names_state,
                *followup_question_buttons,
            ]
        )


        def click_followup_button(btn):
            buttons = [gr.Button(visible=False) for _ in range(len(followup_question_buttons))]
            return btn, *buttons

        
        for btn in followup_question_buttons:
            btn.click(
                fn=click_followup_button,
                inputs=[btn],
                outputs=[
                    chat_interface.textbox,
                    *followup_question_buttons
                ]
            ).success(lambda: None, js=TRIGGER_CHATINTERFACE_BUTTON)

        output_list.change(fn=lambda x: x, inputs=output_list, outputs=model_3d_output)

        chatbot.change(
            fn=populate_followup_questions,
            inputs=[
                end_of_assistant_response_state,
                chatbot,
                current_uuid_state
            ],
            outputs=[
                *followup_question_buttons,
                end_of_assistant_response_state
            ],
            trigger_mode="multiple"
        )
        chatbot.change(
            fn=summarize_chat,
            inputs=[
                end_of_assistant_response_state,
                chatbot,
                sidebar_names_state,
                current_uuid_state
            ],
            outputs=[
                sidebar_names_state,
                end_of_assistant_response_state
            ],
            trigger_mode="multiple"
        )
        chatbot.change(
            fn=lambda x: x,
            inputs=[chatbot],
            outputs=[chatbot_message_storage],
            trigger_mode="always_last"
        )


        current_langgraph_state.change(
            fn=update_3d_models_on_load,
            inputs=None, # The function doesn't need any inputs
            outputs=[model_3d_output, output_list],
            show_progress="hidden"
        )

        current_langgraph_state.change(
            fn=update_generated_image_on_state_change,
            inputs=[current_langgraph_state],
            outputs=[generated_image],
            show_progress="hidden"
        )

        # current_langgraph_state.change(
        #     fn=update_prompt_with_last_ai_message, 
        #     inputs=[current_langgraph_state],
        #     outputs=[last_AI_message],
        #     show_progress="hidden"
        # )
        current_langgraph_state.change(
            fn=update_build_plan_display,
            inputs=[current_langgraph_state],
            outputs=[build_plan_display],
            show_progress="hidden"
        )

        current_langgraph_state.change(
            fn=update_model_prompt_display,
            inputs=[current_langgraph_state],
            outputs=[model_prompt_display],
            show_progress="hidden"
        )

        model_3d_upload_button.upload(
            fn=load_mesh,
            inputs=model_3d_upload_button,
            outputs=model_3d_output
        )

        

        @demo.load( # Or demo.load
            inputs=[
                is_new_user_for_greeting,
                chatbot_message_storage # Pass the current stored messages
            ],
            outputs=[
                chatbot_message_storage,    # Update the stored messages with the greeting
                is_new_user_for_greeting    # Update the flag
            ]
        )
        def handle_initial_greeting_load(current_is_new_user_flag: bool, existing_chat_history: list):
            """
            This function is called by the @app.load decorator above.
            It decides whether to add a greeting to the chat history.
            """
            # You can either put the logic directly here, or call the globally defined one.
            # Option 1: Call the globally defined function (cleaner if it's complex)
            # Make sure 'display_initial_greeting_on_load' is defined globally in your app.py
            # For this example, I'm assuming 'display_initial_greeting_on_load' is the one we defined earlier:
            # def display_initial_greeting_on_load(current_is_new_user_flag: bool, existing_chat_history: list):
            #     if current_is_new_user_flag:
            #         greeting_message_text = load_initial_greeting() # from graph.py
            #         greeting_entry = (None, greeting_message_text)
            #         if not isinstance(existing_chat_history, list): existing_chat_history = []
            #         updated_chat_history = [greeting_entry] + existing_chat_history
            #         updated_is_new_user_flag = False
            #         logger.info("Greeting added for new user.")
            #         return updated_chat_history, updated_is_new_user_flag
            #     else:
            #         logger.info("Not a new user or already greeted, no greeting added.")
            #         return existing_chat_history, False
            #
            # return display_initial_greeting_on_load(current_is_new_user_flag, existing_chat_history)

            # Option 2: Put logic directly here (if simple enough)
            if current_is_new_user_flag:
                greeting_message_text = load_initial_greeting() # Make sure load_initial_greeting is imported
                greeting_entry = {"role": "assistant", "content": greeting_message_text}
                # Ensure existing_chat_history is a list before concatenation
                if not isinstance(existing_chat_history, list):
                    existing_chat_history = []
                updated_chat_history = [greeting_entry] + existing_chat_history
                updated_is_new_user_flag = False
                logger.info("starting new chat")
                return updated_chat_history, updated_is_new_user_flag
            else:
                logger.info("loading existing chat")
                return existing_chat_history, False

        @demo.load(inputs=[chatbot_message_storage], outputs=[chat_interface.chatbot_value])
        def load_messages(messages):
            return messages

        @demo.load(inputs=[current_prompt_state], outputs=[prompt_textbox])
        def load_prompt(current_prompt):
            return current_prompt
        
        @demo.load(outputs=[model_3d_output, output_list])
        def update_3d_models_on_load():
            """
            Gets the latest 3D model to display and updates the examples radio list on app load.
            """
            sorted_files = get_sorted_3d_model_files()
            
            latest_model = str(sorted_files[0]) if sorted_files else None
            
            example_paths = [str(file) for file in sorted_files]
            
            # Return the latest model to the 3D viewer, and update the choices 
            # and selected value of the Radio component.
            return latest_model, gr.update(choices=example_paths, value=latest_model)
        
        # @demo.load(inputs=None,outputs=[model_3d_output])
        # def get_latest_3d_model():
        #         """
        #         Returns the path to the most recently created 3D model.
        #         """
        #         sorted_files = get_sorted_3d_model_files()
        #         if sorted_files:
        #             return str(sorted_files[0])
        #         return None
        # @demo.load(inputs=None,outputs=[output_list])
        # def get_3d_model_examples():
        #     """
        #     Returns a list of file paths for the gr.Examples component.
        #     """
        #     return [str(file) for file in get_sorted_3d_model_files()]
        
    #!environment variable gradio_server_mname is overridden here
    #*on local host 
    # demo.launch(server_name="127.0.0.1", server_port=8080, share=True)

    #*in gradio space without docker
    # demo.launch(server_name="0.0.0.0", server_port=7860, share=True)

    #*on docker container inside local host
    # demo.launch(height=1500,server_name="0.0.0.0", server_port=8080, share=True)

    #  #*in gradio space with docker
    demo.launch(height=2500)




        # with gr.Sidebar() as sidebar:
        #     @gr.render(inputs=[tab_edit_uuid_state, end_of_assistant_response_state, sidebar_names_state, current_uuid_state, chatbot, offloaded_tabs_data_storage])
        #     def render_chats(tab_uuid_edit, end_of_chat_response, sidebar_summaries, active_uuid, messages, tabs):
        #         current_tab_button_text = ""
        #         if active_uuid not in sidebar_summaries:
        #             current_tab_button_text = "Current Chat"
        #         elif active_uuid not in tabs:
        #             current_tab_button_text = sidebar_summaries[active_uuid]
        #         if current_tab_button_text:
        #             unique_id = f"current-tab-{active_uuid}-{uuid4()}"
        #             gr.Button(
        #                 current_tab_button_text, 
        #                 elem_classes=["chat-tab", "active"], 
        #                 elem_id=unique_id # Add unique elem_id
        #             )
        #         for chat_uuid, tab in reversed(tabs.items()):
        #             elem_classes = ["chat-tab"]
        #             if chat_uuid == active_uuid:
        #                 elem_classes.append("active")
        #             button_uuid_state = gr.State(chat_uuid)
        #             with gr.Row():
        #                 clear_tab_button = gr.Button(
        #                     "πŸ—‘",
        #                     scale=0,
        #                     elem_classes=["tab-button-control"],
        #                     elem_id=f"delete-btn-{chat_uuid}-{uuid4()}"  # Add unique ID
        #                 )
        #                 clear_tab_button.click(
        #                     fn=delete_tab,
        #                     inputs=[
        #                         current_uuid_state,
        #                         button_uuid_state,
        #                         sidebar_names_state,
        #                         offloaded_tabs_data_storage
        #                     ],
        #                     outputs=[
        #                         sidebar_names_state,
        #                         offloaded_tabs_data_storage,
        #                         chat_interface.chatbot_value
        #                     ]
        #                 )
        #                 chat_button_text = sidebar_summaries.get(chat_uuid)
        #                 if not chat_button_text:
        #                     chat_button_text = str(chat_uuid)
        #                 if chat_uuid != tab_uuid_edit:
        #                     set_edit_tab_button = gr.Button(
        #                         "✎",
        #                         scale=0,
        #                         elem_classes=["tab-button-control"],
        #                         elem_id=f"edit-btn-{chat_uuid}-{uuid4()}"  # Add unique ID
        #                     )
        #                     set_edit_tab_button.click(
        #                         fn=lambda x: x,
        #                         inputs=[button_uuid_state],
        #                         outputs=[tab_edit_uuid_state]
        #                     )
        #                     chat_tab_button = gr.Button(
        #                         chat_button_text,
        #                         elem_id=f"chat-{chat_uuid}-{uuid4()}",  # Add truly unique ID
        #                         elem_classes=elem_classes,
        #                         scale=2
        #                     )
        #                     chat_tab_button.click(
        #                         fn=switch_tab,
        #                         inputs=[
        #                             button_uuid_state,
        #                             offloaded_tabs_data_storage,
        #                             current_langgraph_state,
        #                             current_uuid_state,
        #                             chatbot,
        #                             prompt_textbox
        #                         ],
        #                         outputs=[
        #                             current_langgraph_state,
        #                             current_uuid_state,
        #                             chat_interface.chatbot_value,
        #                             offloaded_tabs_data_storage,
        #                             prompt_textbox,
        #                             *followup_question_buttons
        #                         ]
        #                     )
        #                 else:
        #                     chat_tab_text = gr.Textbox(
        #                         chat_button_text,
        #                         scale=2,
        #                         interactive=True,
        #                         show_label=False,
        #                         elem_id=f"edit-text-{chat_uuid}-{uuid4()}"  # Add unique ID
        #                     )
        #                     chat_tab_text.submit(
        #                         fn=submit_edit_tab,
        #                         inputs=[
        #                             button_uuid_state,
        #                             sidebar_names_state,
        #                             chat_tab_text
        #                         ],
        #                         outputs=[
        #                             sidebar_names_state,
        #                             tab_edit_uuid_state
        #                         ]
        #                     )
        #             # )
        #         # return chat_tabs, sidebar_summaries
        #     new_chat_button = gr.Button("New Chat", elem_id="new-chat-button")
        # chatbot.clear(fn=clear, outputs=[current_langgraph_state, current_uuid_state])
        
        # chat_interface = gr.ChatInterface(
        #     chatbot=chatbot,
        #     fn=chat_fn,
        #     additional_inputs=[
        #         current_langgraph_state,
        #         current_uuid_state,
        #         prompt_textbox,
        #         checkbox_search_enabled,
        #         checkbox_download_website_text,
        #     ],
        #     additional_outputs=[
        #         current_langgraph_state,
        #         end_of_assistant_response_state
        #     ],
        #     type="messages",
        #     multimodal=multimodal,
        #     textbox=textbox,
        # )