File size: 5,005 Bytes
7cd1bcd
 
 
 
 
 
 
b4ddcf6
7cd1bcd
 
 
 
 
 
 
 
b4ddcf6
7cd1bcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bba947
b4ddcf6
7cd1bcd
68e94ff
 
 
7cd1bcd
 
 
29bc850
7cd1bcd
 
 
29bc850
7cd1bcd
 
 
 
 
 
 
 
 
 
 
9c442bc
29bc850
7cd1bcd
 
 
 
 
d48c4b6
 
 
 
7cd1bcd
d48c4b6
 
 
 
 
 
 
 
7cd1bcd
d4f660f
 
d48c4b6
d4f660f
 
7cd1bcd
d4f660f
 
7cd1bcd
d48c4b6
 
b4ddcf6
d48c4b6
 
 
 
7cd1bcd
d48c4b6
 
 
 
 
 
 
d4f660f
d48c4b6
 
29bc850
d48c4b6
 
 
 
 
 
 
 
 
d4f660f
d48c4b6
 
 
 
 
7cd1bcd
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import graphviz
import json
from tempfile import NamedTemporaryFile
import os

def generate_timeline_diagram(json_input: str, output_format: str) -> str:
    """
    Generates a serpentine timeline diagram from JSON input.

    Args:
        json_input (str): A JSON string describing the timeline structure.
                          It must follow the Expected JSON Format Example below.

    Expected JSON Format Example:
    {
      "title": "AI Development Timeline",
      "events_per_row": 4,
      "events": [
        {
          "id": "event_1",
          "label": "Machine Learning Foundations",
          "date": "1950-1960",
          "description": "Early neural networks and perceptrons"
        },
        {
          "id": "event_2",
          "label": "Expert Systems Era",
          "date": "1970-1980",
          "description": "Rule-based AI systems"
        },
        {
          "id": "event_3",
          "label": "Neural Network Revival",
          "date": "1980-1990",
          "description": "Backpropagation algorithm"
        }
      ]
    }

    Returns:
        str: The filepath to the generated PNG image file.
    """
    try:
        if not json_input.strip():
            return "Error: Empty input"
            
        data = json.loads(json_input)
        
        if 'events' not in data:
            raise ValueError("Missing required field: events")

        dot = graphviz.Digraph(
            name='Timeline',
            format='png',
            graph_attr={
                'rankdir': 'TB',        # Top-to-Bottom
                'splines': 'ortho',     # Straight lines with 90-degree bends
                'bgcolor': 'white',     # White background
                'pad': '0.8',           # Padding around the graph
                'nodesep': '3.0',       # Increased spacing between nodes horizontally
                'ranksep': '2.5'        # Increased spacing between ranks vertically
            }
        )
        
        base_color = '#19191a'
        
        title = data.get('title', '')
        events = data.get('events', [])
        events_per_row = data.get('events_per_row', 4)  
        
        if not events:
            raise ValueError("Timeline must contain at least one event")

        if title:
            dot.node(
                'title',
                title,
                shape='plaintext',
                fontsize='18',
                fontweight='bold',
                fontcolor=base_color,
                pos="6,2!" 
            )
        
        total_events = len(events)
        
        for i, event in enumerate(events):
            event_id = event.get('id', f'event_{i}')
            event_label = event.get('label', f'Event {i+1}')
            event_date = event.get('date', '')
            event_description = event.get('description', '')
            
            if event_date and event_description:
                full_label = f"{event_date}\\n{event_label}\\n{event_description}"
            elif event_date:
                full_label = f"{event_date}\\n{event_label}"
            elif event_description:
                full_label = f"{event_label}\\n{event_description}"
            else:
                full_label = event_label
            
            if total_events == 1:
                opacity = 'FF'
            else:
                opacity_value = int(255 * (1.0 - (i * 0.7 / (total_events - 1))))
                opacity = format(opacity_value, '02x')
            
            node_color = f"{base_color}{opacity}"
            font_color = 'white' if i < total_events * 0.7 else 'black'
            
            row = i // events_per_row
            col = i % events_per_row
            
            if row % 2 == 1:
                visual_col = events_per_row - 1 - col
            else:
                visual_col = col
            
            dot.node(
                event_id,
                full_label,
                shape='box',
                style='filled,rounded',
                fillcolor=node_color,
                fontcolor=font_color,
                fontsize='12',
                width='2.5',
                height='1.2',
                pos=f"{visual_col * 4.5},{-row * 3}!"  
            )
        
        for i in range(len(events) - 1):
            current_event_id = events[i].get('id', f'event_{i}')
            next_event_id = events[i + 1].get('id', f'event_{i + 1}')
            
            dot.edge(
                current_event_id,
                next_event_id,
                color='#666666',
                arrowsize='0.8',
                penwidth='2'
            )
        
        dot.engine = 'neato'

        with NamedTemporaryFile(delete=False, suffix=f'.{output_format}') as tmp:
            dot.render(tmp.name, format=output_format, cleanup=True)
            return f"{tmp.name}.{output_format}"

    except json.JSONDecodeError:
        return "Error: Invalid JSON format"
    except Exception as e:
        return f"Error: {str(e)}"