Graphify / concept_map_generator.py
ZahirJS's picture
Update concept_map_generator.py
ebfa2a6 verified
import graphviz
import json
from tempfile import NamedTemporaryFile
import os
from graph_generator_utils import add_nodes_and_edges
def generate_concept_map(json_input: str, output_format: str) -> str:
"""
Generates a concept map from JSON input.
Args:
json_input (str): A JSON string describing the concept map structure.
It must follow the Expected JSON Format Example below.
Expected JSON Format Example:
{
"central_node": "Artificial Intelligence (AI)",
"nodes": [
{
"id": "ml_fundamental",
"label": "Machine Learning",
"relationship": "is essential for",
"subnodes": [
{
"id": "dl_branch",
"label": "Deep Learning",
"relationship": "for example",
"subnodes": [
{
"id": "cnn_example",
"label": "CNNs",
"relationship": "for example"
},
{
"id": "rnn_example",
"label": "RNNs",
"relationship": "for example"
}
]
},
{
"id": "rl_branch",
"label": "Reinforcement Learning",
"relationship": "for example",
"subnodes": [
{
"id": "qlearning_example",
"label": "Q-Learning",
"relationship": "example"
},
{
"id": "pg_example",
"label": "Policy Gradients",
"relationship": "example"
}
]
}
]
},
{
"id": "ai_types",
"label": "Types",
"relationship": "formed by",
"subnodes": [
{
"id": "agi_type",
"label": "AGI",
"relationship": "this is",
"subnodes": [
{
"id": "strong_ai",
"label": "Strong AI",
"relationship": "provoked by",
"subnodes": [
{
"id": "human_intel",
"label": "Human-level Intel.",
"relationship": "of"
}
]
}
]
},
{
"id": "ani_type",
"label": "ANI",
"relationship": "this is",
"subnodes": [
{
"id": "weak_ai",
"label": "Weak AI",
"relationship": "provoked by",
"subnodes": [
{
"id": "narrow_tasks",
"label": "Narrow Tasks",
"relationship": "of"
}
]
}
]
}
]
},
{
"id": "ai_capabilities",
"label": "Capabilities",
"relationship": "change",
"subnodes": [
{
"id": "data_proc",
"label": "Data Processing",
"relationship": "can",
"subnodes": [
{
"id": "big_data",
"label": "Big Data",
"relationship": "as",
"subnodes": [
{
"id": "analysis_example",
"label": "Data Analysis",
"relationship": "example"
},
{
"id": "prediction_example",
"label": "Prediction",
"relationship": "example"
}
]
}
]
},
{
"id": "decision_making",
"label": "Decision Making",
"relationship": "can be",
"subnodes": [
{
"id": "automation",
"label": "Automation",
"relationship": "as",
"subnodes": [
{
"id": "robotics_example",
"label": "Robotics",
"relationship": "Example"},
{
"id": "autonomous_example",
"label": "Autonomous Vehicles",
"relationship": "of one"
}
]
}
]
},
{
"id": "problem_solving",
"label": "Problem Solving",
"relationship": "can",
"subnodes": [
{
"id": "optimization",
"label": "Optimization",
"relationship": "as is",
"subnodes": [
{
"id": "algorithms_example",
"label": "Algorithms",
"relationship": "for example"
}
]
}
]
}
]
}
]
}
Returns:
str: The filepath to the generated PNG image file.
"""
try:
if not json_input.strip():
return "Error: Empty input"
data = json.loads(json_input)
if 'central_node' not in data or 'nodes' not in data:
raise ValueError("Missing required fields: central_node or nodes")
dot = graphviz.Digraph(
name='ConceptMap',
format='png',
graph_attr={
'rankdir': 'TB', # Top-to-Bottom layout (vertical hierarchy)
'splines': 'ortho', # Straight lines
'bgcolor': 'white', # White background
'pad': '0.5' # Padding around the graph
}
)
base_color = '#19191a'
dot.node(
'central',
data['central_node'],
shape='box', # Rectangular shape
style='filled,rounded', # Filled and rounded corners
fillcolor=base_color, # Darkest color
fontcolor='white', # White text for dark background
fontsize='16' # Larger font for central node
)
add_nodes_and_edges(dot, 'central', data.get('nodes', []), current_depth=1, base_color=base_color)
with NamedTemporaryFile(delete=False, suffix=f'.{output_format}') as tmp:
dot.render(tmp.name, format=output_format, cleanup=True)
return f"{tmp.name}.{output_format}"
except json.JSONDecodeError:
return "Error: Invalid JSON format"
except Exception as e:
return f"Error: {str(e)}"