ZahirJS commited on
Commit
b453d91
·
verified ·
1 Parent(s): b4ddcf6

Update sample_data.py

Browse files
Files changed (1) hide show
  1. sample_data.py +559 -19
sample_data.py CHANGED
@@ -474,45 +474,585 @@ WBS_DIAGRAM_JSON = """
474
 
475
  """
476
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
477
  TIMELINE_JSON = """
478
  {
479
- "title": "AI Development Timeline",
 
480
  "events": [
481
  {
482
  "id": "event_1",
483
- "label": "Machine Learning Foundations",
484
- "date": "1950-1960",
485
- "description": "Early neural networks and perceptrons"
486
  },
487
  {
488
  "id": "event_2",
489
- "label": "Expert Systems Era",
490
- "date": "1970-1980",
491
- "description": "Rule-based AI systems"
492
  },
493
  {
494
  "id": "event_3",
495
- "label": "Neural Network Revival",
496
- "date": "1980-1990",
497
- "description": "Backpropagation algorithm"
498
  },
499
  {
500
  "id": "event_4",
501
- "label": "Machine Learning Boom",
502
- "date": "1990-2000",
503
- "description": "Support Vector Machines, Random Forests"
504
  },
505
  {
506
  "id": "event_5",
507
- "label": "Deep Learning Revolution",
508
- "date": "2010-2020",
509
- "description": "CNNs, RNNs, and breakthrough applications"
510
  },
511
  {
512
  "id": "event_6",
513
- "label": "Transformer Era",
514
- "date": "2020-Present",
515
- "description": "GPT, BERT, and Large Language Models"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
516
  }
517
  ]
518
  }
 
474
 
475
  """
476
 
477
+ CONCEPT_MAP_JSON = """
478
+ {
479
+ "central_node": "Artificial Intelligence (AI)",
480
+ "nodes": [
481
+ {
482
+ "id": "ml_fundamental",
483
+ "label": "Machine Learning",
484
+ "relationship": "is essential for",
485
+ "subnodes": [
486
+ {
487
+ "id": "dl_branch",
488
+ "label": "Deep Learning",
489
+ "relationship": "for example",
490
+ "subnodes": [
491
+ {
492
+ "id": "cnn_example",
493
+ "label": "CNNs",
494
+ "relationship": "for example"
495
+ },
496
+ {
497
+ "id": "rnn_example",
498
+ "label": "RNNs",
499
+ "relationship": "for example"
500
+ }
501
+ ]
502
+ },
503
+ {
504
+ "id": "rl_branch",
505
+ "label": "Reinforcement Learning",
506
+ "relationship": "for example",
507
+ "subnodes": [
508
+ {
509
+ "id": "qlearning_example",
510
+ "label": "Q-Learning",
511
+ "relationship": "example"
512
+ },
513
+ {
514
+ "id": "pg_example",
515
+ "label": "Policy Gradients",
516
+ "relationship": "example"
517
+ }
518
+ ]
519
+ }
520
+ ]
521
+ },
522
+ {
523
+ "id": "ai_types",
524
+ "label": "Types",
525
+ "relationship": "formed by",
526
+ "subnodes": [
527
+ {
528
+ "id": "agi_type",
529
+ "label": "AGI",
530
+ "relationship": "this is",
531
+ "subnodes": [
532
+ {
533
+ "id": "strong_ai",
534
+ "label": "Strong AI",
535
+ "relationship": "provoked by",
536
+ "subnodes": [
537
+ {
538
+ "id": "human_intel",
539
+ "label": "Human-level Intel.",
540
+ "relationship": "of"
541
+ }
542
+ ]
543
+ }
544
+ ]
545
+ },
546
+ {
547
+ "id": "ani_type",
548
+ "label": "ANI",
549
+ "relationship": "this is",
550
+ "subnodes": [
551
+ {
552
+ "id": "weak_ai",
553
+ "label": "Weak AI",
554
+ "relationship": "provoked by",
555
+ "subnodes": [
556
+ {
557
+ "id": "narrow_tasks",
558
+ "label": "Narrow Tasks",
559
+ "relationship": "of"
560
+ }
561
+ ]
562
+ }
563
+ ]
564
+ }
565
+ ]
566
+ },
567
+ {
568
+ "id": "ai_capabilities",
569
+ "label": "Capabilities",
570
+ "relationship": "change",
571
+ "subnodes": [
572
+ {
573
+ "id": "data_proc",
574
+ "label": "Data Processing",
575
+ "relationship": "can",
576
+ "subnodes": [
577
+ {
578
+ "id": "big_data",
579
+ "label": "Big Data",
580
+ "relationship": "as",
581
+ "subnodes": [
582
+ {
583
+ "id": "analysis_example",
584
+ "label": "Data Analysis",
585
+ "relationship": "example"
586
+ },
587
+ {
588
+ "id": "prediction_example",
589
+ "label": "Prediction",
590
+ "relationship": "example"
591
+ }
592
+ ]
593
+ }
594
+ ]
595
+ },
596
+ {
597
+ "id": "decision_making",
598
+ "label": "Decision Making",
599
+ "relationship": "can be",
600
+ "subnodes": [
601
+ {
602
+ "id": "automation",
603
+ "label": "Automation",
604
+ "relationship": "as",
605
+ "subnodes": [
606
+ {
607
+ "id": "robotics_example",
608
+ "label": "Robotics",
609
+ "relationship": "Example"},
610
+ {
611
+ "id": "autonomous_example",
612
+ "label": "Autonomous Vehicles",
613
+ "relationship": "of one"
614
+ }
615
+ ]
616
+ }
617
+ ]
618
+ },
619
+ {
620
+ "id": "problem_solving",
621
+ "label": "Problem Solving",
622
+ "relationship": "can",
623
+ "subnodes": [
624
+ {
625
+ "id": "optimization",
626
+ "label": "Optimization",
627
+ "relationship": "as is",
628
+ "subnodes": [
629
+ {
630
+ "id": "algorithms_example",
631
+ "label": "Algorithms",
632
+ "relationship": "for example"
633
+ }
634
+ ]
635
+ }
636
+ ]
637
+ }
638
+ ]
639
+ }
640
+ ]
641
+ }
642
+ """
643
+
644
+ # JSON for Synoptic Chart (horizontal hierarchy) - AI related, 4 levels
645
+ SYNOPTIC_CHART_JSON = """
646
+ {
647
+ "central_node": "AI Project Lifecycle",
648
+ "nodes": [
649
+ {
650
+ "id": "phase1",
651
+ "label": "I. Problem Definition & Data Acquisition",
652
+ "relationship": "Starts with",
653
+ "subnodes": [
654
+ {
655
+ "id": "sub1_1",
656
+ "label": "1. Problem Formulation",
657
+ "relationship": "Involves",
658
+ "subnodes": [
659
+ {"id": "sub1_1_1", "label": "1.1. Identify Business Need", "relationship": "e.g."},
660
+ {"id": "sub1_1_2", "label": "1.2. Define KPIs", "relationship": "e.g."}
661
+ ]
662
+ },
663
+ {
664
+ "id": "sub1_2",
665
+ "label": "2. Data Collection",
666
+ "relationship": "Followed by",
667
+ "subnodes": [
668
+ {"id": "sub1_2_1", "label": "2.1. Source Data", "relationship": "from"},
669
+ {"id": "sub1_2_2", "label": "2.2. Data Cleaning", "relationship": "includes"}
670
+ ]
671
+ }
672
+ ]
673
+ },
674
+ {
675
+ "id": "phase2",
676
+ "label": "II. Model Development",
677
+ "relationship": "Proceeds to",
678
+ "subnodes": [
679
+ {
680
+ "id": "sub2_1",
681
+ "label": "1. Feature Engineering",
682
+ "relationship": "Comprises",
683
+ "subnodes": [
684
+ {"id": "sub2_1_1", "label": "1.1. Feature Selection", "relationship": "e.g."},
685
+ {"id": "sub2_1_2", "label": "1.2. Feature Transformation", "relationship": "e.g."}
686
+ ]
687
+ },
688
+ {
689
+ "id": "sub2_2",
690
+ "label": "2. Model Training",
691
+ "relationship": "Involves",
692
+ "subnodes": [
693
+ {"id": "sub2_2_1", "label": "2.1. Algorithm Selection", "relationship": "uses"},
694
+ {"id": "sub2_2_2", "label": "2.2. Hyperparameter Tuning", "relationship": "optimizes"}
695
+ ]
696
+ }
697
+ ]
698
+ },
699
+ {
700
+ "id": "phase3",
701
+ "label": "III. Evaluation & Deployment",
702
+ "relationship": "Culminates in",
703
+ "subnodes": [
704
+ {
705
+ "id": "sub3_1",
706
+ "label": "1. Model Evaluation",
707
+ "relationship": "Includes",
708
+ "subnodes": [
709
+ {"id": "sub3_1_1", "label": "1.1. Performance Metrics", "relationship": "measures"},
710
+ {"id": "sub3_1_2", "label": "1.2. Bias & Fairness Audits", "relationship": "ensures"}
711
+ ]
712
+ },
713
+ {
714
+ "id": "sub3_2",
715
+ "label": "2. Deployment & Monitoring",
716
+ "relationship": "Requires",
717
+ "subnodes": [
718
+ {"id": "sub3_2_1", "label": "2.1. API/Integration Development", "relationship": "for"},
719
+ {"id": "sub3_2_2", "label": "2.2. Continuous Monitoring", "relationship": "ensures"}
720
+ ]
721
+ }
722
+ ]
723
+ }
724
+ ]
725
+ }
726
+ """
727
+
728
+ # JSON for Radial Diagram (central expansion) - AI related, 3 levels with 5->10 structure
729
+ RADIAL_DIAGRAM_JSON = """
730
+ {
731
+ "central_node": "AI Core Concepts & Domains",
732
+ "nodes": [
733
+ {
734
+ "id": "foundational_ml",
735
+ "label": "Foundational ML",
736
+ "relationship": "builds on",
737
+ "subnodes": [
738
+ {"id": "supervised_l", "label": "Supervised Learning", "relationship": "e.g."},
739
+ {"id": "unsupervised_l", "label": "Unsupervised Learning", "relationship": "e.g."}
740
+ ]
741
+ },
742
+ {
743
+ "id": "dl_architectures",
744
+ "label": "Deep Learning Arch.",
745
+ "relationship": "evolved from",
746
+ "subnodes": [
747
+ {"id": "cnns_rad", "label": "CNNs", "relationship": "e.g."},
748
+ {"id": "rnns_rad", "label": "RNNs", "relationship": "e.g."}
749
+ ]
750
+ },
751
+ {
752
+ "id": "major_applications",
753
+ "label": "Major AI Applications",
754
+ "relationship": "applied in",
755
+ "subnodes": [
756
+ {"id": "nlp_rad", "label": "Natural Language Processing", "relationship": "e.g."},
757
+ {"id": "cv_rad", "label": "Computer Vision", "relationship": "e.g."}
758
+ ]
759
+ },
760
+ {
761
+ "id": "ethical_concerns",
762
+ "label": "Ethical AI Concerns",
763
+ "relationship": "addresses",
764
+ "subnodes": [
765
+ {"id": "fairness_rad", "label": "Fairness & Bias", "relationship": "e.g."},
766
+ {"id": "explainability", "label": "Explainability (XAI)", "relationship": "e.g."}
767
+ ]
768
+ },
769
+ {
770
+ "id": "future_trends",
771
+ "label": "Future AI Trends",
772
+ "relationship": "looking at",
773
+ "subnodes": [
774
+ {"id": "agi_future", "label": "AGI Development", "relationship": "e.g."},
775
+ {"id": "quantum_ai", "label": "Quantum AI", "relationship": "e.g."}
776
+ ]
777
+ }
778
+ ]
779
+ }
780
+ """
781
+
782
+ PROCESS_FLOW_JSON = """
783
+ {
784
+ "start_node": "Start Inference Request",
785
+ "nodes": [
786
+ {
787
+ "id": "user_input",
788
+ "label": "Receive User Input (Data)",
789
+ "type": "io"
790
+ },
791
+ {
792
+ "id": "preprocess_data",
793
+ "label": "Preprocess Data",
794
+ "type": "process"
795
+ },
796
+ {
797
+ "id": "validate_data",
798
+ "label": "Validate Data Format/Type",
799
+ "type": "decision"
800
+ },
801
+ {
802
+ "id": "data_valid_yes",
803
+ "label": "Data Valid?",
804
+ "type": "decision"
805
+ },
806
+ {
807
+ "id": "load_model",
808
+ "label": "Load AI Model (if not cached)",
809
+ "type": "process"
810
+ },
811
+ {
812
+ "id": "run_inference",
813
+ "label": "Run AI Model Inference",
814
+ "type": "process"
815
+ },
816
+ {
817
+ "id": "postprocess_output",
818
+ "label": "Postprocess Model Output",
819
+ "type": "process"
820
+ },
821
+ {
822
+ "id": "send_response",
823
+ "label": "Send Response to User",
824
+ "type": "io"
825
+ },
826
+ {
827
+ "id": "log_error",
828
+ "label": "Log Error & Notify User",
829
+ "type": "process"
830
+ },
831
+ {
832
+ "id": "end_inference_process",
833
+ "label": "End Inference Process",
834
+ "type": "end"
835
+ }
836
+ ],
837
+ "connections": [
838
+ {"from": "start_node", "to": "user_input", "label": "Request"},
839
+ {"from": "user_input", "to": "preprocess_data", "label": "Data Received"},
840
+ {"from": "preprocess_data", "to": "validate_data", "label": "Cleaned"},
841
+ {"from": "validate_data", "to": "data_valid_yes", "label": "Check"},
842
+ {"from": "data_valid_yes", "to": "load_model", "label": "Yes"},
843
+ {"from": "data_valid_yes", "to": "log_error", "label": "No"},
844
+ {"from": "load_model", "to": "run_inference", "label": "Model Ready"},
845
+ {"from": "run_inference", "to": "postprocess_output", "label": "Output Generated"},
846
+ {"from": "postprocess_output", "to": "send_response", "label": "Ready"},
847
+ {"from": "send_response", "to": "end_inference_process", "label": "Response Sent"},
848
+ {"from": "log_error", "to": "end_inference_process", "label": "Error Handled"}
849
+ ]
850
+ }
851
+ """
852
+
853
+ # New JSON for Work Breakdown Structure (WBS) Diagram - similar to image, but not identical
854
+ WBS_DIAGRAM_JSON = """
855
+ {
856
+ "project_title": "AI Model Development Project",
857
+ "phases": [
858
+ {
859
+ "id": "phase_prep",
860
+ "label": "Preparation",
861
+ "tasks": [
862
+ {
863
+ "id": "task_1_1_vision",
864
+ "label": "Identify Vision",
865
+ "subtasks": [
866
+ {
867
+ "id": "subtask_1_1_1_design_staff",
868
+ "label": "Design & Staffing",
869
+ "sub_subtasks": [
870
+ {
871
+ "id": "ss_task_1_1_1_1_env_setup",
872
+ "label": "Environment Setup",
873
+ "sub_sub_subtasks": [
874
+ {
875
+ "id": "sss_task_1_1_1_1_1_lib_install",
876
+ "label": "Install Libraries",
877
+ "final_level_tasks": [
878
+ {"id": "ft_1_1_1_1_1_1_data_access", "label": "Grant Data Access"}
879
+ ]
880
+ }
881
+ ]
882
+ }
883
+ ]
884
+ }
885
+ ]
886
+ }
887
+ ]
888
+ },
889
+ {
890
+ "id": "phase_plan",
891
+ "label": "Planning",
892
+ "tasks": [
893
+ {
894
+ "id": "task_2_1_cost_analysis",
895
+ "label": "Cost Analysis",
896
+ "subtasks": [
897
+ {
898
+ "id": "subtask_2_1_1_benefit_analysis",
899
+ "label": "Benefit Analysis",
900
+ "sub_subtasks": [
901
+ {
902
+ "id": "ss_task_2_1_1_1_risk_assess",
903
+ "label": "AI Risk Assessment",
904
+ "sub_sub_subtasks": [
905
+ {
906
+ "id": "sss_task_2_1_1_1_1_model_selection",
907
+ "label": "Model Selection",
908
+ "final_level_tasks": [
909
+ {"id": "ft_2_1_1_1_1_1_data_strategy", "label": "Data Strategy"}
910
+ ]
911
+ }
912
+ ]
913
+ }
914
+ ]
915
+ }
916
+ ]
917
+ }
918
+ ]
919
+ },
920
+ {
921
+ "id": "phase_dev",
922
+ "label": "Development",
923
+ "tasks": [
924
+ {
925
+ "id": "task_3_1_change_mgmt",
926
+ "label": "Data Preprocessing",
927
+ "subtasks": [
928
+ {
929
+ "id": "subtask_3_1_1_implementation",
930
+ "label": "Feature Engineering",
931
+ "sub_subtasks": [
932
+ {
933
+ "id": "ss_task_3_1_1_1_beta_testing",
934
+ "label": "Model Training",
935
+ "sub_sub_subtasks": [
936
+ {
937
+ "id": "sss_task_3_1_1_1_1_other_task",
938
+ "label": "Model Evaluation",
939
+ "final_level_tasks": [
940
+ {"id": "ft_3_1_1_1_1_1_hyperparam_tune", "label": "Hyperparameter Tuning"}
941
+ ]
942
+ }
943
+ ]
944
+ }
945
+ ]
946
+ }
947
+ ]
948
+ }
949
+ ]
950
+ }
951
+ ]
952
+ }
953
+ """
954
+
955
+ # JSON for Timeline Diagram
956
  TIMELINE_JSON = """
957
  {
958
+ "title": "Complete History of Artificial Intelligence",
959
+ "events_per_row": 4,
960
  "events": [
961
  {
962
  "id": "event_1",
963
+ "label": "AI Concept Birth",
964
+ "date": "1943",
965
+ "description": "McCulloch & Pitts neural network model"
966
  },
967
  {
968
  "id": "event_2",
969
+ "label": "Turing Test",
970
+ "date": "1950",
971
+ "description": "Alan Turing proposes machine intelligence test"
972
  },
973
  {
974
  "id": "event_3",
975
+ "label": "Dartmouth Conference",
976
+ "date": "1956",
977
+ "description": "Term 'Artificial Intelligence' coined"
978
  },
979
  {
980
  "id": "event_4",
981
+ "label": "First AI Program",
982
+ "date": "1957",
983
+ "description": "General Problem Solver (GPS) created"
984
  },
985
  {
986
  "id": "event_5",
987
+ "label": "Perceptron Algorithm",
988
+ "date": "1958",
989
+ "description": "Frank Rosenblatt develops perceptron"
990
  },
991
  {
992
  "id": "event_6",
993
+ "label": "LISP Programming",
994
+ "date": "1959",
995
+ "description": "John McCarthy creates LISP for AI"
996
+ },
997
+ {
998
+ "id": "event_7",
999
+ "label": "Expert Systems",
1000
+ "date": "1965",
1001
+ "description": "DENDRAL - first expert system"
1002
+ },
1003
+ {
1004
+ "id": "event_8",
1005
+ "label": "AI Winter Begins",
1006
+ "date": "1974",
1007
+ "description": "Funding cuts due to unmet expectations"
1008
+ },
1009
+ {
1010
+ "id": "event_9",
1011
+ "label": "Backpropagation",
1012
+ "date": "1986",
1013
+ "description": "Algorithm for training neural networks"
1014
+ },
1015
+ {
1016
+ "id": "event_10",
1017
+ "label": "Deep Blue Victory",
1018
+ "date": "1997",
1019
+ "description": "IBM computer defeats chess champion"
1020
+ },
1021
+ {
1022
+ "id": "event_11",
1023
+ "label": "Machine Learning Boom",
1024
+ "date": "2000s",
1025
+ "description": "Support Vector Machines, Random Forests"
1026
+ },
1027
+ {
1028
+ "id": "event_12",
1029
+ "label": "Deep Learning Revival",
1030
+ "date": "2006",
1031
+ "description": "Geoffrey Hinton's deep belief networks"
1032
+ },
1033
+ {
1034
+ "id": "event_13",
1035
+ "label": "ImageNet Challenge",
1036
+ "date": "2012",
1037
+ "description": "AlexNet wins with deep CNN"
1038
+ },
1039
+ {
1040
+ "id": "event_14",
1041
+ "label": "AlphaGo Triumph",
1042
+ "date": "2016",
1043
+ "description": "DeepMind defeats Go world champion"
1044
+ },
1045
+ {
1046
+ "id": "event_15",
1047
+ "label": "Transformer Architecture",
1048
+ "date": "2017",
1049
+ "description": "Attention Is All You Need paper"
1050
+ },
1051
+ {
1052
+ "id": "event_16",
1053
+ "label": "GPT Era Begins",
1054
+ "date": "2018-2023",
1055
+ "description": "Large Language Models revolution"
1056
  }
1057
  ]
1058
  }