Spaces:
Running
Running
Update sample_data.py
Browse files- sample_data.py +559 -19
sample_data.py
CHANGED
@@ -474,45 +474,585 @@ WBS_DIAGRAM_JSON = """
|
|
474 |
|
475 |
"""
|
476 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
477 |
TIMELINE_JSON = """
|
478 |
{
|
479 |
-
"title": "
|
|
|
480 |
"events": [
|
481 |
{
|
482 |
"id": "event_1",
|
483 |
-
"label": "
|
484 |
-
"date": "
|
485 |
-
"description": "
|
486 |
},
|
487 |
{
|
488 |
"id": "event_2",
|
489 |
-
"label": "
|
490 |
-
"date": "
|
491 |
-
"description": "
|
492 |
},
|
493 |
{
|
494 |
"id": "event_3",
|
495 |
-
"label": "
|
496 |
-
"date": "
|
497 |
-
"description": "
|
498 |
},
|
499 |
{
|
500 |
"id": "event_4",
|
501 |
-
"label": "
|
502 |
-
"date": "
|
503 |
-
"description": "
|
504 |
},
|
505 |
{
|
506 |
"id": "event_5",
|
507 |
-
"label": "
|
508 |
-
"date": "
|
509 |
-
"description": "
|
510 |
},
|
511 |
{
|
512 |
"id": "event_6",
|
513 |
-
"label": "
|
514 |
-
"date": "
|
515 |
-
"description": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
516 |
}
|
517 |
]
|
518 |
}
|
|
|
474 |
|
475 |
"""
|
476 |
|
477 |
+
CONCEPT_MAP_JSON = """
|
478 |
+
{
|
479 |
+
"central_node": "Artificial Intelligence (AI)",
|
480 |
+
"nodes": [
|
481 |
+
{
|
482 |
+
"id": "ml_fundamental",
|
483 |
+
"label": "Machine Learning",
|
484 |
+
"relationship": "is essential for",
|
485 |
+
"subnodes": [
|
486 |
+
{
|
487 |
+
"id": "dl_branch",
|
488 |
+
"label": "Deep Learning",
|
489 |
+
"relationship": "for example",
|
490 |
+
"subnodes": [
|
491 |
+
{
|
492 |
+
"id": "cnn_example",
|
493 |
+
"label": "CNNs",
|
494 |
+
"relationship": "for example"
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"id": "rnn_example",
|
498 |
+
"label": "RNNs",
|
499 |
+
"relationship": "for example"
|
500 |
+
}
|
501 |
+
]
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"id": "rl_branch",
|
505 |
+
"label": "Reinforcement Learning",
|
506 |
+
"relationship": "for example",
|
507 |
+
"subnodes": [
|
508 |
+
{
|
509 |
+
"id": "qlearning_example",
|
510 |
+
"label": "Q-Learning",
|
511 |
+
"relationship": "example"
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"id": "pg_example",
|
515 |
+
"label": "Policy Gradients",
|
516 |
+
"relationship": "example"
|
517 |
+
}
|
518 |
+
]
|
519 |
+
}
|
520 |
+
]
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"id": "ai_types",
|
524 |
+
"label": "Types",
|
525 |
+
"relationship": "formed by",
|
526 |
+
"subnodes": [
|
527 |
+
{
|
528 |
+
"id": "agi_type",
|
529 |
+
"label": "AGI",
|
530 |
+
"relationship": "this is",
|
531 |
+
"subnodes": [
|
532 |
+
{
|
533 |
+
"id": "strong_ai",
|
534 |
+
"label": "Strong AI",
|
535 |
+
"relationship": "provoked by",
|
536 |
+
"subnodes": [
|
537 |
+
{
|
538 |
+
"id": "human_intel",
|
539 |
+
"label": "Human-level Intel.",
|
540 |
+
"relationship": "of"
|
541 |
+
}
|
542 |
+
]
|
543 |
+
}
|
544 |
+
]
|
545 |
+
},
|
546 |
+
{
|
547 |
+
"id": "ani_type",
|
548 |
+
"label": "ANI",
|
549 |
+
"relationship": "this is",
|
550 |
+
"subnodes": [
|
551 |
+
{
|
552 |
+
"id": "weak_ai",
|
553 |
+
"label": "Weak AI",
|
554 |
+
"relationship": "provoked by",
|
555 |
+
"subnodes": [
|
556 |
+
{
|
557 |
+
"id": "narrow_tasks",
|
558 |
+
"label": "Narrow Tasks",
|
559 |
+
"relationship": "of"
|
560 |
+
}
|
561 |
+
]
|
562 |
+
}
|
563 |
+
]
|
564 |
+
}
|
565 |
+
]
|
566 |
+
},
|
567 |
+
{
|
568 |
+
"id": "ai_capabilities",
|
569 |
+
"label": "Capabilities",
|
570 |
+
"relationship": "change",
|
571 |
+
"subnodes": [
|
572 |
+
{
|
573 |
+
"id": "data_proc",
|
574 |
+
"label": "Data Processing",
|
575 |
+
"relationship": "can",
|
576 |
+
"subnodes": [
|
577 |
+
{
|
578 |
+
"id": "big_data",
|
579 |
+
"label": "Big Data",
|
580 |
+
"relationship": "as",
|
581 |
+
"subnodes": [
|
582 |
+
{
|
583 |
+
"id": "analysis_example",
|
584 |
+
"label": "Data Analysis",
|
585 |
+
"relationship": "example"
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"id": "prediction_example",
|
589 |
+
"label": "Prediction",
|
590 |
+
"relationship": "example"
|
591 |
+
}
|
592 |
+
]
|
593 |
+
}
|
594 |
+
]
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"id": "decision_making",
|
598 |
+
"label": "Decision Making",
|
599 |
+
"relationship": "can be",
|
600 |
+
"subnodes": [
|
601 |
+
{
|
602 |
+
"id": "automation",
|
603 |
+
"label": "Automation",
|
604 |
+
"relationship": "as",
|
605 |
+
"subnodes": [
|
606 |
+
{
|
607 |
+
"id": "robotics_example",
|
608 |
+
"label": "Robotics",
|
609 |
+
"relationship": "Example"},
|
610 |
+
{
|
611 |
+
"id": "autonomous_example",
|
612 |
+
"label": "Autonomous Vehicles",
|
613 |
+
"relationship": "of one"
|
614 |
+
}
|
615 |
+
]
|
616 |
+
}
|
617 |
+
]
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"id": "problem_solving",
|
621 |
+
"label": "Problem Solving",
|
622 |
+
"relationship": "can",
|
623 |
+
"subnodes": [
|
624 |
+
{
|
625 |
+
"id": "optimization",
|
626 |
+
"label": "Optimization",
|
627 |
+
"relationship": "as is",
|
628 |
+
"subnodes": [
|
629 |
+
{
|
630 |
+
"id": "algorithms_example",
|
631 |
+
"label": "Algorithms",
|
632 |
+
"relationship": "for example"
|
633 |
+
}
|
634 |
+
]
|
635 |
+
}
|
636 |
+
]
|
637 |
+
}
|
638 |
+
]
|
639 |
+
}
|
640 |
+
]
|
641 |
+
}
|
642 |
+
"""
|
643 |
+
|
644 |
+
# JSON for Synoptic Chart (horizontal hierarchy) - AI related, 4 levels
|
645 |
+
SYNOPTIC_CHART_JSON = """
|
646 |
+
{
|
647 |
+
"central_node": "AI Project Lifecycle",
|
648 |
+
"nodes": [
|
649 |
+
{
|
650 |
+
"id": "phase1",
|
651 |
+
"label": "I. Problem Definition & Data Acquisition",
|
652 |
+
"relationship": "Starts with",
|
653 |
+
"subnodes": [
|
654 |
+
{
|
655 |
+
"id": "sub1_1",
|
656 |
+
"label": "1. Problem Formulation",
|
657 |
+
"relationship": "Involves",
|
658 |
+
"subnodes": [
|
659 |
+
{"id": "sub1_1_1", "label": "1.1. Identify Business Need", "relationship": "e.g."},
|
660 |
+
{"id": "sub1_1_2", "label": "1.2. Define KPIs", "relationship": "e.g."}
|
661 |
+
]
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"id": "sub1_2",
|
665 |
+
"label": "2. Data Collection",
|
666 |
+
"relationship": "Followed by",
|
667 |
+
"subnodes": [
|
668 |
+
{"id": "sub1_2_1", "label": "2.1. Source Data", "relationship": "from"},
|
669 |
+
{"id": "sub1_2_2", "label": "2.2. Data Cleaning", "relationship": "includes"}
|
670 |
+
]
|
671 |
+
}
|
672 |
+
]
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"id": "phase2",
|
676 |
+
"label": "II. Model Development",
|
677 |
+
"relationship": "Proceeds to",
|
678 |
+
"subnodes": [
|
679 |
+
{
|
680 |
+
"id": "sub2_1",
|
681 |
+
"label": "1. Feature Engineering",
|
682 |
+
"relationship": "Comprises",
|
683 |
+
"subnodes": [
|
684 |
+
{"id": "sub2_1_1", "label": "1.1. Feature Selection", "relationship": "e.g."},
|
685 |
+
{"id": "sub2_1_2", "label": "1.2. Feature Transformation", "relationship": "e.g."}
|
686 |
+
]
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"id": "sub2_2",
|
690 |
+
"label": "2. Model Training",
|
691 |
+
"relationship": "Involves",
|
692 |
+
"subnodes": [
|
693 |
+
{"id": "sub2_2_1", "label": "2.1. Algorithm Selection", "relationship": "uses"},
|
694 |
+
{"id": "sub2_2_2", "label": "2.2. Hyperparameter Tuning", "relationship": "optimizes"}
|
695 |
+
]
|
696 |
+
}
|
697 |
+
]
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"id": "phase3",
|
701 |
+
"label": "III. Evaluation & Deployment",
|
702 |
+
"relationship": "Culminates in",
|
703 |
+
"subnodes": [
|
704 |
+
{
|
705 |
+
"id": "sub3_1",
|
706 |
+
"label": "1. Model Evaluation",
|
707 |
+
"relationship": "Includes",
|
708 |
+
"subnodes": [
|
709 |
+
{"id": "sub3_1_1", "label": "1.1. Performance Metrics", "relationship": "measures"},
|
710 |
+
{"id": "sub3_1_2", "label": "1.2. Bias & Fairness Audits", "relationship": "ensures"}
|
711 |
+
]
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"id": "sub3_2",
|
715 |
+
"label": "2. Deployment & Monitoring",
|
716 |
+
"relationship": "Requires",
|
717 |
+
"subnodes": [
|
718 |
+
{"id": "sub3_2_1", "label": "2.1. API/Integration Development", "relationship": "for"},
|
719 |
+
{"id": "sub3_2_2", "label": "2.2. Continuous Monitoring", "relationship": "ensures"}
|
720 |
+
]
|
721 |
+
}
|
722 |
+
]
|
723 |
+
}
|
724 |
+
]
|
725 |
+
}
|
726 |
+
"""
|
727 |
+
|
728 |
+
# JSON for Radial Diagram (central expansion) - AI related, 3 levels with 5->10 structure
|
729 |
+
RADIAL_DIAGRAM_JSON = """
|
730 |
+
{
|
731 |
+
"central_node": "AI Core Concepts & Domains",
|
732 |
+
"nodes": [
|
733 |
+
{
|
734 |
+
"id": "foundational_ml",
|
735 |
+
"label": "Foundational ML",
|
736 |
+
"relationship": "builds on",
|
737 |
+
"subnodes": [
|
738 |
+
{"id": "supervised_l", "label": "Supervised Learning", "relationship": "e.g."},
|
739 |
+
{"id": "unsupervised_l", "label": "Unsupervised Learning", "relationship": "e.g."}
|
740 |
+
]
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"id": "dl_architectures",
|
744 |
+
"label": "Deep Learning Arch.",
|
745 |
+
"relationship": "evolved from",
|
746 |
+
"subnodes": [
|
747 |
+
{"id": "cnns_rad", "label": "CNNs", "relationship": "e.g."},
|
748 |
+
{"id": "rnns_rad", "label": "RNNs", "relationship": "e.g."}
|
749 |
+
]
|
750 |
+
},
|
751 |
+
{
|
752 |
+
"id": "major_applications",
|
753 |
+
"label": "Major AI Applications",
|
754 |
+
"relationship": "applied in",
|
755 |
+
"subnodes": [
|
756 |
+
{"id": "nlp_rad", "label": "Natural Language Processing", "relationship": "e.g."},
|
757 |
+
{"id": "cv_rad", "label": "Computer Vision", "relationship": "e.g."}
|
758 |
+
]
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"id": "ethical_concerns",
|
762 |
+
"label": "Ethical AI Concerns",
|
763 |
+
"relationship": "addresses",
|
764 |
+
"subnodes": [
|
765 |
+
{"id": "fairness_rad", "label": "Fairness & Bias", "relationship": "e.g."},
|
766 |
+
{"id": "explainability", "label": "Explainability (XAI)", "relationship": "e.g."}
|
767 |
+
]
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"id": "future_trends",
|
771 |
+
"label": "Future AI Trends",
|
772 |
+
"relationship": "looking at",
|
773 |
+
"subnodes": [
|
774 |
+
{"id": "agi_future", "label": "AGI Development", "relationship": "e.g."},
|
775 |
+
{"id": "quantum_ai", "label": "Quantum AI", "relationship": "e.g."}
|
776 |
+
]
|
777 |
+
}
|
778 |
+
]
|
779 |
+
}
|
780 |
+
"""
|
781 |
+
|
782 |
+
PROCESS_FLOW_JSON = """
|
783 |
+
{
|
784 |
+
"start_node": "Start Inference Request",
|
785 |
+
"nodes": [
|
786 |
+
{
|
787 |
+
"id": "user_input",
|
788 |
+
"label": "Receive User Input (Data)",
|
789 |
+
"type": "io"
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"id": "preprocess_data",
|
793 |
+
"label": "Preprocess Data",
|
794 |
+
"type": "process"
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"id": "validate_data",
|
798 |
+
"label": "Validate Data Format/Type",
|
799 |
+
"type": "decision"
|
800 |
+
},
|
801 |
+
{
|
802 |
+
"id": "data_valid_yes",
|
803 |
+
"label": "Data Valid?",
|
804 |
+
"type": "decision"
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"id": "load_model",
|
808 |
+
"label": "Load AI Model (if not cached)",
|
809 |
+
"type": "process"
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"id": "run_inference",
|
813 |
+
"label": "Run AI Model Inference",
|
814 |
+
"type": "process"
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"id": "postprocess_output",
|
818 |
+
"label": "Postprocess Model Output",
|
819 |
+
"type": "process"
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"id": "send_response",
|
823 |
+
"label": "Send Response to User",
|
824 |
+
"type": "io"
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"id": "log_error",
|
828 |
+
"label": "Log Error & Notify User",
|
829 |
+
"type": "process"
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"id": "end_inference_process",
|
833 |
+
"label": "End Inference Process",
|
834 |
+
"type": "end"
|
835 |
+
}
|
836 |
+
],
|
837 |
+
"connections": [
|
838 |
+
{"from": "start_node", "to": "user_input", "label": "Request"},
|
839 |
+
{"from": "user_input", "to": "preprocess_data", "label": "Data Received"},
|
840 |
+
{"from": "preprocess_data", "to": "validate_data", "label": "Cleaned"},
|
841 |
+
{"from": "validate_data", "to": "data_valid_yes", "label": "Check"},
|
842 |
+
{"from": "data_valid_yes", "to": "load_model", "label": "Yes"},
|
843 |
+
{"from": "data_valid_yes", "to": "log_error", "label": "No"},
|
844 |
+
{"from": "load_model", "to": "run_inference", "label": "Model Ready"},
|
845 |
+
{"from": "run_inference", "to": "postprocess_output", "label": "Output Generated"},
|
846 |
+
{"from": "postprocess_output", "to": "send_response", "label": "Ready"},
|
847 |
+
{"from": "send_response", "to": "end_inference_process", "label": "Response Sent"},
|
848 |
+
{"from": "log_error", "to": "end_inference_process", "label": "Error Handled"}
|
849 |
+
]
|
850 |
+
}
|
851 |
+
"""
|
852 |
+
|
853 |
+
# New JSON for Work Breakdown Structure (WBS) Diagram - similar to image, but not identical
|
854 |
+
WBS_DIAGRAM_JSON = """
|
855 |
+
{
|
856 |
+
"project_title": "AI Model Development Project",
|
857 |
+
"phases": [
|
858 |
+
{
|
859 |
+
"id": "phase_prep",
|
860 |
+
"label": "Preparation",
|
861 |
+
"tasks": [
|
862 |
+
{
|
863 |
+
"id": "task_1_1_vision",
|
864 |
+
"label": "Identify Vision",
|
865 |
+
"subtasks": [
|
866 |
+
{
|
867 |
+
"id": "subtask_1_1_1_design_staff",
|
868 |
+
"label": "Design & Staffing",
|
869 |
+
"sub_subtasks": [
|
870 |
+
{
|
871 |
+
"id": "ss_task_1_1_1_1_env_setup",
|
872 |
+
"label": "Environment Setup",
|
873 |
+
"sub_sub_subtasks": [
|
874 |
+
{
|
875 |
+
"id": "sss_task_1_1_1_1_1_lib_install",
|
876 |
+
"label": "Install Libraries",
|
877 |
+
"final_level_tasks": [
|
878 |
+
{"id": "ft_1_1_1_1_1_1_data_access", "label": "Grant Data Access"}
|
879 |
+
]
|
880 |
+
}
|
881 |
+
]
|
882 |
+
}
|
883 |
+
]
|
884 |
+
}
|
885 |
+
]
|
886 |
+
}
|
887 |
+
]
|
888 |
+
},
|
889 |
+
{
|
890 |
+
"id": "phase_plan",
|
891 |
+
"label": "Planning",
|
892 |
+
"tasks": [
|
893 |
+
{
|
894 |
+
"id": "task_2_1_cost_analysis",
|
895 |
+
"label": "Cost Analysis",
|
896 |
+
"subtasks": [
|
897 |
+
{
|
898 |
+
"id": "subtask_2_1_1_benefit_analysis",
|
899 |
+
"label": "Benefit Analysis",
|
900 |
+
"sub_subtasks": [
|
901 |
+
{
|
902 |
+
"id": "ss_task_2_1_1_1_risk_assess",
|
903 |
+
"label": "AI Risk Assessment",
|
904 |
+
"sub_sub_subtasks": [
|
905 |
+
{
|
906 |
+
"id": "sss_task_2_1_1_1_1_model_selection",
|
907 |
+
"label": "Model Selection",
|
908 |
+
"final_level_tasks": [
|
909 |
+
{"id": "ft_2_1_1_1_1_1_data_strategy", "label": "Data Strategy"}
|
910 |
+
]
|
911 |
+
}
|
912 |
+
]
|
913 |
+
}
|
914 |
+
]
|
915 |
+
}
|
916 |
+
]
|
917 |
+
}
|
918 |
+
]
|
919 |
+
},
|
920 |
+
{
|
921 |
+
"id": "phase_dev",
|
922 |
+
"label": "Development",
|
923 |
+
"tasks": [
|
924 |
+
{
|
925 |
+
"id": "task_3_1_change_mgmt",
|
926 |
+
"label": "Data Preprocessing",
|
927 |
+
"subtasks": [
|
928 |
+
{
|
929 |
+
"id": "subtask_3_1_1_implementation",
|
930 |
+
"label": "Feature Engineering",
|
931 |
+
"sub_subtasks": [
|
932 |
+
{
|
933 |
+
"id": "ss_task_3_1_1_1_beta_testing",
|
934 |
+
"label": "Model Training",
|
935 |
+
"sub_sub_subtasks": [
|
936 |
+
{
|
937 |
+
"id": "sss_task_3_1_1_1_1_other_task",
|
938 |
+
"label": "Model Evaluation",
|
939 |
+
"final_level_tasks": [
|
940 |
+
{"id": "ft_3_1_1_1_1_1_hyperparam_tune", "label": "Hyperparameter Tuning"}
|
941 |
+
]
|
942 |
+
}
|
943 |
+
]
|
944 |
+
}
|
945 |
+
]
|
946 |
+
}
|
947 |
+
]
|
948 |
+
}
|
949 |
+
]
|
950 |
+
}
|
951 |
+
]
|
952 |
+
}
|
953 |
+
"""
|
954 |
+
|
955 |
+
# JSON for Timeline Diagram
|
956 |
TIMELINE_JSON = """
|
957 |
{
|
958 |
+
"title": "Complete History of Artificial Intelligence",
|
959 |
+
"events_per_row": 4,
|
960 |
"events": [
|
961 |
{
|
962 |
"id": "event_1",
|
963 |
+
"label": "AI Concept Birth",
|
964 |
+
"date": "1943",
|
965 |
+
"description": "McCulloch & Pitts neural network model"
|
966 |
},
|
967 |
{
|
968 |
"id": "event_2",
|
969 |
+
"label": "Turing Test",
|
970 |
+
"date": "1950",
|
971 |
+
"description": "Alan Turing proposes machine intelligence test"
|
972 |
},
|
973 |
{
|
974 |
"id": "event_3",
|
975 |
+
"label": "Dartmouth Conference",
|
976 |
+
"date": "1956",
|
977 |
+
"description": "Term 'Artificial Intelligence' coined"
|
978 |
},
|
979 |
{
|
980 |
"id": "event_4",
|
981 |
+
"label": "First AI Program",
|
982 |
+
"date": "1957",
|
983 |
+
"description": "General Problem Solver (GPS) created"
|
984 |
},
|
985 |
{
|
986 |
"id": "event_5",
|
987 |
+
"label": "Perceptron Algorithm",
|
988 |
+
"date": "1958",
|
989 |
+
"description": "Frank Rosenblatt develops perceptron"
|
990 |
},
|
991 |
{
|
992 |
"id": "event_6",
|
993 |
+
"label": "LISP Programming",
|
994 |
+
"date": "1959",
|
995 |
+
"description": "John McCarthy creates LISP for AI"
|
996 |
+
},
|
997 |
+
{
|
998 |
+
"id": "event_7",
|
999 |
+
"label": "Expert Systems",
|
1000 |
+
"date": "1965",
|
1001 |
+
"description": "DENDRAL - first expert system"
|
1002 |
+
},
|
1003 |
+
{
|
1004 |
+
"id": "event_8",
|
1005 |
+
"label": "AI Winter Begins",
|
1006 |
+
"date": "1974",
|
1007 |
+
"description": "Funding cuts due to unmet expectations"
|
1008 |
+
},
|
1009 |
+
{
|
1010 |
+
"id": "event_9",
|
1011 |
+
"label": "Backpropagation",
|
1012 |
+
"date": "1986",
|
1013 |
+
"description": "Algorithm for training neural networks"
|
1014 |
+
},
|
1015 |
+
{
|
1016 |
+
"id": "event_10",
|
1017 |
+
"label": "Deep Blue Victory",
|
1018 |
+
"date": "1997",
|
1019 |
+
"description": "IBM computer defeats chess champion"
|
1020 |
+
},
|
1021 |
+
{
|
1022 |
+
"id": "event_11",
|
1023 |
+
"label": "Machine Learning Boom",
|
1024 |
+
"date": "2000s",
|
1025 |
+
"description": "Support Vector Machines, Random Forests"
|
1026 |
+
},
|
1027 |
+
{
|
1028 |
+
"id": "event_12",
|
1029 |
+
"label": "Deep Learning Revival",
|
1030 |
+
"date": "2006",
|
1031 |
+
"description": "Geoffrey Hinton's deep belief networks"
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"id": "event_13",
|
1035 |
+
"label": "ImageNet Challenge",
|
1036 |
+
"date": "2012",
|
1037 |
+
"description": "AlexNet wins with deep CNN"
|
1038 |
+
},
|
1039 |
+
{
|
1040 |
+
"id": "event_14",
|
1041 |
+
"label": "AlphaGo Triumph",
|
1042 |
+
"date": "2016",
|
1043 |
+
"description": "DeepMind defeats Go world champion"
|
1044 |
+
},
|
1045 |
+
{
|
1046 |
+
"id": "event_15",
|
1047 |
+
"label": "Transformer Architecture",
|
1048 |
+
"date": "2017",
|
1049 |
+
"description": "Attention Is All You Need paper"
|
1050 |
+
},
|
1051 |
+
{
|
1052 |
+
"id": "event_16",
|
1053 |
+
"label": "GPT Era Begins",
|
1054 |
+
"date": "2018-2023",
|
1055 |
+
"description": "Large Language Models revolution"
|
1056 |
}
|
1057 |
]
|
1058 |
}
|