import graphviz import json from tempfile import NamedTemporaryFile import os def generate_process_flow_diagram(json_input: str, output_format: str) -> str: """ Generates a Process Flow Diagram (Flowchart) from JSON input. Args: json_input (str): A JSON string describing the process flow structure. It must follow the Expected JSON Format Example below. output_format (str): The output format for the generated diagram. Supported formats: "png" or "svg" Expected JSON Format Example: { "start_node": "Start Inference Request", "nodes": [ { "id": "user_input", "label": "Receive User Input (Data)", "type": "io" }, { "id": "preprocess_data", "label": "Preprocess Data", "type": "process" }, { "id": "validate_data", "label": "Validate Data Format/Type", "type": "decision" }, { "id": "data_valid_yes", "label": "Data Valid?", "type": "decision" }, { "id": "load_model", "label": "Load AI Model (if not cached)", "type": "process" }, { "id": "run_inference", "label": "Run AI Model Inference", "type": "process" }, { "id": "postprocess_output", "label": "Postprocess Model Output", "type": "process" }, { "id": "send_response", "label": "Send Response to User", "type": "io" }, { "id": "log_error", "label": "Log Error & Notify User", "type": "process" }, { "id": "end_inference_process", "label": "End Inference Process", "type": "end" } ], "connections": [ {"from": "start_node", "to": "user_input", "label": "Request"}, {"from": "user_input", "to": "preprocess_data", "label": "Data Received"}, {"from": "preprocess_data", "to": "validate_data", "label": "Cleaned"}, {"from": "validate_data", "to": "data_valid_yes", "label": "Check"}, {"from": "data_valid_yes", "to": "load_model", "label": "Yes"}, {"from": "data_valid_yes", "to": "log_error", "label": "No"}, {"from": "load_model", "to": "run_inference", "label": "Model Ready"}, {"from": "run_inference", "to": "postprocess_output", "label": "Output Generated"}, {"from": "postprocess_output", "to": "send_response", "label": "Ready"}, {"from": "send_response", "to": "end_inference_process", "label": "Response Sent"}, {"from": "log_error", "to": "end_inference_process", "label": "Error Handled"} ] } Returns: str: The filepath to the generated image file. """ try: if not json_input.strip(): return "Error: Empty input" data = json.loads(json_input) if 'start_node' not in data or 'nodes' not in data or 'connections' not in data: raise ValueError("Missing required fields: 'start_node', 'nodes', or 'connections'") node_shapes = { "process": "box", "decision": "diamond", "start": "oval", "end": "oval", "io": "parallelogram", "document": "note", "default": "box" } node_colors = { "process": "#BEBEBE", "decision": "#FFF9C4", "start": "#A8E6CF", "end": "#FFB3BA", "io": "#B8D4F1", "document": "#F0F8FF", "default": "#BEBEBE" } dot = graphviz.Digraph( name='ProcessFlowDiagram', format='png', graph_attr={ 'rankdir': 'TB', 'splines': 'ortho', 'bgcolor': 'white', 'pad': '0.5', 'nodesep': '0.6', 'ranksep': '0.8' } ) all_defined_nodes = {node['id']: node for node in data['nodes']} start_node_id = data['start_node'] dot.node( start_node_id, start_node_id, shape=node_shapes['start'], style='filled,rounded', fillcolor=node_colors['start'], fontcolor='black', fontsize='14' ) for node_id, node_info in all_defined_nodes.items(): if node_id == start_node_id: continue node_type = node_info.get("type", "default") shape = node_shapes.get(node_type, "box") color = node_colors.get(node_type, node_colors["default"]) node_label = node_info['label'] dot.node( node_id, node_label, shape=shape, style='filled,rounded', fillcolor=color, fontcolor='black', fontsize='14' ) for connection in data['connections']: dot.edge( connection['from'], connection['to'], label=connection.get('label', ''), color='#4a4a4a', fontcolor='#4a4a4a', fontsize='10' ) with NamedTemporaryFile(delete=False, suffix=f'.{output_format}') as tmp: dot.render(tmp.name, format=output_format, cleanup=True) return f"{tmp.name}.{output_format}" except json.JSONDecodeError: return "Error: Invalid JSON format" except Exception as e: return f"Error: {str(e)}"