File size: 11,792 Bytes
4a0fab5
9145e48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
# chunker.py 
import logging
from typing import List, Dict, Any, Optional
import re
from .models import Chunk
from .text_preprocessor import TextPreprocessor
import config

logger = logging.getLogger(__name__)

class TextChunker:
    def __init__(self):
        self.config = config.config
        self.preprocessor = TextPreprocessor()
        
        self.chunk_size = self.config.CHUNK_SIZE
        self.chunk_overlap = self.config.CHUNK_OVERLAP
    
    def chunk_document(self, document_id: str, content: str, method: str = "recursive") -> List[Chunk]:
        """Chunk a document using the specified method"""
        if not content:
            return []
        
        try:
            if method == "recursive":
                return self._recursive_chunk(document_id, content)
            elif method == "sentence":
                return self._sentence_chunk(document_id, content)
            elif method == "paragraph":
                return self._paragraph_chunk(document_id, content)
            elif method == "fixed":
                return self._fixed_chunk(document_id, content)
            else:
                logger.warning(f"Unknown chunking method: {method}, using recursive")
                return self._recursive_chunk(document_id, content)
        except Exception as e:
            logger.error(f"Error chunking document: {str(e)}")
            # Fallback to simple fixed chunking
            return self._fixed_chunk(document_id, content)
    
    def _recursive_chunk(self, document_id: str, content: str) -> List[Chunk]:
        """Recursively split text by different separators"""
        chunks = []
        
        # Define separators in order of preference
        separators = [
            "\n\n",  # Paragraphs
            "\n",    # Lines
            ". ",    # Sentences
            ", ",    # Clauses
            " "      # Words
        ]
        
        def split_text(text: str, separators: List[str], chunk_size: int) -> List[str]:
            if len(text) <= chunk_size:
                return [text] if text.strip() else []
            
            if not separators:
                # If no separators left, split by character
                return [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)]
            
            separator = separators[0]
            remaining_separators = separators[1:]
            
            splits = text.split(separator)
            result = []
            current_chunk = ""
            
            for split in splits:
                if len(current_chunk) + len(split) + len(separator) <= chunk_size:
                    if current_chunk:
                        current_chunk += separator + split
                    else:
                        current_chunk = split
                else:
                    if current_chunk:
                        result.append(current_chunk)
                    
                    if len(split) > chunk_size:
                        # Split is too big, need to split further
                        result.extend(split_text(split, remaining_separators, chunk_size))
                        current_chunk = ""
                    else:
                        current_chunk = split
            
            if current_chunk:
                result.append(current_chunk)
            
            return result
        
        text_chunks = split_text(content, separators, self.chunk_size)
        
        # Create chunk objects with overlap
        for i, chunk_text in enumerate(text_chunks):
            if not chunk_text.strip():
                continue
            
            # Calculate positions
            start_pos = content.find(chunk_text)
            if start_pos == -1:
                start_pos = i * self.chunk_size
            end_pos = start_pos + len(chunk_text)
            
            # Add overlap from previous chunk if not the first chunk
            if i > 0 and self.chunk_overlap > 0:
                prev_chunk = text_chunks[i-1]
                overlap_text = prev_chunk[-self.chunk_overlap:] if len(prev_chunk) > self.chunk_overlap else prev_chunk
                chunk_text = overlap_text + " " + chunk_text
            
            chunk = Chunk(
                id=self._generate_chunk_id(document_id, i),
                document_id=document_id,
                content=chunk_text.strip(),
                chunk_index=i,
                start_pos=start_pos,
                end_pos=end_pos,
                metadata={
                    "chunk_method": "recursive",
                    "original_length": len(chunk_text),
                    "word_count": len(chunk_text.split())
                }
            )
            chunks.append(chunk)
        
        return chunks
    
    def _sentence_chunk(self, document_id: str, content: str) -> List[Chunk]:
        """Chunk text by sentences"""
        chunks = []
        sentences = self.preprocessor.extract_sentences(content)
        
        current_chunk = ""
        chunk_index = 0
        start_pos = 0
        
        for sentence in sentences:
            if len(current_chunk) + len(sentence) <= self.chunk_size:
                if current_chunk:
                    current_chunk += " " + sentence
                else:
                    current_chunk = sentence
                    start_pos = content.find(sentence)
            else:
                if current_chunk:
                    chunk = Chunk(
                        id=self._generate_chunk_id(document_id, chunk_index),
                        document_id=document_id,
                        content=current_chunk.strip(),
                        chunk_index=chunk_index,
                        start_pos=start_pos,
                        end_pos=start_pos + len(current_chunk),
                        metadata={
                            "chunk_method": "sentence",
                            "sentence_count": len(self.preprocessor.extract_sentences(current_chunk))
                        }
                    )
                    chunks.append(chunk)
                    chunk_index += 1
                
                current_chunk = sentence
                start_pos = content.find(sentence)
        
        # Add final chunk
        if current_chunk:
            chunk = Chunk(
                id=self._generate_chunk_id(document_id, chunk_index),
                document_id=document_id,
                content=current_chunk.strip(),
                chunk_index=chunk_index,
                start_pos=start_pos,
                end_pos=start_pos + len(current_chunk),
                metadata={
                    "chunk_method": "sentence",
                    "sentence_count": len(self.preprocessor.extract_sentences(current_chunk))
                }
            )
            chunks.append(chunk)
        
        return chunks
    
    def _paragraph_chunk(self, document_id: str, content: str) -> List[Chunk]:
        """Chunk text by paragraphs"""
        chunks = []
        paragraphs = [p.strip() for p in content.split('\n\n') if p.strip()]
        
        current_chunk = ""
        chunk_index = 0
        start_pos = 0
        
        for paragraph in paragraphs:
            if len(current_chunk) + len(paragraph) <= self.chunk_size:
                if current_chunk:
                    current_chunk += "\n\n" + paragraph
                else:
                    current_chunk = paragraph
                    start_pos = content.find(paragraph)
            else:
                if current_chunk:
                    chunk = Chunk(
                        id=self._generate_chunk_id(document_id, chunk_index),
                        document_id=document_id,
                        content=current_chunk.strip(),
                        chunk_index=chunk_index,
                        start_pos=start_pos,
                        end_pos=start_pos + len(current_chunk),
                        metadata={
                            "chunk_method": "paragraph",
                            "paragraph_count": len([p for p in current_chunk.split('\n\n') if p.strip()])
                        }
                    )
                    chunks.append(chunk)
                    chunk_index += 1
                
                # If paragraph is too long, split it further
                if len(paragraph) > self.chunk_size:
                    para_chunks = self._fixed_chunk(document_id, paragraph)
                    for pc in para_chunks:
                        pc.chunk_index = chunk_index
                        pc.id = self._generate_chunk_id(document_id, chunk_index)
                        chunks.append(pc)
                        chunk_index += 1
                else:
                    current_chunk = paragraph
                    start_pos = content.find(paragraph)
        
        # Add final chunk
        if current_chunk:
            chunk = Chunk(
                id=self._generate_chunk_id(document_id, chunk_index),
                document_id=document_id,
                content=current_chunk.strip(),
                chunk_index=chunk_index,
                start_pos=start_pos,
                end_pos=start_pos + len(current_chunk),
                metadata={
                    "chunk_method": "paragraph",
                    "paragraph_count": len([p for p in current_chunk.split('\n\n') if p.strip()])
                }
            )
            chunks.append(chunk)
        
        return chunks
    
    def _fixed_chunk(self, document_id: str, content: str) -> List[Chunk]:
        """Simple fixed-size chunking with overlap"""
        chunks = []
        
        for i in range(0, len(content), self.chunk_size - self.chunk_overlap):
            chunk_text = content[i:i + self.chunk_size]
            
            if not chunk_text.strip():
                continue
            
            chunk = Chunk(
                id=self._generate_chunk_id(document_id, len(chunks)),
                document_id=document_id,
                content=chunk_text.strip(),
                chunk_index=len(chunks),
                start_pos=i,
                end_pos=min(i + self.chunk_size, len(content)),
                metadata={
                    "chunk_method": "fixed",
                    "original_length": len(chunk_text)
                }
            )
            chunks.append(chunk)
        
        return chunks
    
    def _generate_chunk_id(self, document_id: str, chunk_index: int) -> str:
        """Generate a unique chunk ID"""
        return f"{document_id}_chunk_{chunk_index}"
    
    def optimize_chunks_for_embedding(self, chunks: List[Chunk]) -> List[Chunk]:
        """Optimize chunks for better embedding generation"""
        optimized_chunks = []
        
        for chunk in chunks:
            # Clean the content for embedding
            clean_content = self.preprocessor.prepare_for_embedding(chunk.content)
            
            # Skip very short chunks
            if len(clean_content.split()) < 5:
                continue
            
            # Update chunk with optimized content
            optimized_chunk = Chunk(
                id=chunk.id,
                document_id=chunk.document_id,
                content=clean_content,
                chunk_index=chunk.chunk_index,
                start_pos=chunk.start_pos,
                end_pos=chunk.end_pos,
                metadata={
                    **chunk.metadata,
                    "optimized_for_embedding": True,
                    "original_content_length": len(chunk.content),
                    "optimized_content_length": len(clean_content)
                }
            )
            optimized_chunks.append(optimized_chunk)
        
        return optimized_chunks