File size: 8,478 Bytes
9145e48
8ba2581
9145e48
 
 
 
 
 
 
 
 
 
 
 
 
 
8ba2581
 
 
 
9145e48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d72be5c
9145e48
8ba2581
 
9145e48
8ba2581
9145e48
 
8ba2581
9145e48
8ba2581
9145e48
 
 
 
 
 
8ba2581
 
9145e48
 
8ba2581
 
9145e48
8ba2581
9145e48
 
8ba2581
9145e48
8ba2581
9145e48
 
 
 
 
 
 
8ba2581
9145e48
 
8ba2581
 
9145e48
 
 
 
 
8ba2581
9145e48
 
8ba2581
9145e48
8ba2581
9145e48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ba2581
9145e48
 
8ba2581
 
9145e48
 
 
 
 
8ba2581
9145e48
 
8ba2581
9145e48
8ba2581
9145e48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ba2581
9145e48
 
8ba2581
 
9145e48
8ba2581
9145e48
 
8ba2581
9145e48
 
 
 
 
 
 
 
 
8ba2581
9145e48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ba2581
 
9145e48
8ba2581
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import asyncio
import logging
from typing import Dict, Any, List, Optional
from pathlib import Path

from mcp.server.fastmcp import FastMCP

from services.vector_store_service import VectorStoreService
from services.document_store_service import DocumentStoreService
from services.embedding_service import EmbeddingService
from services.llm_service import LLMService
from services.ocr_service import OCRService

from mcp_tools.ingestion_tool import IngestionTool
from mcp_tools.search_tool import SearchTool
from mcp_tools.generative_tool import GenerativeTool

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

logger.info("Initializing services for FastMCP...")
vector_store_service = VectorStoreService()
document_store_service = DocumentStoreService()
embedding_service_instance = EmbeddingService()
llm_service_instance = LLMService()
ocr_service_instance = OCRService()

ingestion_tool_instance = IngestionTool(
    vector_store=vector_store_service,
    document_store=document_store_service,
    embedding_service=embedding_service_instance,
    ocr_service=ocr_service_instance
)
search_tool_instance = SearchTool(
    vector_store=vector_store_service,
    embedding_service=embedding_service_instance,
    document_store=document_store_service
)
generative_tool_instance = GenerativeTool(
    llm_service=llm_service_instance,
    search_tool=search_tool_instance
)

mcp = FastMCP("")
logger.info("FastMCP server initialized.")

@mcp.tool()
async def ingest_document(file_path: str, file_type: Optional[str] = None) -> Dict[str, Any]:
    """
    Process and index a document from a local file path for searching.
    Automatically determines file_type if not provided.
    """
    logger.info(f"Tool 'ingest_document' called with file_path: {file_path}, file_type: {file_type}")
    try:
        actual_file_type = file_type
        if not actual_file_type:
            actual_file_type = Path(file_path).suffix.lower().strip('.')
            logger.info(f"Inferred file_type: {actual_file_type}")
        result = await ingestion_tool_instance.process_document(file_path, actual_file_type)
        logger.info(f"Ingestion result: {result}")
        return result
    except Exception as e:
        logger.error(f"Error in 'ingest_document' tool: {str(e)}", exc_info=True)
        return {"success": False, "error": str(e)}

@mcp.tool()
async def semantic_search(query: str, top_k: int = 5, filters: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
    """
    Search through indexed content using natural language.
    'filters' can be used to narrow down the search.
    """
    logger.info(f"Tool 'semantic_search' called with query: {query}, top_k: {top_k}, filters: {filters}")
    try:
        results = await search_tool_instance.search(query, top_k, filters)
        return {
            "success": True,
            "query": query,
            "results": [result.to_dict() for result in results],
            "total_results": len(results)
        }
    except Exception as e:
        logger.error(f"Error in 'semantic_search' tool: {str(e)}", exc_info=True)
        return {"success": False, "error": str(e), "results": []}

@mcp.tool()
async def summarize_content(
    content: Optional[str] = None,
    document_id: Optional[str] = None,
    style: str = "concise"
) -> Dict[str, Any]:
    """
    Generate a summary of provided content or a document_id.
    Available styles: concise, detailed, bullet_points, executive.
    """
    logger.info(f"Tool 'summarize_content' called. doc_id: {document_id}, style: {style}, has_content: {content is not None}")
    try:
        text_to_summarize = content
        if document_id and not text_to_summarize:
            doc = await document_store_service.get_document(document_id)
            if not doc:
                return {"success": False, "error": f"Document {document_id} not found"}
            text_to_summarize = doc.content
        if not text_to_summarize:
            return {"success": False, "error": "No content provided for summarization"}
        max_length = 10000
        if len(text_to_summarize) > max_length:
            logger.warning(f"Content for summarization is long ({len(text_to_summarize)} chars), truncating to {max_length}")
            text_to_summarize = text_to_summarize[:max_length] + "..."
        summary = await generative_tool_instance.summarize(text_to_summarize, style)
        return {
            "success": True,
            "summary": summary,
            "original_length": len(text_to_summarize),
            "summary_length": len(summary),
            "style": style
        }
    except Exception as e:
        logger.error(f"Error in 'summarize_content' tool: {str(e)}", exc_info=True)
        return {"success": False, "error": str(e)}

@mcp.tool()
async def generate_tags(
    content: Optional[str] = None,
    document_id: Optional[str] = None,
    max_tags: int = 5
) -> Dict[str, Any]:
    """
    Generate relevant tags for content or a document_id.
    Saves tags to document metadata if document_id is provided.
    """
    logger.info(f"Tool 'generate_tags' called. doc_id: {document_id}, max_tags: {max_tags}, has_content: {content is not None}")
    try:
        text_for_tags = content
        if document_id and not text_for_tags:
            doc = await document_store_service.get_document(document_id)
            if not doc:
                return {"success": False, "error": f"Document {document_id} not found"}
            text_for_tags = doc.content
        if not text_for_tags:
            return {"success": False, "error": "No content provided for tag generation"}
        tags = await generative_tool_instance.generate_tags(text_for_tags, max_tags)
        if document_id and tags:
            await document_store_service.update_document_metadata(document_id, {"tags": tags})
            logger.info(f"Tags {tags} saved for document {document_id}")
        return {
            "success": True,
            "tags": tags,
            "content_length": len(text_for_tags),
            "document_id": document_id
        }
    except Exception as e:
        logger.error(f"Error in 'generate_tags' tool: {str(e)}", exc_info=True)
        return {"success": False, "error": str(e)}

@mcp.tool()
async def answer_question(question: str, context_filter: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
    """
    Answer questions using RAG (Retrieval Augmented Generation) over indexed content.
    'context_filter' can be used to narrow down the context search.
    """
    logger.info(f"Tool 'answer_question' called with question: {question}, context_filter: {context_filter}")
    try:
        search_results = await search_tool_instance.search(question, top_k=5, filters=context_filter)
        if not search_results:
            return {
                "success": False,
                "error": "No relevant context found. Please upload relevant documents.",
                "question": question,
                "answer": "I could not find enough information in the documents to answer your question."
            }
        answer = await generative_tool_instance.answer_question(question, search_results)
        return {
            "success": True,
            "question": question,
            "answer": answer,
            "sources": [result.to_dict() for result in search_results],
            "confidence": "high" if len(search_results) >= 3 else "medium"
        }
    except Exception as e:
        logger.error(f"Error in 'answer_question' tool: {str(e)}", exc_info=True)
        return {"success": False, "error": str(e)}

@mcp.tool()
async def list_documents_for_ui(limit: int = 100, offset: int = 0) -> Dict[str, Any]:
    """
    (UI Helper) List documents from the document store.
    Not a standard processing tool, but useful for UI population.
    """
    logger.info(f"Tool 'list_documents_for_ui' called with limit: {limit}, offset: {offset}")
    try:
        documents = await document_store_service.list_documents(limit, offset)
        return {
            "success": True,
            "documents": [doc.to_dict() for doc in documents],
            "total": len(documents)
        }
    except Exception as e:
        logger.error(f"Error in 'list_documents_for_ui' tool: {str(e)}", exc_info=True)
        return {"success": False, "error": str(e), "documents": []}

if __name__ == "__main__":
    logger.info("Starting FastMCP server...")
    asyncio.run(mcp.run())