File size: 17,788 Bytes
9145e48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
import logging
from typing import List, Dict, Any, Optional
import asyncio
from core.models import SearchResult
from services.vector_store_service import VectorStoreService
from services.embedding_service import EmbeddingService
from services.document_store_service import DocumentStoreService
import config
logger = logging.getLogger(__name__)
class SearchTool:
def __init__(self, vector_store: VectorStoreService, embedding_service: EmbeddingService,
document_store: Optional[DocumentStoreService] = None):
self.vector_store = vector_store
self.embedding_service = embedding_service
self.document_store = document_store
self.config = config.config
async def search(self, query: str, top_k: int = 5, filters: Optional[Dict[str, Any]] = None,
similarity_threshold: Optional[float] = None) -> List[SearchResult]:
"""Perform semantic search"""
try:
if not query.strip():
logger.warning("Empty search query provided")
return []
# Use default threshold if not provided
if similarity_threshold is None:
similarity_threshold = self.config.SIMILARITY_THRESHOLD
logger.info(f"Performing semantic search for: '{query}' (top_k={top_k})")
# Generate query embedding
query_embedding = await self.embedding_service.generate_single_embedding(query)
if not query_embedding:
logger.error("Failed to generate query embedding")
return []
# Perform vector search
results = await self.vector_store.search(
query_embedding=query_embedding,
top_k=top_k,
filters=filters
)
# Filter by similarity threshold
filtered_results = [
result for result in results
if result.score >= similarity_threshold
]
logger.info(f"Found {len(filtered_results)} results above threshold {similarity_threshold}")
# Enhance results with additional metadata if document store is available
if self.document_store:
enhanced_results = await self._enhance_results_with_metadata(filtered_results)
return enhanced_results
return filtered_results
except Exception as e:
logger.error(f"Error performing semantic search: {str(e)}")
return []
async def _enhance_results_with_metadata(self, results: List[SearchResult]) -> List[SearchResult]:
"""Enhance search results with document metadata"""
try:
enhanced_results = []
for result in results:
try:
# Get document metadata
document = await self.document_store.get_document(result.document_id)
if document:
# Add document metadata to result
enhanced_metadata = {
**result.metadata,
"document_filename": document.filename,
"document_type": document.doc_type.value,
"document_tags": document.tags,
"document_category": document.category,
"document_created_at": document.created_at.isoformat(),
"document_summary": document.summary
}
enhanced_result = SearchResult(
chunk_id=result.chunk_id,
document_id=result.document_id,
content=result.content,
score=result.score,
metadata=enhanced_metadata
)
enhanced_results.append(enhanced_result)
else:
# Document not found, use original result
enhanced_results.append(result)
except Exception as e:
logger.warning(f"Error enhancing result {result.chunk_id}: {str(e)}")
enhanced_results.append(result)
return enhanced_results
except Exception as e:
logger.error(f"Error enhancing results: {str(e)}")
return results
async def multi_query_search(self, queries: List[str], top_k: int = 5,
aggregate_method: str = "merge") -> List[SearchResult]:
"""Perform search with multiple queries and aggregate results"""
try:
all_results = []
# Perform search for each query
for query in queries:
if query.strip():
query_results = await self.search(query, top_k)
all_results.extend(query_results)
if not all_results:
return []
# Aggregate results
if aggregate_method == "merge":
return await self._merge_results(all_results, top_k)
elif aggregate_method == "intersect":
return await self._intersect_results(all_results, top_k)
elif aggregate_method == "average":
return await self._average_results(all_results, top_k)
else:
# Default to merge
return await self._merge_results(all_results, top_k)
except Exception as e:
logger.error(f"Error in multi-query search: {str(e)}")
return []
async def _merge_results(self, results: List[SearchResult], top_k: int) -> List[SearchResult]:
"""Merge results and remove duplicates, keeping highest scores"""
try:
# Group by chunk_id and keep highest score
chunk_scores = {}
chunk_results = {}
for result in results:
chunk_id = result.chunk_id
if chunk_id not in chunk_scores or result.score > chunk_scores[chunk_id]:
chunk_scores[chunk_id] = result.score
chunk_results[chunk_id] = result
# Sort by score and return top_k
merged_results = list(chunk_results.values())
merged_results.sort(key=lambda x: x.score, reverse=True)
return merged_results[:top_k]
except Exception as e:
logger.error(f"Error merging results: {str(e)}")
return results[:top_k]
async def _intersect_results(self, results: List[SearchResult], top_k: int) -> List[SearchResult]:
"""Find chunks that appear in multiple queries"""
try:
# Count occurrences of each chunk
chunk_counts = {}
chunk_results = {}
for result in results:
chunk_id = result.chunk_id
chunk_counts[chunk_id] = chunk_counts.get(chunk_id, 0) + 1
if chunk_id not in chunk_results or result.score > chunk_results[chunk_id].score:
chunk_results[chunk_id] = result
# Filter chunks that appear more than once
intersect_results = [
result for chunk_id, result in chunk_results.items()
if chunk_counts[chunk_id] > 1
]
# Sort by score
intersect_results.sort(key=lambda x: x.score, reverse=True)
return intersect_results[:top_k]
except Exception as e:
logger.error(f"Error intersecting results: {str(e)}")
return []
async def _average_results(self, results: List[SearchResult], top_k: int) -> List[SearchResult]:
"""Average scores for chunks that appear multiple times"""
try:
# Group by chunk_id and calculate average scores
chunk_groups = {}
for result in results:
chunk_id = result.chunk_id
if chunk_id not in chunk_groups:
chunk_groups[chunk_id] = []
chunk_groups[chunk_id].append(result)
# Calculate average scores
averaged_results = []
for chunk_id, group in chunk_groups.items():
avg_score = sum(r.score for r in group) / len(group)
# Use the result with the highest individual score but update the score to average
best_result = max(group, key=lambda x: x.score)
averaged_result = SearchResult(
chunk_id=best_result.chunk_id,
document_id=best_result.document_id,
content=best_result.content,
score=avg_score,
metadata={
**best_result.metadata,
"query_count": len(group),
"score_range": f"{min(r.score for r in group):.3f}-{max(r.score for r in group):.3f}"
}
)
averaged_results.append(averaged_result)
# Sort by average score
averaged_results.sort(key=lambda x: x.score, reverse=True)
return averaged_results[:top_k]
except Exception as e:
logger.error(f"Error averaging results: {str(e)}")
return results[:top_k]
async def search_by_document(self, document_id: str, query: str, top_k: int = 5) -> List[SearchResult]:
"""Search within a specific document"""
try:
filters = {"document_id": document_id}
return await self.search(query, top_k, filters)
except Exception as e:
logger.error(f"Error searching within document {document_id}: {str(e)}")
return []
async def search_by_category(self, category: str, query: str, top_k: int = 5) -> List[SearchResult]:
"""Search within documents of a specific category"""
try:
if not self.document_store:
logger.warning("Document store not available for category search")
return await self.search(query, top_k)
# Get documents in the category
documents = await self.document_store.list_documents(
limit=1000, # Adjust as needed
filters={"category": category}
)
if not documents:
logger.info(f"No documents found in category '{category}'")
return []
# Extract document IDs
document_ids = [doc.id for doc in documents]
# Search with document ID filter
filters = {"document_ids": document_ids}
return await self.search(query, top_k, filters)
except Exception as e:
logger.error(f"Error searching by category {category}: {str(e)}")
return []
async def search_with_date_range(self, query: str, start_date, end_date, top_k: int = 5) -> List[SearchResult]:
"""Search documents within a date range"""
try:
if not self.document_store:
logger.warning("Document store not available for date range search")
return await self.search(query, top_k)
# Get documents in the date range
documents = await self.document_store.list_documents(
limit=1000, # Adjust as needed
filters={
"created_after": start_date,
"created_before": end_date
}
)
if not documents:
logger.info(f"No documents found in date range")
return []
# Extract document IDs
document_ids = [doc.id for doc in documents]
# Search with document ID filter
filters = {"document_ids": document_ids}
return await self.search(query, top_k, filters)
except Exception as e:
logger.error(f"Error searching with date range: {str(e)}")
return []
async def get_search_suggestions(self, partial_query: str, limit: int = 5) -> List[str]:
"""Get search suggestions based on partial query"""
try:
# This is a simple implementation
# In a production system, you might want to use a more sophisticated approach
if len(partial_query) < 2:
return []
# Search for the partial query
results = await self.search(partial_query, top_k=20)
# Extract potential query expansions from content
suggestions = set()
for result in results:
content_words = result.content.lower().split()
for i, word in enumerate(content_words):
if partial_query.lower() in word:
# Add the word itself
suggestions.add(word.strip('.,!?;:'))
# Add phrases that include this word
if i > 0:
phrase = f"{content_words[i-1]} {word}".strip('.,!?;:')
suggestions.add(phrase)
if i < len(content_words) - 1:
phrase = f"{word} {content_words[i+1]}".strip('.,!?;:')
suggestions.add(phrase)
# Filter and sort suggestions
filtered_suggestions = [
s for s in suggestions
if len(s) > len(partial_query) and s.startswith(partial_query.lower())
]
return sorted(filtered_suggestions)[:limit]
except Exception as e:
logger.error(f"Error getting search suggestions: {str(e)}")
return []
async def explain_search(self, query: str, top_k: int = 3) -> Dict[str, Any]:
"""Provide detailed explanation of search process and results"""
try:
explanation = {
"query": query,
"steps": [],
"results_analysis": {},
"performance_metrics": {}
}
# Step 1: Query processing
explanation["steps"].append({
"step": "query_processing",
"description": "Processing and normalizing the search query",
"details": {
"original_query": query,
"cleaned_query": query.strip(),
"query_length": len(query)
}
})
# Step 2: Embedding generation
import time
start_time = time.time()
query_embedding = await self.embedding_service.generate_single_embedding(query)
embedding_time = time.time() - start_time
explanation["steps"].append({
"step": "embedding_generation",
"description": "Converting query to vector embedding",
"details": {
"embedding_dimension": len(query_embedding) if query_embedding else 0,
"generation_time_ms": round(embedding_time * 1000, 2)
}
})
# Step 3: Vector search
start_time = time.time()
results = await self.vector_store.search(query_embedding, top_k)
search_time = time.time() - start_time
explanation["steps"].append({
"step": "vector_search",
"description": "Searching vector database for similar content",
"details": {
"search_time_ms": round(search_time * 1000, 2),
"results_found": len(results),
"top_score": results[0].score if results else 0,
"score_range": f"{min(r.score for r in results):.3f}-{max(r.score for r in results):.3f}" if results else "N/A"
}
})
# Results analysis
if results:
explanation["results_analysis"] = {
"total_results": len(results),
"average_score": sum(r.score for r in results) / len(results),
"unique_documents": len(set(r.document_id for r in results)),
"content_lengths": [len(r.content) for r in results]
}
# Performance metrics
explanation["performance_metrics"] = {
"total_time_ms": round((embedding_time + search_time) * 1000, 2),
"embedding_time_ms": round(embedding_time * 1000, 2),
"search_time_ms": round(search_time * 1000, 2)
}
return explanation
except Exception as e:
logger.error(f"Error explaining search: {str(e)}")
return {"error": str(e)} |