File size: 19,768 Bytes
4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4228dd5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4228dd5 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4228dd5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4228dd5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4228dd5 9145e48 4228dd5 4a0fab5 4228dd5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4228dd5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 4a0fab5 9145e48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
from mistralai import Mistral
import logging
import asyncio
from typing import List, Dict, Any, Optional
import anthropic
import openai
import config
logger = logging.getLogger(__name__)
class LLMService:
def __init__(self):
self.config = config.config
self.anthropic_client = None
self.mistral_client = None
self.openai_async_client = None
self._initialize_clients()
def _initialize_clients(self):
"""Initialize LLM clients"""
try:
if self.config.ANTHROPIC_API_KEY:
self.anthropic_client = anthropic.Anthropic(
api_key=self.config.ANTHROPIC_API_KEY
)
logger.info("Anthropic client initialized")
if self.config.MISTRAL_API_KEY:
self.mistral_client = Mistral( # Standard sync client
api_key=self.config.MISTRAL_API_KEY
)
logger.info("Mistral client initialized")
if self.config.OPENAI_API_KEY:
self.openai_async_client = openai.AsyncOpenAI(
api_key=self.config.OPENAI_API_KEY
)
logger.info("OpenAI client initialized")
# Check if at least one client is initialized
if not any([self.openai_async_client, self.mistral_client, self.anthropic_client]):
logger.warning("No LLM clients could be initialized based on current config. Check API keys.")
else:
logger.info("LLM clients initialized successfully (at least one).")
except Exception as e:
logger.error(f"Error initializing LLM clients: {str(e)}")
raise
async def generate_text(self, prompt: str, model: str = "auto", max_tokens: int = 1000, temperature: float = 0.7) -> str:
"""Generate text using the specified model, with new priority for 'auto'."""
try:
selected_model_name_for_call: str = ""
if model == "auto":
# New Priority: 1. OpenAI, 2. Mistral, 3. Anthropic
if self.openai_async_client and self.config.OPENAI_MODEL:
selected_model_name_for_call = self.config.OPENAI_MODEL
logger.debug(f"Auto-selected OpenAI model: {selected_model_name_for_call}")
return await self._generate_with_openai(prompt, selected_model_name_for_call, max_tokens, temperature)
elif self.mistral_client and self.config.MISTRAL_MODEL:
selected_model_name_for_call = self.config.MISTRAL_MODEL
logger.debug(f"Auto-selected Mistral model: {selected_model_name_for_call}")
return await self._generate_with_mistral(prompt, selected_model_name_for_call, max_tokens, temperature)
elif self.anthropic_client and self.config.ANTHROPIC_MODEL:
selected_model_name_for_call = self.config.ANTHROPIC_MODEL
logger.debug(f"Auto-selected Anthropic model: {selected_model_name_for_call}")
return await self._generate_with_claude(prompt, selected_model_name_for_call, max_tokens, temperature)
else:
logger.error("No LLM clients available for 'auto' mode or default models not configured.")
raise ValueError("No LLM clients available for 'auto' mode or default models not configured.")
elif model.startswith("gpt-") or model.lower().startswith("openai/"):
if not self.openai_async_client:
raise ValueError("OpenAI client not available. Check API key or model prefix.")
actual_model = model.split('/')[-1] if '/' in model else model
return await self._generate_with_openai(prompt, actual_model, max_tokens, temperature)
elif model.startswith("mistral"):
if not self.mistral_client:
raise ValueError("Mistral client not available. Check API key or model prefix.")
return await self._generate_with_mistral(prompt, model, max_tokens, temperature)
elif model.startswith("claude"):
if not self.anthropic_client:
raise ValueError("Anthropic client not available. Check API key or model prefix.")
return await self._generate_with_claude(prompt, model, max_tokens, temperature)
else:
raise ValueError(f"Unsupported model: {model}. Must start with 'gpt-', 'openai/', 'claude', 'mistral', or be 'auto'.")
except Exception as e:
logger.error(f"Error generating text with model '{model}': {str(e)}")
raise
async def _generate_with_openai(self, prompt: str, model_name: str, max_tokens: int, temperature: float) -> str:
"""Generate text using OpenAI (Async)"""
if not self.openai_async_client:
raise RuntimeError("OpenAI async client not initialized.")
try:
logger.debug(f"Generating with OpenAI model: {model_name}, max_tokens: {max_tokens}, temp: {temperature}, prompt: '{prompt[:50]}...'")
response = await self.openai_async_client.chat.completions.create(
model=model_name,
messages=[{"role": "user", "content": prompt}],
max_tokens=max_tokens,
temperature=temperature
)
if response.choices and response.choices[0].message:
content = response.choices[0].message.content
if content is not None:
return content.strip()
else:
logger.warning(f"OpenAI response message content is None for model {model_name}.")
return ""
else:
logger.warning(f"OpenAI response did not contain expected choices or message for model {model_name}.")
return ""
except Exception as e:
logger.error(f"Error with OpenAI generation (model: {model_name}): {str(e)}")
raise
async def _generate_with_claude(self, prompt: str, model_name: str, max_tokens: int, temperature: float) -> str:
"""Generate text using Anthropic/Claude (Sync via run_in_executor)"""
if not self.anthropic_client:
raise RuntimeError("Anthropic client not initialized.")
try:
logger.debug(f"Generating with Anthropic model: {model_name}, max_tokens: {max_tokens}, temp: {temperature}, prompt: '{prompt[:50]}...'")
loop = asyncio.get_event_loop()
response = await loop.run_in_executor(
None,
lambda: self.anthropic_client.messages.create(
model=model_name,
max_tokens=max_tokens,
temperature=temperature,
messages=[
{"role": "user", "content": prompt}
]
)
)
if response.content and response.content[0].text:
return response.content[0].text.strip()
else:
logger.warning(f"Anthropic response did not contain expected content for model {model_name}.")
return ""
except Exception as e:
logger.error(f"Error with Anthropic (Claude) generation (model: {model_name}): {str(e)}")
raise
async def _generate_with_mistral(self, prompt: str, model_name: str, max_tokens: int, temperature: float) -> str:
"""Generate text using Mistral (Sync via run_in_executor)"""
if not self.mistral_client:
raise RuntimeError("Mistral client not initialized.")
try:
logger.debug(f"Generating with Mistral model: {model_name}, temp: {temperature}, prompt: '{prompt[:50]}...' (max_tokens: {max_tokens} - note: not directly used by MistralClient.chat)")
loop = asyncio.get_event_loop()
response = await loop.run_in_executor(
None,
lambda: self.mistral_client.chat(
model=model_name,
messages=[{"role": "user", "content": prompt}],
max_tokens=max_tokens,
temperature=temperature
)
)
if response.choices and response.choices[0].message:
content = response.choices[0].message.content
if content is not None:
return content.strip()
else:
logger.warning(f"Mistral response message content is None for model {model_name}.")
return ""
else:
logger.warning(f"Mistral response did not contain expected choices or message for model {model_name}.")
return ""
except Exception as e:
logger.error(f"Error with Mistral generation (model: {model_name}): {str(e)}")
raise
async def summarize(self, text: str, style: str = "concise", max_length: Optional[int] = None) -> str:
if not text.strip():
return ""
style_prompts = {
"concise": "Provide a concise summary of the following text, focusing on the main points:",
"detailed": "Provide a detailed summary of the following text, including key details and supporting information:",
"bullet_points": "Summarize the following text as a list of bullet points highlighting the main ideas:",
"executive": "Provide an executive summary of the following text, focusing on key findings and actionable insights:"
}
prompt_template = style_prompts.get(style, style_prompts["concise"])
if max_length:
prompt_template += f" Keep the summary under approximately {max_length} words."
prompt = f"{prompt_template}\n\nText to summarize:\n{text}\n\nSummary:"
try:
summary_max_tokens = (max_length * 2) if max_length else 500
summary = await self.generate_text(prompt, model="auto", max_tokens=summary_max_tokens, temperature=0.3)
return summary.strip()
except Exception as e:
logger.error(f"Error generating summary: {str(e)}")
return "Error generating summary"
async def generate_tags(self, text: str, max_tags: int = 5) -> List[str]:
if not text.strip():
return []
prompt = f"""Generate up to {max_tags} relevant tags for the following text.
Tags should be concise, descriptive keywords or phrases (1-3 words typically) that capture the main topics or themes.
Return only the tags, separated by commas. Do not include any preamble or explanation.
Text:
{text}
Tags:"""
try:
response = await self.generate_text(prompt, model="auto", max_tokens=100, temperature=0.5)
tags = [tag.strip().lower() for tag in response.split(',') if tag.strip()]
tags = [tag for tag in tags if tag and len(tag) > 1 and len(tag) < 50]
return list(dict.fromkeys(tags))[:max_tags]
except Exception as e:
logger.error(f"Error generating tags: {str(e)}")
return []
async def categorize(self, text: str, categories: List[str]) -> str:
if not text.strip() or not categories:
return "Uncategorized"
categories_str = ", ".join([f"'{cat}'" for cat in categories])
prompt = f"""Classify the following text into ONE of these categories: {categories_str}.
Choose the single most appropriate category based on the content and main theme of the text.
Return only the category name as a string, exactly as it appears in the list provided. Do not add any other text or explanation.
Text to classify:
{text}
Category:"""
try:
response = await self.generate_text(prompt, model="auto", max_tokens=50, temperature=0.1)
category_candidate = response.strip().strip("'\"")
for cat in categories:
if cat.lower() == category_candidate.lower():
return cat
logger.warning(f"LLM returned category '{category_candidate}' which is not in the provided list: {categories}. Falling back.")
return categories[0] if categories else "Uncategorized"
except Exception as e:
logger.error(f"Error categorizing text: {str(e)}")
return "Uncategorized"
async def answer_question(self, question: str, context: str, max_context_length: int = 3000) -> str:
if not question.strip():
return "No question provided."
if not context.strip():
return "I don't have enough context to answer this question. Please provide relevant information."
if len(context) > max_context_length:
context = context[:max_context_length] + "..."
logger.warning(f"Context truncated to {max_context_length} characters for question answering.")
prompt = f"""You are an expert Q&A assistant. Your task is to synthesize an answer to the user's question based *only* on the provided source documents.
Analyze all the source documents provided in the context below.
If the information is present, provide a comprehensive answer.
Here are the source documents:
--- START OF CONTEXT ---
{context}
--- END OF CONTEXT ---
Based on the context above, please provide a clear and concise answer to the following question.
Question: {question}
Answer:"""
try:
answer = await self.generate_text(prompt, model="auto", max_tokens=800, temperature=0.5)
return answer.strip()
except Exception as e:
logger.error(f"Error answering question: {str(e)}")
return "I encountered an error while trying to answer your question."
async def extract_key_information(self, text: str) -> Dict[str, Any]:
if not text.strip():
return {}
prompt = f"""Analyze the following text and extract key information.
Provide the response as a JSON object with the following keys:
- "main_topic": (string) The main topic or subject of the text.
- "key_points": (array of strings) A list of 3-5 key points or takeaways.
- "entities": (array of strings) Important people, places, organizations, or products mentioned.
- "sentiment": (string) Overall sentiment of the text (e.g., "positive", "neutral", "negative", "mixed").
- "content_type": (string) The perceived type of content (e.g., "article", "email", "report", "conversation", "advertisement", "other").
If a piece of information is not found or not applicable, use null or an empty array/string as appropriate for the JSON structure.
Text to analyze:
---
{text}
---
JSON Analysis:"""
try:
response_str = await self.generate_text(prompt, model="auto", max_tokens=500, temperature=0.4)
import json
try:
if response_str.startswith("```json"):
response_str = response_str.lstrip("```json").rstrip("```").strip()
info = json.loads(response_str)
expected_keys = {"main_topic", "key_points", "entities", "sentiment", "content_type"}
if not expected_keys.issubset(info.keys()):
logger.warning(f"Extracted information missing some expected keys. Got: {info.keys()}")
return info
except json.JSONDecodeError as je:
logger.error(f"Failed to parse JSON from LLM response for key_information: {je}")
logger.debug(f"LLM Response string was: {response_str}")
info_fallback = {}
lines = response_str.split('\n')
for line in lines:
if ':' in line:
key, value = line.split(':', 1)
key_clean = key.strip().lower().replace(' ', '_')
value_clean = value.strip()
if value_clean:
if key_clean in ["key_points", "entities"] and '[' in value_clean and ']' in value_clean:
try:
info_fallback[key_clean] = [item.strip().strip("'\"") for item in value_clean.strip('[]').split(',') if item.strip()]
except: info_fallback[key_clean] = value_clean
else: info_fallback[key_clean] = value_clean
if info_fallback:
logger.info("Successfully parsed key information using fallback line-based method.")
return info_fallback
return {"error": "Failed to parse LLM output", "raw_response": response_str}
except Exception as e:
logger.error(f"Error extracting key information: {str(e)}")
return {"error": f"General error extracting key information: {str(e)}"}
async def check_availability(self) -> Dict[str, bool]:
"""Check which LLM services are available by making a tiny test call."""
availability = {
"openai": False,
"mistral": False,
"anthropic": False
}
test_prompt = "Hello"
test_max_tokens = 5
test_temp = 0.1
logger.info("Checking LLM availability...")
if self.openai_async_client and self.config.OPENAI_MODEL:
try:
logger.debug(f"Testing OpenAI availability with model {self.config.OPENAI_MODEL}...")
test_response = await self._generate_with_openai(test_prompt, self.config.OPENAI_MODEL, test_max_tokens, test_temp)
availability["openai"] = bool(test_response.strip())
except Exception as e:
logger.warning(f"OpenAI availability check failed for model {self.config.OPENAI_MODEL}: {e}")
logger.info(f"OpenAI available: {availability['openai']}")
if self.mistral_client and self.config.MISTRAL_MODEL:
try:
logger.debug(f"Testing Mistral availability with model {self.config.MISTRAL_MODEL}...")
test_response = await self._generate_with_mistral(test_prompt, self.config.MISTRAL_MODEL, test_max_tokens, test_temp)
availability["mistral"] = bool(test_response.strip())
except Exception as e:
logger.warning(f"Mistral availability check failed for model {self.config.MISTRAL_MODEL}: {e}")
logger.info(f"Mistral available: {availability['mistral']}")
if self.anthropic_client and self.config.ANTHROPIC_MODEL:
try:
logger.debug(f"Testing Anthropic availability with model {self.config.ANTHROPIC_MODEL}...")
test_response = await self._generate_with_claude(test_prompt, self.config.ANTHROPIC_MODEL, test_max_tokens, test_temp)
availability["anthropic"] = bool(test_response.strip())
except Exception as e:
logger.warning(f"Anthropic availability check failed for model {self.config.ANTHROPIC_MODEL}: {e}")
logger.info(f"Anthropic available: {availability['anthropic']}")
logger.info(f"Final LLM Availability: {availability}")
return availability |