File size: 14,824 Bytes
16ca714 9145e48 16ca714 9145e48 16ca714 9145e48 16ca714 9145e48 16ca714 9145e48 16ca714 9145e48 16ca714 9145e48 16ca714 9145e48 16ca714 9145e48 16ca714 9145e48 16ca714 9145e48 16ca714 9145e48 16ca714 9145e48 16ca714 9145e48 16ca714 9145e48 16ca714 9145e48 16ca714 9145e48 16ca714 9145e48 16ca714 9145e48 16ca714 9145e48 16ca714 9145e48 16ca714 9145e48 16ca714 9145e48 16ca714 9145e48 16ca714 9145e48 16ca714 9145e48 16ca714 9145e48 16ca714 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import logging
import asyncio
from pathlib import Path
import os
import base64 # For encoding files
from typing import Optional, List, Dict, Any
import json
from mistralai import Mistral
from mistralai.models import SDKError
# PIL (Pillow) for dummy image creation in main_example
from PIL import Image, ImageDraw, ImageFont
logger = logging.getLogger(__name__)
class OCRService:
def __init__(self):
self.api_key = os.environ.get("MISTRAL_API_KEY")
if not self.api_key:
logger.error("MISTRAL_API_KEY environment variable not set.")
raise ValueError("MISTRAL_API_KEY not found in environment variables.")
self.client = Mistral(api_key=self.api_key)
self.ocr_model_name = "mistral-ocr-latest"
self.language = 'eng'
logger.info(f"OCRService (using Mistral AI model {self.ocr_model_name}) initialized.")
def _encode_file_to_base64(self, file_path: str) -> Optional[str]:
try:
with open(file_path, "rb") as file_to_encode:
return base64.b64encode(file_to_encode.read()).decode('utf-8')
except FileNotFoundError:
logger.error(f"Error: The file {file_path} was not found for Base64 encoding.")
return None
except Exception as e:
logger.error(f"Error during Base64 encoding for {file_path}: {e}")
return None
# In OCRService class:
async def _process_file_with_mistral(self, file_path: str, mime_type: str) -> str:
file_name = Path(file_path).name
logger.info(f"Preparing to process file: {file_name} (MIME: {mime_type}) with Mistral OCR.")
base64_encoded_file = self._encode_file_to_base64(file_path)
if not base64_encoded_file:
logger.warning(f"Base64 encoding failed for {file_name}, cannot process.")
return ""
document_type = "image_url" if mime_type.startswith("image/") else "document_url"
uri_key = "image_url" if document_type == "image_url" else "document_url"
data_uri = f"data:{mime_type};base64,{base64_encoded_file}"
document_payload = {
"type": document_type,
uri_key: data_uri
}
try:
logger.info(f"Calling Mistral client.ocr.process for {file_name} with model {self.ocr_model_name}.")
loop = asyncio.get_event_loop()
ocr_response = await loop.run_in_executor(
None,
lambda: self.client.ocr.process(
model=self.ocr_model_name,
document=document_payload,
include_image_base64=False
)
)
logger.info(f"Received OCR response for {file_name}. Type: {type(ocr_response)}")
extracted_markdown = ""
if hasattr(ocr_response, 'pages') and ocr_response.pages and isinstance(ocr_response.pages, list):
all_pages_markdown = []
for i, page in enumerate(ocr_response.pages):
page_content = None
if hasattr(page, 'markdown') and page.markdown: # Check for 'markdown' attribute
page_content = page.markdown
logger.debug(f"Extracted content from page {i} using 'page.markdown'.")
elif hasattr(page, 'markdown_content') and page.markdown_content:
page_content = page.markdown_content
logger.debug(f"Extracted content from page {i} using 'page.markdown_content'.")
elif hasattr(page, 'text') and page.text:
page_content = page.text
logger.debug(f"Extracted content from page {i} using 'page.text'.")
if page_content:
all_pages_markdown.append(page_content)
else:
page_details_for_log = str(page)[:200] # Default to string snippet
if hasattr(page, '__dict__'):
page_details_for_log = str(vars(page))[:200] # Log part of vars if it's an object
logger.warning(f"Page {i} in OCR response for {file_name} has no 'markdown', 'markdown_content', or 'text'. Page details: {page_details_for_log}")
if all_pages_markdown:
extracted_markdown = "\n\n---\nPage Break (simulated)\n---\n\n".join(all_pages_markdown) # Simulate page breaks
else:
logger.warning(f"'pages' attribute found but no content extracted from any pages for {file_name}.")
# Fallbacks if ocr_response doesn't have 'pages' but might have direct text/markdown
elif hasattr(ocr_response, 'text') and ocr_response.text:
extracted_markdown = ocr_response.text
logger.info(f"Extracted content from 'ocr_response.text' (no pages structure) for {file_name}.")
elif hasattr(ocr_response, 'markdown') and ocr_response.markdown:
extracted_markdown = ocr_response.markdown
logger.info(f"Extracted content from 'ocr_response.markdown' (no pages structure) for {file_name}.")
elif isinstance(ocr_response, str) and ocr_response:
extracted_markdown = ocr_response
logger.info(f"OCR response is a direct non-empty string for {file_name}.")
else:
logger.warning(f"Could not extract markdown from OCR response for {file_name} using known attributes (pages, text, markdown).")
if not extracted_markdown.strip():
logger.warning(f"Extracted markdown is empty for {file_name} after all parsing attempts.")
return extracted_markdown.strip()
except SDKError as e:
logger.error(f"Mistral API Exception during client.ocr.process for {file_name}: {e.message}")
logger.exception("SDKError details:")
return ""
except Exception as e:
logger.error(f"Generic Exception during Mistral client.ocr.process call for {file_name}: {e}")
logger.exception("Exception details:")
return ""
async def extract_text_from_image(self, image_path: str, language: Optional[str] = None) -> str:
if language:
logger.info(f"Language parameter '{language}' provided, but Mistral OCR is broadly multilingual.")
ext = Path(image_path).suffix.lower()
mime_map = {'.jpeg': 'image/jpeg', '.jpg': 'image/jpeg', '.png': 'image/png',
'.gif': 'image/gif', '.bmp': 'image/bmp', '.tiff': 'image/tiff', '.webp': 'image/webp',
'.avif': 'image/avif'}
mime_type = mime_map.get(ext)
if not mime_type:
logger.warning(f"Unsupported image extension '{ext}' for path '{image_path}'. Attempting with 'application/octet-stream'.")
mime_type = 'application/octet-stream'
return await self._process_file_with_mistral(image_path, mime_type)
async def extract_text_from_pdf(self, pdf_path: str) -> str:
return await self._process_file_with_mistral(pdf_path, "application/pdf")
async def extract_text_from_pdf_images(self, pdf_path: str) -> List[str]:
logger.info("Mistral processes PDFs directly. This method will return the full Markdown content as a single list item.")
full_markdown = await self._process_file_with_mistral(pdf_path, "application/pdf")
if full_markdown:
return [full_markdown]
return [""]
async def extract_text_with_confidence(self, image_path: str, min_confidence: float = 0.5) -> Dict[str, Any]:
logger.warning("Mistral Document AI API (ocr.process) typically returns structured text (Markdown). Word-level confidence scores are not standard. 'confidence' field is a placeholder.")
ext = Path(image_path).suffix.lower()
mime_map = {'.jpeg': 'image/jpeg', '.jpg': 'image/jpeg', '.png': 'image/png', '.avif': 'image/avif'}
mime_type = mime_map.get(ext)
if not mime_type:
logger.warning(f"Unsupported image extension '{ext}' in extract_text_with_confidence. Defaulting mime type.")
mime_type = 'application/octet-stream'
text_markdown = await self._process_file_with_mistral(image_path, mime_type)
return {
"text": text_markdown,
"confidence": 0.0,
"word_count": len(text_markdown.split()) if text_markdown else 0,
"raw_data": "Mistral ocr.process response contains structured data. See logs from _process_file_with_mistral for details."
}
async def detect_language(self, image_path: str) -> str:
logger.warning("Mistral OCR is multilingual; explicit language detection is not part of client.ocr.process.")
return 'eng'
async def extract_tables_from_image(self, image_path: str) -> List[List[str]]:
logger.info("Extracting text (Markdown) from image using Mistral. Mistral OCR preserves table structures in Markdown.")
ext = Path(image_path).suffix.lower()
mime_map = {'.jpeg': 'image/jpeg', '.jpg': 'image/jpeg', '.png': 'image/png', '.avif': 'image/avif'}
mime_type = mime_map.get(ext)
if not mime_type:
logger.warning(f"Unsupported image extension '{ext}' in extract_tables_from_image. Defaulting mime type.")
mime_type = 'application/octet-stream'
markdown_content = await self._process_file_with_mistral(image_path, mime_type)
if markdown_content:
logger.info("Attempting basic parsing of Markdown tables. For complex tables, a dedicated parser is recommended.")
table_data = []
# Simplified parsing logic for example purposes - can be improved significantly.
lines = markdown_content.split('\n')
for line in lines:
stripped_line = line.strip()
if stripped_line.startswith('|') and stripped_line.endswith('|') and "---" not in stripped_line:
cells = [cell.strip() for cell in stripped_line.strip('|').split('|')]
if any(cells):
table_data.append(cells)
if table_data:
logger.info(f"Extracted {len(table_data)} lines potentially forming tables using basic parsing.")
else:
logger.info("No distinct table structures found with basic parsing from extracted markdown.")
return table_data
return []
async def get_supported_languages(self) -> List[str]:
logger.info("Mistral OCR is multilingual. Refer to official Mistral AI documentation for details.")
return ['eng', 'multilingual (refer to Mistral documentation)']
async def validate_ocr_setup(self) -> Dict[str, Any]:
try:
models_response = await asyncio.to_thread(self.client.models.list)
model_ids = [model.id for model in models_response.data]
return {
"status": "operational",
"message": "Mistral client initialized. API key present. Model listing successful.",
"mistral_available_models_sample": model_ids[:5],
"configured_ocr_model": self.ocr_model_name,
}
except SDKError as e:
logger.error(f"Mistral API Exception during setup validation: {e.message}")
return { "status": "error", "error": f"Mistral API Error: {e.message}"}
except Exception as e:
logger.error(f"Generic error during Mistral OCR setup validation: {str(e)}")
return { "status": "error", "error": str(e) }
def extract_text(self, file_path: str) -> str:
logger.warning("`extract_text` is a synchronous method. Running async Mistral OCR in a blocking way.")
try:
ext = Path(file_path).suffix.lower()
if ext in ['.jpeg', '.jpg', '.png', '.gif', '.bmp', '.tiff', '.webp', '.avif']:
result = asyncio.run(self.extract_text_from_image(file_path))
elif ext == '.pdf':
result = asyncio.run(self.extract_text_from_pdf(file_path))
else:
logger.error(f"Unsupported file type for sync extract_text: {file_path}")
return "Unsupported file type."
return result
except Exception as e:
logger.error(f"Error in synchronous extract_text for {file_path}: {str(e)}")
return "Error during sync extraction."
# Example of how to use the OCRService (main execution part)
async def main_example():
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s - %(levelname)s - %(name)s - %(funcName)s - %(message)s')
if not os.environ.get("MISTRAL_API_KEY"):
logger.error("MISTRAL_API_KEY environment variable is not set. Please set it: export MISTRAL_API_KEY='yourkey'")
return
ocr_service = OCRService()
logger.info("--- Validating OCR Service Setup ---")
validation_status = await ocr_service.validate_ocr_setup()
logger.info(f"OCR Service Validation: {validation_status}")
if validation_status.get("status") == "error":
logger.error("Halting due to validation error.")
return
# --- Test with a specific PDF file ---
pdf_path_to_test = r"C:\path\to\your\certificate.pdf"
if os.path.exists(pdf_path_to_test):
logger.info(f"\n--- Extracting text from specific PDF: {pdf_path_to_test} ---")
# Using the method that aligns with original `extract_text_from_pdf_images` signature
pdf_markdown_list = await ocr_service.extract_text_from_pdf_images(pdf_path_to_test)
if pdf_markdown_list and pdf_markdown_list[0]:
logger.info(f"Extracted Markdown from PDF ({pdf_path_to_test}):\n" + pdf_markdown_list[0])
else:
logger.warning(f"No text extracted from PDF {pdf_path_to_test} or an error occurred.")
else:
logger.warning(f"PDF file for specific test '{pdf_path_to_test}' not found. Skipping this test.")
logger.warning("Please update `pdf_path_to_test` in `main_example` to a valid PDF path.")
image_path = "dummy_test_image_ocr.png"
if os.path.exists(image_path):
logger.info(f"\n---Extracting text from image: {image_path} ---")
# ... image processing logic ...
pass
else:
logger.info(f"Dummy image {image_path} not created or found, skipping optional image test.")
if __name__ == '__main__':
asyncio.run(main_example()) |