Spaces:
Running
Running
improved seperation of concerns best practice in the code, added print statements for better understanding of what code is doing
Browse files- ai-plugin.json +0 -16
- app.py +26 -41
- services/embeddings.py +6 -0
- services/indexing.py +4 -0
- services/llm.py +13 -0
- src/merge_kb.py +0 -15
- utils/llama_index_utils.py +0 -49
- utils/model_configuration_utils.py +1 -0
ai-plugin.json
DELETED
@@ -1,16 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"schema_version": "v1",
|
3 |
-
"name_for_human": "MedCodeMCP",
|
4 |
-
"name_for_model": "MedCodeMCP",
|
5 |
-
"description_for_human": "Map natural-language symptom descriptions to ICD-10 codes with confidence scores and follow-up questions.",
|
6 |
-
"description_for_model": "Use MedCodeMCP to analyze patient symptom descriptions and return probable ICD-10 codes, confidence scores, and follow-up diagnostic questions if needed.",
|
7 |
-
"auth": {
|
8 |
-
"type": "none"
|
9 |
-
},
|
10 |
-
"api": {
|
11 |
-
"type": "gradio",
|
12 |
-
"url": "https://huggingface.co/spaces/Agents-MCP-Hackathon/MedCodeMCP"
|
13 |
-
},
|
14 |
-
"contact_email": "grahampaasch@gmail.com",
|
15 |
-
"legal_info_url": "https://huggingface.co/spaces/agents-mcp-hackathon/medcode-mcp"
|
16 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -1,47 +1,32 @@
|
|
1 |
-
from huggingface_hub import hf_hub_download
|
2 |
import gradio as gr
|
3 |
-
from
|
4 |
-
from
|
5 |
-
from
|
6 |
-
from
|
7 |
-
from utils import
|
8 |
-
from utils import voice_input_utils as viu
|
9 |
-
import json
|
10 |
import torch
|
11 |
import torchaudio.transforms as T
|
|
|
12 |
|
13 |
-
#
|
14 |
-
MODEL_NAME, REPO_ID =
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
print("
|
21 |
-
llm = LlamaCPP(
|
22 |
-
model_path=model_path,
|
23 |
-
temperature=0.7,
|
24 |
-
max_new_tokens=256,
|
25 |
-
context_window=2048,
|
26 |
-
verbose=False # Reduce logging
|
27 |
-
# n_batch and n_threads are not valid parameters for LlamaCPP and should not be used.
|
28 |
-
# If you encounter segmentation faults, try reducing context_window or check your system resources.
|
29 |
-
)
|
30 |
-
print("LLM initialized successfully")
|
31 |
|
32 |
-
#
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
)
|
38 |
-
print("Settings configured")
|
39 |
|
40 |
-
#
|
41 |
-
|
42 |
-
|
43 |
-
print("
|
44 |
-
print("Loaded symptom_index:", type(symptom_index))
|
45 |
|
46 |
# --- System prompt ---
|
47 |
SYSTEM_PROMPT = """
|
@@ -177,7 +162,7 @@ with gr.Blocks(theme="default") as demo:
|
|
177 |
clear_btn.click(lambda: None, None, chatbot, queue=False)
|
178 |
|
179 |
microphone.stream(
|
180 |
-
fn=
|
181 |
inputs=[microphone, chatbot, api_key, model_selector, temperature],
|
182 |
outputs=chatbot,
|
183 |
show_progress="hidden",
|
@@ -217,7 +202,7 @@ with gr.Blocks(theme="default") as demo:
|
|
217 |
sample_rate, audio_array = audio
|
218 |
features = process_audio(audio_array, sample_rate)
|
219 |
|
220 |
-
asr =
|
221 |
result = asr(features)
|
222 |
|
223 |
return result.get("text", "").strip() if isinstance(result, dict) else str(result).strip()
|
@@ -278,7 +263,7 @@ with gr.Blocks(theme="default") as demo:
|
|
278 |
|
279 |
new_history = history + [
|
280 |
{"role": "user", "content": text},
|
281 |
-
{"role": "assistant", "content":
|
282 |
]
|
283 |
return new_history, "" # Return empty string to clear input
|
284 |
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from utils.model_configuration_utils import select_best_model, ensure_model
|
3 |
+
from services.llm import build_llm
|
4 |
+
from services.embeddings import configure_embeddings
|
5 |
+
from services.indexing import build_symptom_index
|
6 |
+
from utils.voice_input_utils import enhanced_process_speech, format_response_for_user, get_asr_pipeline
|
|
|
|
|
7 |
import torch
|
8 |
import torchaudio.transforms as T
|
9 |
+
import json
|
10 |
|
11 |
+
# 1) Model selection & download
|
12 |
+
MODEL_NAME, REPO_ID = select_best_model()
|
13 |
+
model_path = ensure_model()
|
14 |
+
print(f"Using model: {MODEL_NAME} from {REPO_ID}")
|
15 |
+
print(f"Model path: {model_path}")
|
16 |
+
print(f"Model size: {torch.cuda.get_device_properties(0).total_memory / (1024**3):.2f} GB")
|
17 |
+
print(f"Model requirements: {MODEL_NAME} requires at least 4GB VRAM and 8GB RAM.")
|
18 |
+
print(f"Model type: {'GPU' if torch.cuda.is_available() else 'CPU'}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# 2) LLM and embeddings config
|
21 |
+
llm = build_llm(model_path)
|
22 |
+
configure_embeddings()
|
23 |
+
print(f"LLM configured with model: {model_path}")
|
24 |
+
print("Embeddings configured successfully.")
|
|
|
|
|
25 |
|
26 |
+
# 3) Index setup
|
27 |
+
symptom_index = build_symptom_index()
|
28 |
+
print("Symptom index built successfully.")
|
29 |
+
print("Ready for queries.")
|
|
|
30 |
|
31 |
# --- System prompt ---
|
32 |
SYSTEM_PROMPT = """
|
|
|
162 |
clear_btn.click(lambda: None, None, chatbot, queue=False)
|
163 |
|
164 |
microphone.stream(
|
165 |
+
fn=enhanced_process_speech,
|
166 |
inputs=[microphone, chatbot, api_key, model_selector, temperature],
|
167 |
outputs=chatbot,
|
168 |
show_progress="hidden",
|
|
|
202 |
sample_rate, audio_array = audio
|
203 |
features = process_audio(audio_array, sample_rate)
|
204 |
|
205 |
+
asr = get_asr_pipeline()
|
206 |
result = asr(features)
|
207 |
|
208 |
return result.get("text", "").strip() if isinstance(result, dict) else str(result).strip()
|
|
|
263 |
|
264 |
new_history = history + [
|
265 |
{"role": "user", "content": text},
|
266 |
+
{"role": "assistant", "content": format_response_for_user(result)}
|
267 |
]
|
268 |
return new_history, "" # Return empty string to clear input
|
269 |
|
services/embeddings.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from llama_index.core import Settings
|
2 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
3 |
+
|
4 |
+
|
5 |
+
def configure_embeddings(model_name="sentence-transformers/all-MiniLM-L6-v2"):
|
6 |
+
Settings.embed_model = HuggingFaceEmbedding(model_name=model_name)
|
services/indexing.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from src.parse_tabular import create_symptom_index
|
2 |
+
|
3 |
+
def build_symptom_index():
|
4 |
+
return create_symptom_index()
|
services/llm.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from llama_index.core import Settings
|
2 |
+
from llama_index.llms.llama_cpp import LlamaCPP
|
3 |
+
|
4 |
+
def build_llm(model_path, temperature=0.7, max_tokens=256, context_window=2048):
|
5 |
+
llm = LlamaCPP(
|
6 |
+
model_path=model_path,
|
7 |
+
temperature=temperature,
|
8 |
+
max_new_tokens=max_tokens,
|
9 |
+
context_window=context_window,
|
10 |
+
verbose=False
|
11 |
+
)
|
12 |
+
Settings.llm = llm
|
13 |
+
return llm
|
src/merge_kb.py
DELETED
@@ -1,15 +0,0 @@
|
|
1 |
-
# merge_kb.py
|
2 |
-
import json
|
3 |
-
|
4 |
-
with open("symptom_to_icd.json") as f:
|
5 |
-
symptom_to_icd = json.load(f)
|
6 |
-
with open("icd_to_description.json") as f:
|
7 |
-
icd_to_description = json.load(f)
|
8 |
-
|
9 |
-
kb = {
|
10 |
-
"symptom_to_icd": symptom_to_icd,
|
11 |
-
"icd_to_description": icd_to_description
|
12 |
-
}
|
13 |
-
|
14 |
-
with open("knowledge_base.json", "w", encoding="utf-8") as f:
|
15 |
-
json.dump(kb, f, indent=2, ensure_ascii=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/llama_index_utils.py
DELETED
@@ -1,49 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
-
from transformers import pipeline
|
4 |
-
from llama_index import SimpleDirectoryReader, GPTVectorStoreIndex, LLMPredictor, OpenAI
|
5 |
-
|
6 |
-
_index = None
|
7 |
-
|
8 |
-
def query_symptoms_tool(prompt_json: str):
|
9 |
-
# parse “prompt_json” into Python dict and call your existing query_symptoms()
|
10 |
-
data = json.loads(prompt_json)
|
11 |
-
return query_symptoms(data["raw_input"])
|
12 |
-
|
13 |
-
def get_llm_predictor():
|
14 |
-
"""
|
15 |
-
Return an LLMPredictor configured for local GPU (transformers) if USE_LOCAL_GPU=1,
|
16 |
-
otherwise uses OpenAI.
|
17 |
-
"""
|
18 |
-
if os.getenv("USE_LOCAL_GPU") == "1":
|
19 |
-
# Local GPU inference using GPT-2 as an example
|
20 |
-
local_pipe = pipeline("text-generation", model="gpt2", device=0)
|
21 |
-
return LLMPredictor(llm=local_pipe)
|
22 |
-
# Default to OpenAI provider
|
23 |
-
return LLMPredictor(llm=OpenAI(temperature=0))
|
24 |
-
|
25 |
-
|
26 |
-
def build_index(data_path="data/icd10cm_tabular_2025"): # noqa: C901
|
27 |
-
"""
|
28 |
-
Build (or retrieve cached) GPTVectorStoreIndex from ICD documents.
|
29 |
-
"""
|
30 |
-
global _index
|
31 |
-
if _index is None:
|
32 |
-
# Load documents from the ICD data directory
|
33 |
-
docs = SimpleDirectoryReader(data_path).load_data()
|
34 |
-
# Initialize the index with chosen LLM predictor
|
35 |
-
predictor = get_llm_predictor()
|
36 |
-
_index = GPTVectorStoreIndex.from_documents(docs, llm_predictor=predictor)
|
37 |
-
return _index
|
38 |
-
|
39 |
-
|
40 |
-
def query_symptoms(prompt: str, top_k: int = 5):
|
41 |
-
"""
|
42 |
-
Query the index for the given symptom prompt and return the result.
|
43 |
-
"""
|
44 |
-
idx = build_index()
|
45 |
-
# Create a query engine with the same predictor
|
46 |
-
predictor = get_llm_predictor()
|
47 |
-
query_engine = idx.as_query_engine(similarity_top_k=top_k, llm_predictor=predictor)
|
48 |
-
return query_engine.query(prompt)
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/model_configuration_utils.py
CHANGED
@@ -13,6 +13,7 @@ import torch
|
|
13 |
import torchaudio.transforms as T
|
14 |
from huggingface_hub import hf_hub_download
|
15 |
from typing import Optional
|
|
|
16 |
|
17 |
# Model options mapped to their requirements
|
18 |
MODEL_OPTIONS = {
|
|
|
13 |
import torchaudio.transforms as T
|
14 |
from huggingface_hub import hf_hub_download
|
15 |
from typing import Optional
|
16 |
+
from llama_index.llms.llama_cpp import LlamaCPP
|
17 |
|
18 |
# Model options mapped to their requirements
|
19 |
MODEL_OPTIONS = {
|