Spaces:
Running
Running
feat: Add local LLM support with ctransformers
Browse files- requirements.txt +8 -7
- src/app.py +28 -5
requirements.txt
CHANGED
@@ -3,20 +3,21 @@ gradio[mcp]
|
|
3 |
gradio
|
4 |
|
5 |
# core Llama-Index + HF model support
|
6 |
-
openai
|
7 |
torch
|
8 |
transformers[torch]
|
9 |
accelerate
|
10 |
-
llama-index>=0.9.0
|
11 |
llama-index-embeddings-huggingface
|
12 |
llama-index-llms-huggingface
|
13 |
|
|
|
|
|
|
|
|
|
|
|
14 |
# optional extras
|
15 |
langchain
|
16 |
langchain-community
|
17 |
-
sentence-transformers>=2.2.0
|
18 |
|
19 |
-
# system requirement for audio I/O
|
20 |
-
|
21 |
-
# • macOS (homebrew): brew install ffmpeg
|
22 |
-
# • Windows: download from https://ffmpeg.org/download.html
|
|
|
3 |
gradio
|
4 |
|
5 |
# core Llama-Index + HF model support
|
|
|
6 |
torch
|
7 |
transformers[torch]
|
8 |
accelerate
|
9 |
+
llama-index>=0.9.0
|
10 |
llama-index-embeddings-huggingface
|
11 |
llama-index-llms-huggingface
|
12 |
|
13 |
+
# Language models and embeddings
|
14 |
+
sentence-transformers>=2.2.0
|
15 |
+
ctransformers[cuda]>=0.2.24 # For local LLM support with CUDA
|
16 |
+
huggingface-hub # For model downloading
|
17 |
+
|
18 |
# optional extras
|
19 |
langchain
|
20 |
langchain-community
|
|
|
21 |
|
22 |
+
# system requirement for audio I/O
|
23 |
+
ffmpeg-python
|
|
|
|
src/app.py
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
-
from llama_index.core import Settings
|
4 |
-
from
|
5 |
-
from
|
|
|
|
|
6 |
import json
|
7 |
|
8 |
# Configure embeddings globally
|
@@ -10,8 +12,29 @@ Settings.embed_model = HuggingFaceEmbedding(
|
|
10 |
model_name="sentence-transformers/all-MiniLM-L6-v2"
|
11 |
)
|
12 |
|
13 |
-
#
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# --- System prompt ---
|
17 |
SYSTEM_PROMPT = """
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
+
from llama_index.core import Settings, ServiceContext
|
4 |
+
from llama_index_embeddings_huggingface import HuggingFaceEmbedding
|
5 |
+
from llama_index.llms import HuggingFaceLLM
|
6 |
+
from ctransformers import AutoModelForCausalLM
|
7 |
+
from parse_tabular import create_symptom_index
|
8 |
import json
|
9 |
|
10 |
# Configure embeddings globally
|
|
|
12 |
model_name="sentence-transformers/all-MiniLM-L6-v2"
|
13 |
)
|
14 |
|
15 |
+
# Configure local LLM with ctransformers
|
16 |
+
model = AutoModelForCausalLM.from_pretrained(
|
17 |
+
"TheBloke/Mistral-7B-Instruct-v0.1-GGUF",
|
18 |
+
model_file="mistral-7b-instruct-v0.1.Q4_K_M.gguf",
|
19 |
+
model_type="mistral",
|
20 |
+
gpu_layers=0 # Set > 0 if you have GPU support
|
21 |
+
)
|
22 |
+
|
23 |
+
llm = HuggingFaceLLM(
|
24 |
+
model=model,
|
25 |
+
context_window=2048,
|
26 |
+
max_new_tokens=256,
|
27 |
+
temperature=0.7
|
28 |
+
)
|
29 |
+
|
30 |
+
# Create service context with local LLM
|
31 |
+
service_context = ServiceContext.from_defaults(
|
32 |
+
llm=llm,
|
33 |
+
embed_model=Settings.embed_model
|
34 |
+
)
|
35 |
+
|
36 |
+
# Create the index at startup with local service context
|
37 |
+
symptom_index = create_symptom_index(service_context=service_context)
|
38 |
|
39 |
# --- System prompt ---
|
40 |
SYSTEM_PROMPT = """
|