Spaces:
Running
Running
doesn't seem to be running
Browse files- README.md +44 -0
- requirements.txt +2 -0
- src/app.py +108 -2
README.md
CHANGED
@@ -143,6 +143,50 @@ Judging will be conducted by representatives from sponsor partners and the Huggi
|
|
143 |
* **LlamaIndex Docs**: [https://llamaindex.ai/docs](https://llamaindex.ai/docs)
|
144 |
* **Mistral Model Hub**: [https://huggingface.co/mistral-ai/mistral-small](https://huggingface.co/mistral-ai/mistral-small)
|
145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
# About the Author
|
147 |
|
148 |
**Graham Paasch** is an AI realist passionate about the coming AI revolution.
|
|
|
143 |
* **LlamaIndex Docs**: [https://llamaindex.ai/docs](https://llamaindex.ai/docs)
|
144 |
* **Mistral Model Hub**: [https://huggingface.co/mistral-ai/mistral-small](https://huggingface.co/mistral-ai/mistral-small)
|
145 |
|
146 |
+
## Free Credits!
|
147 |
+
|
148 |
+
**Modal Labs Compute Credits** (\$250 per participant)
|
149 |
+
Monitor your GPU/CPU credit usage by logging into your Modal account and navigating to **Dashboard → Billing**:
|
150 |
+
[https://modal.com/dashboard](https://modal.com/dashboard) ([huggingface.co][1], [modal.com][2])
|
151 |
+
|
152 |
+
**Hugging Face API Credits** (\$25 per participant)
|
153 |
+
View your remaining credits and invoices on the Hugging Face billing dashboard:
|
154 |
+
[https://huggingface.co/settings/billing](https://huggingface.co/settings/billing) ([huggingface.co][1], [huggingface.co][3])
|
155 |
+
|
156 |
+
**Nebius AI Cloud Credits** (\$25 to first 3,300 participants)
|
157 |
+
Check your Nebius “Grants and promocodes” balance and detailed billing reports at:
|
158 |
+
[https://nebius.com/services/billing](https://nebius.com/services/billing) ([huggingface.co][1], [nebius.com][4])
|
159 |
+
|
160 |
+
**Anthropic Claude API Credits** (\$25 to first 1,000 participants)
|
161 |
+
Track your Claude usage and remaining credits in the Anthropic Console under **Settings → Billing**:
|
162 |
+
[https://console.anthropic.com/settings/billing](https://console.anthropic.com/settings/billing) ([huggingface.co][1])
|
163 |
+
|
164 |
+
**OpenAI API Credits** (\$25 to first 1,000 participants)
|
165 |
+
Monitor your API calls, token usage, and spend on the OpenAI Usage dashboard:
|
166 |
+
[https://platform.openai.com/account/usage](https://platform.openai.com/account/usage) ([huggingface.co][1], [platform.openai.com][5])
|
167 |
+
|
168 |
+
**Hyperbolic Labs API Credits** (\$15 to first 1,000 participants)
|
169 |
+
After logging in at the Hyperbolic AI Dashboard, go to **Settings → Billing** to view your credit balance and transaction history:
|
170 |
+
[https://app.hyperbolic.xyz](https://app.hyperbolic.xyz) ([huggingface.co][1], [docs.hyperbolic.xyz][6], [hyperbolic.xyz][7])
|
171 |
+
|
172 |
+
**Mistral AI API Credits** (\$25 to first 500 participants)
|
173 |
+
Sign in at the Mistral Console and navigate to **Workspace → Billing** to activate and monitor your credits:
|
174 |
+
[https://console.mistral.ai](https://console.mistral.ai) ([huggingface.co][1], [docs.mistral.ai][8])
|
175 |
+
|
176 |
+
**SambaNova AI Cloud Credits** (\$25 to first 250 participants)
|
177 |
+
Log in to SambaNova Cloud and check your **Billing & Usage** in the plans section:
|
178 |
+
[https://cloud.sambanova.ai/plans/billing](https://cloud.sambanova.ai/plans/billing) ([huggingface.co][1], [cloud.sambanova.ai][9])
|
179 |
+
|
180 |
+
[1]: https://huggingface.co/Agents-MCP-Hackathon "Agents-MCP-Hackathon (Agents-MCP-Hackathon)"
|
181 |
+
[2]: https://modal.com/ "Modal: High-performance AI infrastructure"
|
182 |
+
[3]: https://huggingface.co/docs/hub/billing?utm_source=chatgpt.com "Billing - Hugging Face"
|
183 |
+
[4]: https://nebius.com/services/billing?utm_source=chatgpt.com "Billing - Nebius"
|
184 |
+
[5]: https://platform.openai.com/account/usage?utm_source=chatgpt.com "Account Usage - OpenAI Platform"
|
185 |
+
[6]: https://docs.hyperbolic.xyz/docs/getting-started?utm_source=chatgpt.com "Hyperbolic API"
|
186 |
+
[7]: https://hyperbolic.xyz/blog/how-to-set-up-your-account-on-hyperbolic?utm_source=chatgpt.com "How to Set Up Your Account on Hyperbolic"
|
187 |
+
[8]: https://docs.mistral.ai/getting-started/quickstart/?utm_source=chatgpt.com "Quickstart | Mistral AI Large Language Models"
|
188 |
+
[9]: https://cloud.sambanova.ai/plans/billing?utm_source=chatgpt.com "Billing - SambaNova Cloud"
|
189 |
+
|
190 |
# About the Author
|
191 |
|
192 |
**Graham Paasch** is an AI realist passionate about the coming AI revolution.
|
requirements.txt
CHANGED
@@ -23,3 +23,5 @@ requests # For MCP endpoint testing
|
|
23 |
|
24 |
# system requirement for audio I/O
|
25 |
ffmpeg-python
|
|
|
|
|
|
23 |
|
24 |
# system requirement for audio I/O
|
25 |
ffmpeg-python
|
26 |
+
|
27 |
+
psutil # For system resource detection
|
src/app.py
CHANGED
@@ -1,10 +1,117 @@
|
|
1 |
import os
|
|
|
|
|
2 |
import gradio as gr
|
3 |
from llama_index.core import Settings, ServiceContext
|
4 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
5 |
from llama_index.llms.llama_cpp import LlamaCPP
|
6 |
from parse_tabular import create_symptom_index
|
7 |
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Configure embeddings globally
|
10 |
Settings.embed_model = HuggingFaceEmbedding(
|
@@ -13,8 +120,7 @@ Settings.embed_model = HuggingFaceEmbedding(
|
|
13 |
|
14 |
# Configure local LLM with LlamaCPP
|
15 |
llm = LlamaCPP(
|
16 |
-
|
17 |
-
model_path="models/mistral-7b-instruct-v0.1.Q4_K_M.gguf",
|
18 |
temperature=0.7,
|
19 |
max_new_tokens=256,
|
20 |
context_window=2048
|
|
|
1 |
import os
|
2 |
+
from pathlib import Path
|
3 |
+
from huggingface_hub import snapshot_download
|
4 |
import gradio as gr
|
5 |
from llama_index.core import Settings, ServiceContext
|
6 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
7 |
from llama_index.llms.llama_cpp import LlamaCPP
|
8 |
from parse_tabular import create_symptom_index
|
9 |
import json
|
10 |
+
import torch
|
11 |
+
import psutil
|
12 |
+
import subprocess
|
13 |
+
from typing import Tuple, Dict
|
14 |
+
|
15 |
+
# Model options mapped to their requirements
|
16 |
+
MODEL_OPTIONS = {
|
17 |
+
"tiny": {
|
18 |
+
"name": "TinyLlama-1.1B-Chat-v1.0.Q4_K_M.gguf",
|
19 |
+
"repo": "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF",
|
20 |
+
"vram_req": 2, # GB
|
21 |
+
"ram_req": 4 # GB
|
22 |
+
},
|
23 |
+
"small": {
|
24 |
+
"name": "phi-2.Q4_K_M.gguf",
|
25 |
+
"repo": "TheBloke/phi-2-GGUF",
|
26 |
+
"vram_req": 4,
|
27 |
+
"ram_req": 8
|
28 |
+
},
|
29 |
+
"medium": {
|
30 |
+
"name": "mistral-7b-instruct-v0.1.Q4_K_M.gguf",
|
31 |
+
"repo": "TheBloke/Mistral-7B-Instruct-v0.1-GGUF",
|
32 |
+
"vram_req": 6,
|
33 |
+
"ram_req": 16
|
34 |
+
}
|
35 |
+
}
|
36 |
+
|
37 |
+
def get_system_specs() -> Dict[str, float]:
|
38 |
+
"""Get system specifications."""
|
39 |
+
# Get RAM
|
40 |
+
ram_gb = psutil.virtual_memory().total / (1024**3)
|
41 |
+
|
42 |
+
# Get GPU info if available
|
43 |
+
gpu_vram_gb = 0
|
44 |
+
if torch.cuda.is_available():
|
45 |
+
try:
|
46 |
+
# Query GPU memory in bytes and convert to GB
|
47 |
+
gpu_vram_gb = torch.cuda.get_device_properties(0).total_memory / (1024**3)
|
48 |
+
except Exception as e:
|
49 |
+
print(f"Warning: Could not get GPU memory: {e}")
|
50 |
+
|
51 |
+
return {
|
52 |
+
"ram_gb": ram_gb,
|
53 |
+
"gpu_vram_gb": gpu_vram_gb
|
54 |
+
}
|
55 |
+
|
56 |
+
def select_best_model() -> Tuple[str, str]:
|
57 |
+
"""Select the best model based on system specifications."""
|
58 |
+
specs = get_system_specs()
|
59 |
+
print(f"\nSystem specifications:")
|
60 |
+
print(f"RAM: {specs['ram_gb']:.1f} GB")
|
61 |
+
print(f"GPU VRAM: {specs['gpu_vram_gb']:.1f} GB")
|
62 |
+
|
63 |
+
# Prioritize GPU if available
|
64 |
+
if specs['gpu_vram_gb'] >= 4: # You have 6GB, so this should work
|
65 |
+
model_tier = "small" # phi-2 should work well on RTX 2060
|
66 |
+
elif specs['ram_gb'] >= 8:
|
67 |
+
model_tier = "small"
|
68 |
+
else:
|
69 |
+
model_tier = "tiny"
|
70 |
+
|
71 |
+
selected = MODEL_OPTIONS[model_tier]
|
72 |
+
print(f"\nSelected model tier: {model_tier}")
|
73 |
+
print(f"Model: {selected['name']}")
|
74 |
+
|
75 |
+
return selected['name'], selected['repo']
|
76 |
+
|
77 |
+
# Set up model paths
|
78 |
+
MODEL_NAME, REPO_ID = select_best_model()
|
79 |
+
BASE_DIR = os.path.dirname(os.path.dirname(__file__))
|
80 |
+
MODEL_DIR = os.path.join(BASE_DIR, "models")
|
81 |
+
MODEL_PATH = os.path.join(MODEL_DIR, MODEL_NAME)
|
82 |
+
|
83 |
+
def ensure_model():
|
84 |
+
# Create models/ directory if missing
|
85 |
+
os.makedirs(MODEL_DIR, exist_ok=True)
|
86 |
+
|
87 |
+
# Download model if it's not already there
|
88 |
+
model_path = os.path.join(MODEL_DIR, MODEL_NAME)
|
89 |
+
if not os.path.isfile(model_path):
|
90 |
+
print(f"Downloading model from {REPO_ID}...")
|
91 |
+
# Download to a subdirectory to avoid file conflicts
|
92 |
+
download_dir = os.path.join(MODEL_DIR, "download_cache")
|
93 |
+
snapshot_download(
|
94 |
+
repo_id=REPO_ID,
|
95 |
+
repo_type="model",
|
96 |
+
local_dir=download_dir,
|
97 |
+
local_dir_use_symlinks=False
|
98 |
+
)
|
99 |
+
|
100 |
+
# Move the specific model file we want to models/
|
101 |
+
src_path = os.path.join(download_dir, MODEL_NAME)
|
102 |
+
if os.path.exists(src_path):
|
103 |
+
import shutil
|
104 |
+
shutil.move(src_path, model_path)
|
105 |
+
print(f"Moved model to {model_path}")
|
106 |
+
else:
|
107 |
+
raise ValueError(f"Downloaded files but couldn't find {MODEL_NAME}")
|
108 |
+
else:
|
109 |
+
print(f"Model already exists at {model_path}")
|
110 |
+
|
111 |
+
return model_path
|
112 |
+
|
113 |
+
# Ensure model is downloaded
|
114 |
+
model_path = ensure_model()
|
115 |
|
116 |
# Configure embeddings globally
|
117 |
Settings.embed_model = HuggingFaceEmbedding(
|
|
|
120 |
|
121 |
# Configure local LLM with LlamaCPP
|
122 |
llm = LlamaCPP(
|
123 |
+
model_path=model_path,
|
|
|
124 |
temperature=0.7,
|
125 |
max_new_tokens=256,
|
126 |
context_window=2048
|