import gradio as gr from utils.model_configuration_utils import select_best_model, ensure_model from services.llm import build_llm from utils.voice_input_utils import update_live_transcription, format_response_for_user from services.embeddings import configure_embeddings from services.indexing import create_symptom_index import torch import torchaudio import torchaudio.transforms as T import json import re # ========== Model setup ========== MODEL_NAME, REPO_ID = select_best_model() model_path = ensure_model() print(f"Using model: {MODEL_NAME} from {REPO_ID}", flush=True) print(f"Model path: {model_path}", flush=True) # ========== LLM initialization ========== print("\n<<< before build_llm: ", flush=True) llm = build_llm(model_path) print(">>> after build_llm", flush=True) # ========== Embeddings & index setup ========== print("\n<<< before configure_embeddings: ", flush=True) configure_embeddings() print(">>> after configure_embeddings", flush=True) print("Embeddings configured and ready", flush=True) print("\n<<< before create_symptom_index: ", flush=True) symptom_index = create_symptom_index() print(">>> after create_symptom_index", flush=True) print("Symptom index built successfully. Ready for queries.", flush=True) # ========== Prompt template ========== SYSTEM_PROMPT = ( "You are a medical assistant helping a user narrow down to the most likely ICD-10 code. " "At each turn, either ask one focused clarifying question (e.g. 'Is your cough dry or productive?') " "or if you have enough information, provide a final JSON with fields: {\"diagnoses\": [...], " "\"confidences\": [...], \"follow_up\": [...]}. Output must be valid JSON with no trailing commas. Your output MUST be strictly valid JSON, starting with '{' and ending with '}', with no extra text outside the JSON." ) # ========== Generator handler ========== def on_submit(symptoms_text, history): log = [] print("on_submit called", flush=True) # Placeholder msg = "🔍 Received input" log.append(msg) print(msg, flush=True) history = history + [{"role": "assistant", "content": "Processing your request..."}] yield history, None, "\n".join(log) # Validate if not symptoms_text.strip(): msg = "❌ No symptoms provided" log.append(msg) print(msg, flush=True) result = {"error": "No input provided", "diagnoses": [], "confidences": [], "follow_up": []} yield history, result, "\n".join(log) return # Clean input cleaned = symptoms_text.strip() msg = f"🔄 Cleaned text: {cleaned}" log.append(msg) print(msg, flush=True) yield history, None, "\n".join(log) # Semantic query msg = "🔍 Running semantic query" log.append(msg) print(msg, flush=True) yield history, None, "\n".join(log) qe = symptom_index.as_query_engine(retriever_kwargs={"similarity_top_k": 5}) hits = qe.query(cleaned) msg = f"🔍 Retrieved context entries" log.append(msg) print(msg, flush=True) history = history + [{"role": "assistant", "content": msg}] yield history, None, "\n".join(log) # Build prompt with minimal context context_list = [] for node in getattr(hits, 'source_nodes', [])[:3]: md = getattr(node, 'metadata', {}) or {} context_list.append(f"{md.get('code','')}: {md.get('description','')}") context_text = "\n".join(context_list) prompt = ( f"{SYSTEM_PROMPT}\n\n" f"User symptoms: '{cleaned}'\n\n" f"Relevant ICD-10 context:\n{context_text}\n\n" "Respond with valid JSON." ) msg = "✏️ Prompt built" log.append(msg) print(msg, flush=True) yield history, None, "\n".join(log) # Call LLM # Use constrained decoding to enforce JSON-only output response = llm.complete(prompt, stop=["}"]) # stop after closing brace raw = getattr(response, 'text', str(response)) # Truncate extra content after the final JSON object if not raw.strip().endswith('}'): end_idx = raw.rfind('}') if end_idx != -1: raw = raw[:end_idx+1] msg = "📡 Raw LLM response received" log.append(msg) print(msg, flush=True) yield history, None, "\n".join(log) # Parse JSON cleaned_raw = re.sub(r",\s*([}\]])", r"\1", raw) try: parsed = json.loads(cleaned_raw) msg = "✅ JSON parsed" except Exception as e: msg = f"❌ JSON parse error: {e}" parsed = {"error": str(e), "raw": raw} log.append(msg) print(msg, flush=True) yield history, parsed, "\n".join(log) # Final assistant message assistant_msg = format_response_for_user(parsed) history = history + [{"role": "assistant", "content": assistant_msg}] msg = "✅ Final response appended" log.append(msg) print(msg, flush=True) yield history, parsed, "\n".join(log) # ========== Gradio UI ========== with gr.Blocks(theme="default") as demo: gr.Markdown(""" # 🏥 Medical Symptom to ICD-10 Code Assistant ## Describe symptoms by typing or speaking. Debug log updates live below. """ ) with gr.Row(): with gr.Column(scale=2): text_input = gr.Textbox( label="Type your symptoms", placeholder="I'm feeling under the weather...", lines=3 ) microphone = gr.Audio( sources=["microphone"], streaming=True, type="numpy", label="Or speak your symptoms..." ) submit_btn = gr.Button("Submit", variant="primary") clear_btn = gr.Button("Clear Chat", variant="secondary") chatbot = gr.Chatbot( label="Medical Consultation", height=500, type="messages" ) json_output = gr.JSON(label="Diagnosis JSON") debug_box = gr.Textbox(label="Debug log", lines=10) with gr.Column(scale=1): with gr.Accordion("API Keys (optional)", open=False): api_key = gr.Textbox(label="OpenAI Key", type="password") model_selector = gr.Dropdown( choices=["OpenAI","Modal","Anthropic","MistralAI","Nebius","Hyperbolic","SambaNova"], value="OpenAI", label="Model Provider" ) temperature = gr.Slider(minimum=0, maximum=1, value=0.7, label="Temperature") # Bindings submit_btn.click( fn=on_submit, inputs=[text_input, chatbot], outputs=[chatbot, json_output, debug_box], queue=True ) clear_btn.click( lambda: (None, {}, ""), None, [chatbot, json_output, debug_box], queue=False ) microphone.stream( fn=update_live_transcription, inputs=[microphone], outputs=[text_input], queue=True ) # --- About the Creator --- gr.Markdown(""" --- ### 👋 About the Creator Hi! I'm Graham Paasch, an experienced technology professional! 🎥 **Check out my YouTube channel** for more tech content: [Subscribe to my channel](https://www.youtube.com/channel/UCg3oUjrSYcqsL9rGk1g_lPQ) 💼 **Looking for a skilled developer?** I'm currently seeking new opportunities! View my experience and connect on [LinkedIn](https://www.linkedin.com/in/grahampaasch/) ⭐ If you found this tool helpful, please consider: - Subscribing to my YouTube channel - Connecting on LinkedIn - Sharing this tool with others in healthcare tech """ ) if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860, share=True, show_api=True, mcp_server=True)