File size: 16,669 Bytes
920dfd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
import gradio as gr
from PIL import Image
import threading
import time
import os
import shutil
from pathlib import Path
from huggingface_hub import hf_hub_download
from run_backend import main as run_backend_main, analysis_results, search_results
# Files Prequisites
def prepare_dataset_files():
# Create local directory
os.makedirs("data", exist_ok=True)
# Check current directory
print(f"Current working directory: {os.getcwd()}")
# Define list of required files
files_to_download = [
"aws.mp4", "aws.png", "aws.wav",
"aws_bundesliga.mp4", "aws_bundesliga.png", "aws_bundesliga.wav",
"summit_sungwoo.mp4", "summit_sungwoo.png", "summit_sungwoo.wav"
]
repo_id = "cloudplayer/hackathon_data"
repo_type = "dataset"
try:
for file_name in files_to_download:
local_path = os.path.join("data", file_name)
# Skip if file already exists
if os.path.exists(local_path):
print(f"File already exists, skipping download: {local_path}")
continue
# Download file from Hub
downloaded_path = hf_hub_download(
repo_id=repo_id,
filename=file_name,
repo_type=repo_type,
local_dir="data",
local_dir_use_symlinks=False # Download actual file
)
print(f"Downloaded file: {downloaded_path}")
# Check downloaded files
print(f"Files in data directory: {os.listdir('data')}")
return True
except Exception as e:
print(f"Error downloading files: {e}")
import traceback
traceback.print_exc()
return False
prepare_dataset_files()
# Set the directory path based on the current file
BASE_DIR = "."
DATA_DIR = "./data"
TRANSCRIPT_FILE = "./transcribe_texts"
# Analysis Status Management
analysis_running = False
analysis_thread = None
last_update_time = 0
def read_transcript():
"""Read Transcript File"""
try:
with open(TRANSCRIPT_FILE, "r", encoding="utf-8") as f:
return f.read()
except Exception as e:
return "Loading Script..."
def get_current_content():
"""Get Current Content"""
global last_update_time
if not analysis_running:
return "", "", "", "", ""
try:
current_time = time.time()
if current_time - last_update_time < 1.0: # If less than 1 second, do not update
return None
last_update_time = current_time
transcript = read_transcript()
current_analysis = analysis_results[-1] if analysis_results else ""
current_search = search_results[-1] if search_results else ""
# 이전 결과 업데이트
if len(analysis_results) > 1:
prev_analysis_text = "\n\n".join([
f"#### Summary #{i+1}\n{result}"
for i, result in enumerate(analysis_results[:-1])
])
else:
prev_analysis_text = "No previous analysis results."
if len(search_results) > 1:
prev_search_text = "\n\n".join([
f"#### Search Result #{i+1}\n{result}"
for i, result in enumerate(search_results[:-1])
])
else:
prev_search_text = "No previous search results."
return transcript, current_analysis, current_search, prev_analysis_text, prev_search_text
except Exception as e:
print(f"Error occurred while updating content: {e}")
return None
def start_analysis(party, video_path):
"""Start Analysis"""
global analysis_running, analysis_thread, last_update_time
if not analysis_running:
analysis_running = True
last_update_time = time.time()
# Initialize Transcript File
try:
with open(TRANSCRIPT_FILE, "w", encoding="utf-8") as f:
f.write("")
except Exception as e:
pass
# Start Analysis Thread
analysis_thread = threading.Thread(target=run_backend_main, args=(party,))
analysis_thread.daemon = True
analysis_thread.start()
return gr.Markdown(f"# {party} Analysis"), gr.update(value=video_path)
def create_ui():
"""Create UI"""
with gr.Blocks(title="Real-Time AI Video Summarization Service", theme=gr.themes.Soft()) as demo:
# State Variables
party = gr.State("")
container_visible = gr.State(True)
selection_visible = gr.State(True)
auto_update = gr.State(False) # Auto Update State
update_trigger = gr.State(0) # Update Trigger
# Add Timer Component (10 second interval)
timer = gr.Timer(10.0, active=False)
# Add User Guide at the top
gr.Markdown("""
## How to Use:
1. Wait until the thumbnail images for each video fully appear.
2. Select the video title located just below the thumbnail image, then click the video play button in "Sample Video".
(You can select any video, but we recommend choosing "Data, AI & Soccer How Bundesliga is transforming the fan experience" due to language considerations.)
3. When you press the Auto Update button at the bottom, the Real-Time Script, AI Summary Result, and Keyword Search Result will be updated every 10 seconds in real-time according to the agent workflow.
* The Real-Time Script is the execution result of the Speech Recognition Agent that converts video content to text using AWS Transcribe.
* The AI Summary Result is the execution result of the Summarization Agent.
* The Keyword Search Result is the execution result of the Knowledge Retrieval Agent.
4. By pressing the Refresh button, you can immediately check the results up to that point.
""")
with gr.Column(visible=lambda: container_visible.value) as aws_container:
gr.Markdown("### AWS Lecture - Select the video to perform AI summarization")
with gr.Row(equal_height=True):
with gr.Column(scale=1, min_width=400):
aws_image_2 = gr.Image(
value=str(DATA_DIR + "/aws_bundesliga.png"),
label="aws_bundesliga",
show_label=True,
height=300, # Fixed Image Height
width=400, # Fixed Image Width
elem_id="aws_bundesliga"
)
aws_button_2 = gr.Button(
"Data, AI & Soccer How Bundesliga is transforming the fan experience",
variant="primary",
size="lg",
elem_id="aws_button_2"
)
with gr.Column(scale=1, min_width=400):
aws_image_1 = gr.Image(
value=str(DATA_DIR + "/summit_sungwoo.png"),
label="summit_sungwoo",
show_label=True,
height=300, # Fixed Image Height
width=400, # Fixed Image Width
elem_id="summit_sungwoo"
)
aws_button_1 = gr.Button(
"The Future of AI is Here! Agents for Amazon Bedrock",
variant="primary",
size="lg",
elem_id="aws_button_1"
)
with gr.Column(scale=1, min_width=400):
aws_image_3 = gr.Image(
value=str(DATA_DIR + "/aws.png"),
label="aws",
show_label=True,
height=300,
width=400,
elem_id="aws"
)
aws_button_3 = gr.Button(
"Discover the New AWS Services with AWS Heroes in 2024",
variant="primary",
size="lg",
elem_id="aws_button_3"
)
# Add CSS Style
gr.Markdown("""
<style>
#summit_sungwoo, #aws_bundesliga, #aws{
object-fit: contain !important;
background-color: #f8f9fa;
border-radius: 10px;
padding: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
#aws_button_1, #aws_button_2, #aws_button_3 {
margin-top: 20px;
width: 100%;
height: 50px;
font-size: 1.2em;
font-weight: bold;
border-radius: 8px;
transition: all 0.3s ease;
}
#aws_button_1:hover, #aws_button_2:hover, #aws_button_3:hover {
transform: translateY(-2px);
box-shadow: 0 4px 8px rgba(0,0,0,0.2);
}
</style>
""")
# Analysis Container (Initially Hidden)
with gr.Column(visible=lambda: selection_visible.value) as analysis_container:
title = gr.Markdown("# Video Analysis")
with gr.Row():
# Left: Video
with gr.Column(scale=3):
video = gr.Video(
label="Sample Video",
show_label=True,
interactive=False,
value=str(DATA_DIR + "/summit_sungwoo.mp4"), # Default Value
elem_id="debate_video"
)
# Right: Analysis Results Tabs
with gr.Column(scale=2):
with gr.Tabs() as tabs:
with gr.TabItem("Real-Time Script"):
transcript = gr.Textbox(
label="Real-Time Script",
show_label=True,
lines=20,
interactive=False,
value="Loading Script...", # Initial Value
elem_id="transcript_box"
)
with gr.TabItem("AI Summary Result"):
analysis = gr.Markdown(
value="Loading Analysis Result...", # Initial Value
elem_id="analysis_result"
)
with gr.Accordion("View Previous Analysis Results", open=False):
prev_analysis = gr.Markdown(
value="No previous analysis results.", # Initial Value
elem_id="prev_analysis"
)
with gr.TabItem("Keyword Search Result"):
search = gr.Markdown(
value="Loading Search Result...", # Initial Value
elem_id="search_result"
)
with gr.Accordion("View Previous Keyword Search Results", open=False):
prev_search = gr.Markdown(
value="No previous search results.", # Initial Value
elem_id="prev_search"
)
# Show Status
status = gr.Markdown("Analysis is in progress...")
# Update Button
with gr.Row():
update_button = gr.Button(
"Refresh",
variant="secondary",
size="lg",
elem_id="update_button"
)
auto_update_button = gr.Button(
"Auto Update",
variant="secondary",
size="lg",
elem_id="auto_update_button"
)
# Add CSS Style for Analysis Page
gr.Markdown("""
<style>
#debate_video {
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
#transcript_box {
font-family: 'Noto Sans KR', sans-serif;
line-height: 1.6;
}
#analysis_result, #search_result, #prev_analysis, #prev_search {
font-family: 'Noto Sans KR', sans-serif;
line-height: 1.8;
padding: 15px;
background-color: #f8f9fa;
border-radius: 8px;
}
#update_button, #auto_update_button {
margin: 10px;
transition: all 0.3s ease;
}
#update_button:hover, #auto_update_button:hover {
transform: translateY(-2px);
box-shadow: 0 4px 8px rgba(0,0,0,0.2);
}
</style>
""")
def on_aws_select(content_name, video_file):
"""AWS Lecture Selection Processing"""
party.value = content_name
video_path = str(DATA_DIR + f"/{video_file}")
container_visible.value = False
selection_visible.value = True
return start_analysis(content_name, video_path)
def trigger_update():
"""Increase Update Trigger"""
update_trigger.value += 1
return update_trigger.value
def update_content(trigger):
"""Update Content"""
if not analysis_running:
return (
"Analysis has not started.",
"No analysis results.",
"No search results.",
"No previous analysis results.",
"No previous search results.",
trigger
)
result = get_current_content()
if result is None:
return (
transcript.value,
analysis.value,
search.value,
prev_analysis.value,
prev_search.value,
trigger
)
return (*result, trigger)
def toggle_auto_update():
"""Toggle Auto Update"""
auto_update.value = not auto_update.value
if auto_update.value:
# Start Auto Update - Increase Trigger
trigger_update()
return "Auto Update has started. It will be updated every 10 seconds.", gr.Timer(active=True)
else:
return "Auto Update has stopped.", gr.Timer(active=False)
aws_button_1.click(
fn=lambda: on_aws_select("Agents for Amazon Bedrock", "summit_sungwoo.mp4"),
outputs=[title, video]
)
aws_button_2.click(
fn=lambda: on_aws_select("Bundesliga Fan Experience", "aws_bundesliga.mp4"),
outputs=[title, video]
)
aws_button_3.click(
fn=lambda: on_aws_select("AWS_2024_recap", "aws.mp4"),
outputs=[title, video]
)
# Update Button Click Event
update_button.click(
fn=trigger_update,
outputs=[update_trigger]
)
# Auto Update Button Click Event
auto_update_button.click(
fn=toggle_auto_update,
outputs=[status, timer]
)
# Timer Tick Event
timer.tick(
fn=lambda: trigger_update() if auto_update.value else None,
outputs=[update_trigger]
)
# Update Trigger Change Event
update_trigger.change(
fn=update_content,
inputs=[update_trigger],
outputs=[transcript, analysis, search, prev_analysis, prev_search, update_trigger]
)
# Initial Load - Set Update Trigger
demo.load(
fn=lambda: (update_trigger.value + 1),
outputs=[update_trigger]
)
return demo
if __name__ == "__main__":
demo = create_ui()
demo.queue() # Enable Queue
demo.launch(share=True) |