Spaces:
Sleeping
Sleeping
import xml.etree.ElementTree as ET | |
import re | |
import numpy as np | |
from PIL import Image, ImageDraw, ImageFont | |
from io import BytesIO | |
import base64 | |
# ========================= | |
# ===== Grid related ====== | |
# ========================= | |
def create_grid_image(res=50, cell_size=12, header_size=12): | |
# Define the size of the grid | |
rows = res | |
cols = res | |
img_width = (cols + 1) * cell_size | |
img_height = (rows + 1) * cell_size | |
# Create a new image with a white background | |
img = Image.new('RGB', (img_width, img_height), 'white') | |
draw = ImageDraw.Draw(img) | |
# Load a font | |
try: | |
font = ImageFont.truetype("arial.ttf", header_size*0.85) | |
except IOError: | |
font = ImageFont.load_default() | |
# Draw the headers | |
for j in range(cols): | |
# Draw column header (letters) | |
text = str(j +1) | |
text_bbox = draw.textbbox((0, 0), text, font=font) | |
text_width = text_bbox[2] - text_bbox[0] | |
text_height = text_bbox[3] - text_bbox[1] | |
text_x = (j + 1) * cell_size + (cell_size - text_width) / 2 | |
text_y = img_height - cell_size # - (cell_size - text_height) / 2 | |
draw.text((text_x, text_y), text, fill="black", font=font) | |
for i in range(rows): | |
# Draw row header (numbers) | |
text = str(rows - i) | |
text_bbox = draw.textbbox((0, 0), text, font=font) | |
text_width = text_bbox[2] - text_bbox[0] | |
text_height = text_bbox[3] - text_bbox[1] | |
text_x = (cell_size - text_width) / 2 | |
text_y = i * cell_size + (cell_size - text_height) / 2 - 0.2*text_height | |
draw.text((text_x, text_y), text, fill="black", font=font) | |
# Draw the grid | |
i = 1 | |
draw.line([(i * cell_size, 0), (i * cell_size, img_height)], fill="black") | |
# Horizontal lines | |
draw.line([(0, img_height - cell_size), (img_width, img_height - cell_size)], fill="black") | |
positions={} | |
# Draw the grid | |
for i in range(rows)[::-1]: | |
for j in range(cols): | |
# Draw cell border | |
if j == 0: | |
draw.rectangle([(j + 0) * cell_size, (i + 0) * cell_size, (j + 1) * cell_size, (i + 1) * cell_size], outline="black") | |
if i == rows - 1: | |
draw.rectangle([(j + 0) * cell_size, (i + 1) * cell_size, (j + 1) * cell_size, (i + 2) * cell_size], outline="black") | |
# Calculate the position of the text | |
text = f"x{j + 1}y{i + 1}" | |
text_bbox = draw.textbbox((0, 0), text, font=font) | |
text_width = text_bbox[2] - text_bbox[0] | |
text_height = text_bbox[3] - text_bbox[1] | |
text_x = (j + 1) * cell_size + (cell_size - text_width) / 2 | |
text_y = (i + 1) * cell_size + (cell_size - text_height) / 2 | |
center_y = int(img_height - cell_size - (i * cell_size) - cell_size / 2) | |
center_x = int(j * cell_size + cell_size / 2 + cell_size) | |
positions[text] = (center_x, center_y) | |
return img, positions | |
def cells_to_pixels(res=50, cell_size=12, header_size=12): | |
# Define the size of the grid | |
rows = res | |
cols = res | |
img_width = (cols + 1) * cell_size | |
img_height = (rows + 1) * cell_size | |
positions={} | |
# Draw the grid | |
for i in range(rows)[::-1]: | |
for j in range(cols): | |
# Calculate the position of the text | |
text = f"x{j + 1}y{i + 1}" | |
center_y = int(img_height - cell_size - (i * cell_size) - cell_size / 2) | |
center_x = int(j * cell_size + cell_size / 2 + cell_size) | |
positions[text] = (center_x, center_y) | |
return positions | |
# ========================= | |
# ===== LLM related ======= | |
# ========================= | |
def image_to_str(image: Image): | |
buffer = BytesIO() | |
image.save(buffer, format="JPEG") | |
buffer.seek(0) | |
image = base64.b64encode(buffer.read()).decode('utf-8') | |
return image | |
# ================================= | |
# ===== SVG process related ======= | |
# ================================= | |
def bezier_point(P, t): | |
"""Calculate a point on the Bézier curve for a given t.""" | |
return (1-t)**3 * P[0] + 3*(1-t)**2 * t * P[1] + 3*(1-t) * t**2 * P[2] + t**3 * P[3] | |
def estimate_bezier_control_points_helper(sampled_points, t_values): | |
n = len(sampled_points) | |
if n == 1: | |
# Linear interpolation: the control points are simply the two points | |
P0 = np.array(sampled_points[0]) | |
P1 = np.array(sampled_points[0]).astype(np.float64) + 0.0001 | |
return np.array([P0, P1]) | |
if n == 2: | |
# Linear interpolation: the control points are simply the two points | |
P0 = np.array(sampled_points[0]) | |
P1 = np.array(sampled_points[1]) | |
return np.array([P0, P1]) | |
if n > len(t_values): | |
t_values = np.linespace(0,1,n) | |
elif n == 3: | |
# Quadratic Bézier curve: we need to solve for three control points | |
A = np.zeros((n, 3)) | |
for i in range(n): | |
t = t_values[i] | |
A[i, 0] = (1-t)**2 | |
A[i, 1] = 2*(1-t)*t | |
A[i, 2] = t**2 | |
# Points (flattened) | |
B = np.array(sampled_points).reshape(-1, 2) # Assuming 2D points | |
# Solve the system (least squares) | |
P = np.linalg.lstsq(A, B, rcond=None)[0] | |
return P | |
# Matrix A | |
A = np.zeros((n, 4)) | |
for i in range(n): | |
t = t_values[i] | |
A[i, 0] = (1-t)**3 | |
A[i, 1] = 3*(1-t)**2 * t | |
A[i, 2] = 3*(1-t) * t**2 | |
A[i, 3] = t**3 | |
# Points (flattened) | |
B = np.array(sampled_points).reshape(-1, 2) # Assuming 2D points | |
# Solve the system (least squares) | |
P = np.linalg.lstsq(A, B, rcond=None)[0] | |
return P | |
def estimate_bezier_control_points( sampled_points, t_values): | |
if len(sampled_points) != len(t_values): | |
t_values = np.linspace(0,1, len(sampled_points)) | |
P = estimate_bezier_control_points_helper(sampled_points, t_values) | |
if len(sampled_points) > 4: | |
# Calculate the mean squared error between sampled points and the fitted Bézier curve. | |
errors = [] | |
for i, t in enumerate(t_values): | |
B_t = bezier_point(P, t) | |
error = np.linalg.norm(B_t - sampled_points[i]) | |
errors.append(error) | |
error = np.mean(errors) | |
if error > 5 and len(sampled_points) >= 7: | |
mid = len(sampled_points) // 2 | |
left_sampled_points = sampled_points[:mid+1] | |
right_sampled_points = sampled_points[mid:] | |
left_t_values = np.array(t_values[:mid+1]) | |
right_t_values = np.array(t_values[mid:]) | |
if len(left_sampled_points) == 3: # this applies in case we have 7 points | |
left_sampled_points.append(right_sampled_points[0]) | |
left_t_values.append(right_t_values[0]) | |
# Normalize t_values for each segment | |
left_t_values = (left_t_values - left_t_values[0]) / (left_t_values[-1] - left_t_values[0]) | |
right_t_values = (right_t_values - right_t_values[0]) / (right_t_values[-1] - right_t_values[0]) | |
# Recursively fit curves to each segment | |
P_left = estimate_bezier_control_points_helper(left_sampled_points, left_t_values) | |
P_right = estimate_bezier_control_points_helper(right_sampled_points, right_t_values) | |
P_right[0] = P_left[-1] # I added this to have the long strokes look more connected | |
return [P_left, P_right] | |
return [P] | |
def get_control_points(strokes_all, t_values_all, cells_to_pixels_map): | |
net_points = [] | |
for j in range(len(strokes_all)): | |
sampled_cells = strokes_all[j] | |
t_values = t_values_all[j] | |
sampled_points = [] | |
for cell in sampled_cells: | |
y,x = cells_to_pixels_map[cell] | |
sampled_points.append([y,x]) | |
points_lst = estimate_bezier_control_points(sampled_points, t_values) | |
net_points.append(points_lst) | |
return net_points | |
def get_control_points_single_stroke(strokes_all, t_values_all, cells_to_pixels_map): | |
sampled_points = [] | |
for cell in strokes_all: | |
y,x = cells_to_pixels_map[cell] | |
sampled_points.append([y,x]) | |
points_lst = estimate_bezier_control_points(sampled_points, t_values_all) | |
return points_lst | |
def create_svg_path_data(control_points): | |
# Start the path with 'M' for the first point | |
# print("control_points", control_points[0]) | |
path_data = 'M ' + np.array2string(np.array(control_points[0]), formatter={'float_kind':lambda x: "%.2f" % x}, separator=' ')[1:-1] | |
# Add 'L' for each subsequent point | |
# check if point | |
if len(control_points) == 1: | |
path_data += ' ' | |
# check if line | |
elif len(control_points) == 2: | |
path_data += ' L ' | |
# check if quadratic | |
elif len(control_points) == 3: | |
path_data += ' Q ' | |
# check if cubic | |
elif len(control_points) == 4: | |
path_data += ' C ' | |
# path_data += ' C ' | |
for point in control_points[1:]: | |
# print("pt", point[0], point[1]) | |
path_data += str(point[0]) + " " + str(point[1]) + " " | |
# Return the complete 'd' attribute string | |
return path_data | |
def format_svg(all_control_points, dim, stroke_width): | |
svg_width, svg_height = dim | |
sketch_text_svg = f"""<svg width="{svg_width}" height="{svg_height}" xmlns="http://www.w3.org/2000/svg">\n""" | |
for i, path in enumerate(all_control_points): | |
gropu_text = f"""<g id="s{i + 1}" stroke="black" stroke-width="{stroke_width}" fill="none" stroke-linecap="round">\n""" | |
for sub_path_cp in path: #sometimes 1 or 2 | |
path_data = create_svg_path_data(sub_path_cp) | |
gropu_text += f"""<path d="{path_data}"/>\n""" | |
gropu_text += "</g>\n" | |
sketch_text_svg += gropu_text | |
sketch_text_svg += "</svg>" | |
return sketch_text_svg | |
def format_svg_single_stroke(group, dim, stroke_width, stroke_counter, stroke_color="black"): | |
sketch_text_svg = "" | |
gropu_text = f"""<g id="s{stroke_counter}" stroke="{stroke_color}" stroke-width="{stroke_width}" fill="none" stroke-linecap="round">\n""" | |
for sub_path_cp in group: | |
path_data = create_svg_path_data(sub_path_cp) | |
gropu_text += f"""<path d="{path_data}"/>\n""" | |
gropu_text += "</g>\n" | |
sketch_text_svg += gropu_text | |
return sketch_text_svg | |
# Note that this parse only the *first* part in the text in which you have the <strokes> </strokes> tags. | |
def parse_xml_string(llm_output, res): | |
strokes_start_marker = "<strokes>" | |
strokes_end_marker = "</strokes>" | |
# Find the start and end indices of the JSON string | |
start_index = llm_output.find(strokes_start_marker) | |
if start_index != -1: | |
# start_index += len(strokes_start_marker) # Move past the marker | |
end_index = llm_output.find(strokes_end_marker, start_index) | |
else: | |
return None # XML markers not found | |
if end_index == -1: | |
return None # End marker not found | |
# Extract the JSON string | |
strokes_str = llm_output[start_index:end_index + len(strokes_end_marker)].strip()#[:-1] | |
xml_str = f"<wrap>{strokes_str}</wrap>" | |
# Parse the XML string | |
root = ET.fromstring(xml_str) | |
# Initialize lists to hold strokes and t_values | |
strokes_list = "[\n" | |
t_values_list = "[\n" | |
# Iterate over all the strokes | |
for stroke in root.find('strokes'): | |
# Extract points and clean them up | |
points_text = stroke.find('points').text | |
# Extract t_values and convert them to float | |
t_values_text = stroke.find('t_values').text | |
# Append to the lists | |
strokes_list += f"[{points_text}],\n" | |
t_values_list += f"[{t_values_text}],\n" | |
strokes_list = re.sub(r'\d+', lambda x: str(min(int(x.group()), res)), strokes_list) | |
strokes_list = re.sub(r'\d+', lambda x: str(max(int(x.group()), 1)), strokes_list) | |
strokes_list += "]" | |
t_values_list += "]" | |
return strokes_list, t_values_list | |
def parse_xml_string_single_stroke(llm_output, res, stroke_counter): | |
strokes_start_marker = f"<s{stroke_counter}>" | |
strokes_end_marker = f"</s{stroke_counter}>" | |
# Find the start and end indices of the JSON string | |
start_index = llm_output.find(strokes_start_marker) | |
if start_index != -1: | |
# start_index += len(strokes_start_marker) # Move past the marker | |
end_index = llm_output.find(strokes_end_marker, start_index) | |
else: | |
return None # XML markers not found | |
if end_index == -1: | |
return None # End marker not found | |
# Extract the JSON string | |
strokes_str = llm_output[start_index:end_index + len(strokes_end_marker)].strip()#[:-1] | |
xml_str = f"<wrap>{strokes_str}</wrap>" | |
# Parse the XML string | |
root = ET.fromstring(xml_str) | |
# Iterate over all the strokes | |
stroke = root.find(f"s{stroke_counter}") | |
points_text = stroke.find('points').text | |
# Extract t_values and convert them to float | |
t_values_text = stroke.find('t_values').text | |
# Append to the lists | |
strokes_list = f"[{points_text}]" | |
t_values_list = f"[{t_values_text}]" | |
strokes_list = re.sub(r'\d+', lambda x: str(min(int(x.group()), res)), strokes_list) | |
strokes_list = re.sub(r'\d+', lambda x: str(max(int(x.group()), 1)), strokes_list) | |
return strokes_list, t_values_list | |
# ===================================== | |
# ===== Collaborative Sketching ======= | |
# ===================================== | |
def get_cur_stroke_text(stroke_counter, llm_output): | |
start_marker = f"<s{stroke_counter}>" | |
end_marker = f"</s{stroke_counter}>" | |
# Find the start and end indices of the JSON string | |
start_index = llm_output.find(start_marker) | |
if start_index != -1: | |
# start_index += len(strokes_start_marker) # Move past the marker | |
end_index = llm_output.find(end_marker, start_index) | |
else: | |
return "" # XML markers not found | |
if end_index == -1: | |
return "" # End marker not found | |
# Extract the JSON string | |
strokes_str = llm_output[start_index:end_index + len(end_marker)].strip()#[:-1] | |
return strokes_str | |