Spaces:
Sleeping
Sleeping
File size: 34,118 Bytes
09deb7f aea7790 fe311a3 aea7790 01d71af 09deb7f 01d71af 024938b 608f091 8c36706 4b4bb02 fe311a3 01d71af fe311a3 01d71af 024938b 01d71af fe311a3 024938b 01d71af 024938b aea7790 01d71af aea7790 01d71af aea7790 01d71af aea7790 01d71af aea7790 01d71af aea7790 01d71af aea7790 01d71af aea7790 01d71af 024938b aea7790 024938b 01d71af aea7790 09deb7f aea7790 024938b fe311a3 024938b 01d71af 024938b 01d71af 024938b 01d71af 024938b 01d71af fe311a3 01d71af 024938b 01d71af 024938b fe311a3 3c04518 fe311a3 aea7790 fe311a3 7d1874f fe311a3 7d1874f fe311a3 7d1874f dc4bdcf 024938b dc4bdcf 7d1874f dc4bdcf 024938b fe311a3 01d71af fe311a3 01d71af fe311a3 01d71af fe311a3 aea7790 fe311a3 aea7790 dc4bdcf aea7790 dc4bdcf fe311a3 dc4bdcf fe311a3 dc4bdcf fe311a3 dc4bdcf fe311a3 dc4bdcf fe311a3 dc4bdcf fe311a3 dc4bdcf fe311a3 dc4bdcf fe311a3 dc4bdcf fe311a3 dc4bdcf fe311a3 dc4bdcf fe311a3 dc4bdcf fe311a3 dc4bdcf 024938b dc4bdcf aea7790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 |
import gradio as gr
import pandas as pd
from utils.ledger_analysis import handle_csv_upload, analyze_ledger_data
from typing import Dict
import io
import uuid
from datetime import datetime
# Setup Modal client
try:
import os
import modal
# Modal automatically reads MODAL_TOKEN_ID and MODAL_TOKEN_SECRET from environment
modal_app = modal.App.lookup("smartledger", create_if_missing=False)
modal_create_index = modal.Function.from_name("smartledger", "create_index")
modal_query_data = modal.Function.from_name("smartledger", "query_data")
modal_check_health = modal.Function.from_name("smartledger", "check_health")
modal_list_sessions = modal.Function.from_name("smartledger", "list_sessions")
modal_process_image = modal.Function.from_name("smartledger", "process_image_transactions")
modal_reconcile = modal.Function.from_name("smartledger", "reconcile_transactions")
modal_available = True
print("β
Using Modal functions with AI models and image processing")
except Exception as e:
print(f"β οΈ Modal not available: {e}")
modal_available = False
modal_create_index = None
modal_query_data = None
modal_check_health = None
modal_list_sessions = None
modal_process_image = None
modal_reconcile = None
# Global session management
current_session_id = None
def analyze_ledger_from_csv(csv_content: str) -> Dict:
"""
Analyze a ledger CSV using Modal serverless functions for LLM-powered insights.
This function processes CSV data and creates an intelligent financial index using
Modal's serverless compute with embedding models and LLMs.
Args:
csv_content: CSV content as string with required columns: date,vendor,amount
Optional columns: category,description
Returns:
Dictionary containing analysis results, statistics, and LLM indexing status
"""
global current_session_id
try:
# Parse CSV content for basic analysis
df = pd.read_csv(io.StringIO(csv_content))
# Process the data
df['amount'] = pd.to_numeric(df['amount'], errors='coerce')
df['date'] = pd.to_datetime(df['date'], errors='coerce')
# Handle different column names for vendor/description
if 'vendor' not in df.columns and 'description' in df.columns:
df['vendor'] = df['description']
elif 'vendor' not in df.columns and 'description' not in df.columns:
df['vendor'] = 'Unknown'
df = df.dropna(subset=['date', 'amount'])
if df.empty:
return {"error": "No valid transactions found"}
# Generate basic analysis
analysis_text = analyze_ledger_data(df)
# Create structured response
total_amount = float(df['amount'].sum())
transaction_count = len(df)
avg_amount = float(df['amount'].mean())
# Top vendors
top_vendors = df['vendor'].value_counts().head(5).to_dict()
# Categories if available
categories = {}
if 'category' in df.columns:
categories = df.groupby('category')['amount'].sum().to_dict()
categories = {k: float(v) for k, v in categories.items()}
# Create Modal index for LLM analysis
modal_indexing_status = "Modal not available"
llm_ready = False
if modal_available and modal_create_index:
try:
# Generate unique session ID
current_session_id = f"session_{uuid.uuid4().hex[:8]}_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
# Standardize column names for Modal
modal_df = df.copy()
if 'vendor' in modal_df.columns:
modal_df['description'] = modal_df['vendor']
if 'category' not in modal_df.columns:
modal_df['category'] = 'Uncategorized'
# Convert to CSV for Modal
modal_csv = modal_df.to_csv(index=False)
# Call Modal function to create index
print(f"π Creating Modal index for session: {current_session_id}")
modal_result = modal_create_index.remote(modal_csv, current_session_id)
if modal_result.get("status") == "success":
modal_indexing_status = f"β
Modal LLM index created (Session: {current_session_id[:12]}...)"
llm_ready = True
else:
modal_indexing_status = f"β Modal indexing failed: {modal_result.get('error', 'Unknown error')}"
except Exception as e:
modal_indexing_status = f"β Modal indexing error: {str(e)}"
return {
"status": "success",
"summary": {
"total_transactions": transaction_count,
"total_amount": total_amount,
"average_transaction": avg_amount,
"date_range": {
"start": df['date'].min().strftime('%Y-%m-%d'),
"end": df['date'].max().strftime('%Y-%m-%d')
}
},
"top_vendors": top_vendors,
"categories": categories,
"analysis_text": analysis_text,
"indexing_status": modal_indexing_status,
"llm_ready": llm_ready,
"session_id": current_session_id,
"modal_available": modal_available
}
except Exception as e:
return {"error": f"Analysis failed: {str(e)}"}
def get_spending_by_category(csv_content: str, category: str = "") -> Dict:
"""
Get spending breakdown by category or filter by specific category.
Analyzes financial data to provide category-based spending insights.
If no category is specified, returns all categories with totals.
Args:
csv_content: CSV content as string with transaction data
category: Optional specific category name to filter results
Returns:
Spending information organized by category with totals and transaction counts
"""
try:
df = pd.read_csv(io.StringIO(csv_content))
df['amount'] = pd.to_numeric(df['amount'], errors='coerce')
df = df.dropna(subset=['amount'])
if 'category' not in df.columns:
return {"error": "No category column found in the data"}
if category:
# Filter by specific category
category_data = df[df['category'].str.contains(category, case=False, na=False)]
total = float(category_data['amount'].sum())
count = len(category_data)
return {
"category": category,
"total_amount": total,
"transaction_count": count,
"transactions": category_data[['date', 'vendor', 'amount', 'description']].to_dict('records')
}
else:
# All categories
category_totals = df.groupby('category')['amount'].agg(['sum', 'count']).round(2)
result = {}
for cat, row in category_totals.iterrows():
result[cat] = {
"total_amount": float(row['sum']),
"transaction_count": int(row['count'])
}
return {"categories": result}
except Exception as e:
return {"error": f"Category analysis failed: {str(e)}"}
def get_vendor_analysis(csv_content: str, vendor: str = "") -> Dict:
"""
Analyze spending patterns by vendor with detailed transaction breakdowns.
Provides comprehensive vendor spending analysis including total amounts,
transaction frequencies, and average spending per vendor.
Args:
csv_content: CSV content as string containing transaction data
vendor: Optional specific vendor name to analyze in detail
Returns:
Vendor spending analysis with totals, averages, and transaction details
"""
try:
df = pd.read_csv(io.StringIO(csv_content))
df['amount'] = pd.to_numeric(df['amount'], errors='coerce')
df = df.dropna(subset=['vendor', 'amount'])
if vendor:
# Specific vendor analysis
vendor_data = df[df['vendor'].str.contains(vendor, case=False, na=False)]
if vendor_data.empty:
return {"error": f"No transactions found for vendor: {vendor}"}
total = float(vendor_data['amount'].sum())
count = len(vendor_data)
avg = float(vendor_data['amount'].mean())
return {
"vendor": vendor,
"total_amount": total,
"transaction_count": count,
"average_amount": avg,
"transactions": vendor_data[['date', 'amount', 'category', 'description']].to_dict('records')
}
else:
# All vendors summary
vendor_stats = df.groupby('vendor')['amount'].agg(['sum', 'count', 'mean']).round(2)
vendor_stats = vendor_stats.sort_values('sum', ascending=False)
result = {}
for vendor_name, row in vendor_stats.iterrows():
result[vendor_name] = {
"total_amount": float(row['sum']),
"transaction_count": int(row['count']),
"average_amount": float(row['mean'])
}
return {"vendors": result}
except Exception as e:
return {"error": f"Vendor analysis failed: {str(e)}"}
def process_image_and_reconcile(image_file, csv_file) -> Dict:
"""
Process both image and CSV files, then reconcile transactions
Args:
image_file: Uploaded image file (bank statement, receipt)
csv_file: Uploaded CSV ledger file
Returns:
Dictionary containing reconciliation results and analysis
"""
global current_session_id
try:
if not modal_available:
return {"error": "Modal functions not available"}
if not image_file or not csv_file:
return {"error": "Please upload both an image and CSV file"}
# Generate session ID
current_session_id = f"session_{uuid.uuid4().hex[:8]}_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
# Process CSV first
print("π Processing CSV file...")
try:
df = pd.read_csv(csv_file.name)
csv_content = df.to_csv(index=False)
csv_result = modal_create_index.remote(csv_content, current_session_id)
if csv_result.get("status") != "success":
return {"error": f"CSV processing failed: {csv_result.get('error', 'Unknown error')}"}
print(f"β
CSV processed: {csv_result.get('total_transactions', 0)} transactions indexed")
except Exception as e:
return {"error": f"CSV processing error: {str(e)}"}
# Process image
print("π· Processing image file...")
try:
import base64
# Read image file and encode to base64
print(f"type(image_file) in process_image_and_reconcile: {type(image_file)}")
with open(image_file.name, "rb") as f:
image_bytes = f.read()
print(f"type(image_bytes) in process_image_and_reconcile: {type(image_bytes)}")
image_base64 = base64.b64encode(image_bytes).decode('utf-8')
print(f"type(image_base64) in process_image_and_reconcile: {type(image_base64)}")
image_result = modal_process_image.remote(
image_base64,
current_session_id,
image_file.name
)
if image_result.get("status") != "success":
return {"error": f"Image processing failed: {image_result.get('error', 'Unknown error')}"}
print(f"β
Image processed: {image_result.get('total_transactions', 0)} transactions extracted")
except Exception as e:
return {"error": f"Image processing error: {str(e)}"}
# Reconcile transactions
print("π Reconciling transactions...")
try:
reconcile_result = modal_reconcile.remote(current_session_id)
if reconcile_result.get("status") != "success":
return {"error": f"Reconciliation failed: {reconcile_result.get('error', 'Unknown error')}"}
print(f"β
Reconciliation complete: {reconcile_result['summary']['total_matches']} matches found")
return {
"status": "success",
"session_id": current_session_id,
"csv_transactions": csv_result.get("total_transactions", 0),
"image_transactions": image_result.get("total_transactions", 0),
"reconciliation": reconcile_result,
"processed_at": datetime.now().isoformat()
}
except Exception as e:
return {"error": f"Reconciliation error: {str(e)}"}
except Exception as e:
return {"error": f"Processing failed: {str(e)}"}
def query_financial_data(question: str) -> Dict:
"""
Query financial data using Modal's LLM-powered analysis.
Ask natural language questions about spending patterns, vendor analysis, budget trends,
or any other financial insights. Modal's serverless LLM will analyze the data to provide answers.
Args:
question: Natural language question about the financial data
Returns:
Dictionary containing the answer and supporting analysis
"""
global current_session_id
try:
if not question.strip():
return {"error": "Please provide a question about your financial data"}
if not current_session_id:
return {"error": "No financial data indexed. Please upload and analyze files first."}
if not modal_available or not modal_query_data:
return {"error": "Modal LLM functions not available. Please ensure Modal is deployed."}
# Call Modal function for intelligent query processing
print(f"π¬ Processing query for session: {current_session_id}")
print(f"Question: {question}")
modal_result = modal_query_data.remote(question, current_session_id)
if modal_result.get("status") == "success":
return {
"status": "success",
"question": question,
"insights": modal_result.get("llm_analysis", "No insights available"),
"matching_transactions": modal_result.get("matching_transactions", 0),
"total_amount": modal_result.get("total_amount", 0),
"results": modal_result.get("results", []),
"session_id": current_session_id,
"processed_at": modal_result.get("processed_at")
}
else:
return {"error": f"Modal query failed: {modal_result.get('error', 'Unknown error')}"}
except Exception as e:
return {"error": f"Query failed: {str(e)}"}
with gr.Blocks(title="SmartLedger - Transaction Reconciliation", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π SmartLedger - Smart Business Accounting Reconciliation")
gr.Markdown("Upload both your CSV ledger and bank statement/receipt image to automatically reconcile transactions with AI-powered confidence scoring.")
# Dual Upload Section
gr.Markdown("## π Upload Files for Reconciliation")
with gr.Row():
with gr.Column():
csv_file = gr.File(
label="π Upload CSV Ledger",
file_types=[".csv"],
value=None
)
gr.Markdown("*Required columns: date, vendor, amount*\n*Optional: category, description*")
with gr.Column():
image_file = gr.File(
label="π· Upload Bank Statement/Receipt Image",
file_types=[".jpg", ".jpeg", ".png", ".pdf"],
value=None
)
print(f"type(image_file): {type(image_file)}")
gr.Markdown("*Supports: Bank statements, receipts, invoices*\n*Formats: JPG, PNG, PDF*")
reconcile_btn = gr.Button("π Process & Reconcile Transactions", variant="primary", size="lg")
with gr.Accordion("π File Format Guide", open=False):
with gr.Row():
with gr.Column():
gr.Markdown("**CSV Format:**")
gr.Textbox(
value="""date,vendor,amount,category,description
2024-01-15,Coffee Shop,4.50,Meals,Morning coffee
2024-01-16,Gas Station,45.00,Vehicle,Fuel
2024-01-17,Office Depot,23.99,Supplies,Paper""",
label="Expected CSV Format",
interactive=False,
lines=4,
max_lines=4
)
with gr.Column():
gr.Markdown("**Image Requirements:**")
gr.Markdown("""
β’ Clear, readable text
β’ Bank statements or receipts
β’ Transaction details visible
β’ Date, amount, vendor information
β’ JPG, PNG, or PDF format
""")
# Reconciliation Results Section
gr.Markdown("## π Reconciliation Results")
reconciliation_status = gr.Textbox(
label="Processing Status",
interactive=False,
lines=8,
value="Upload both CSV and image files to begin reconciliation"
)
# Results Tabs
with gr.Tabs():
with gr.TabItem("π― Match Summary"):
summary_dataframe = gr.Dataframe(
label="Reconciliation Summary",
interactive=False,
wrap=True,
value=None
)
with gr.TabItem("β
High Confidence Matches"):
high_confidence_dataframe = gr.Dataframe(
label="High Confidence Matches (β₯85%)",
interactive=False,
wrap=True,
value=None
)
with gr.TabItem("β οΈ Medium Confidence Matches"):
medium_confidence_dataframe = gr.Dataframe(
label="Medium Confidence Matches (65-84%)",
interactive=False,
wrap=True,
value=None
)
with gr.TabItem("π Low Confidence Matches"):
low_confidence_dataframe = gr.Dataframe(
label="Low Confidence Matches (<65%) - Review Required",
interactive=False,
wrap=True,
value=None
)
with gr.TabItem("β Unmatched Transactions"):
unmatched_dataframe = gr.Dataframe(
label="Unmatched Transactions",
interactive=False,
wrap=True,
value=None
)
# # AI Analysis Section
# gr.Markdown("## π€ AI-Powered Analysis")
# # Questions Section
# gr.Markdown("### π¬ Ask Questions About Your Data")
# question_input = gr.Textbox(
# label="Natural Language Query",
# placeholder="e.g., What are my highest spending categories? Show me restaurant transactions.",
# lines=2
# )
# query_btn = gr.Button("Get AI Insights", variant="primary", size="lg")
# # AI Results
# llm_results = gr.Textbox(
# label="AI Analysis Results",
# interactive=False,
# lines=12,
# value="Upload and analyze a CSV file to enable AI-powered insights"
# )
# # Quick Test Section
# gr.Markdown("## π― Quick Test")
# sample_btn = gr.Button("Load Sample Data", variant="primary", size="lg")
# # System Status Section
# gr.Markdown("## π System Status & Integration")
# # Modal Status
# if modal_available:
# gr.Markdown("β
**Modal AI Status:** Connected and Ready\nπ **Features:** Smart transaction analysis, natural language queries\nπ‘ **Functions:** Session management, keyword search, basic insights")
# else:
# gr.Markdown("β **Modal AI Status:** Not available\nβ οΈ **Mode:** Basic analysis only (no AI features)")
# # MCP Tools Info
# with gr.Accordion("π οΈ Available MCP Tools", open=False):
# gr.Markdown("""
# **Core Analysis Tools:**
# - `analyze_ledger_from_csv` - Process and index financial data
# - `get_spending_by_category` - Category-based spending breakdown
# - `get_vendor_analysis` - Vendor spending patterns
# - `query_financial_data` - Natural language financial queries
# **Integration:** These tools are available for external AI agents via MCP protocol.
# """)
# Enhanced dual file processing handler
def process_dual_upload(image_file, csv_file):
"""Process both image and CSV files and reconcile transactions"""
try:
result = process_image_and_reconcile(image_file, csv_file)
if result.get("status") == "success":
reconciliation = result["reconciliation"]
summary = reconciliation["summary"]
# Create status message
status = f"""β
Processing Complete!
π **Processing Summary:**
β’ CSV Transactions: {result['csv_transactions']}
β’ Image Transactions: {result['image_transactions']}
β’ Total Matches: {summary['total_matches']} ({summary['match_rate']}% match rate)
π― **Confidence Breakdown:**
β’ High Confidence (β₯85%): {summary['high_confidence_matches']} transactions
β’ Medium Confidence (65-84%): {summary['medium_confidence_matches']} transactions
β’ Low Confidence (<65%): {summary['low_confidence_matches']} transactions
π° **Financial Summary:**
β’ Total Image Amount: ${summary['total_image_amount']}
β’ Total Matched Amount: ${summary['total_matched_amount']} ({summary['reconciliation_percentage']}%)
β’ Unmatched Image Transactions: {summary['unmatched_image_transactions']}
Session ID: {result['session_id'][:20]}..."""
# Create summary dataframe
summary_data = pd.DataFrame([{
"Metric": "CSV Transactions",
"Value": summary["total_csv_transactions"]
}, {
"Metric": "Image Transactions",
"Value": summary["total_image_transactions"]
}, {
"Metric": "Total Matches",
"Value": f"{summary['total_matches']} ({summary['match_rate']}%)"
}, {
"Metric": "High Confidence Matches",
"Value": summary["high_confidence_matches"]
}, {
"Metric": "Medium Confidence Matches",
"Value": summary["medium_confidence_matches"]
}, {
"Metric": "Low Confidence Matches",
"Value": summary["low_confidence_matches"]
}, {
"Metric": "Match Rate",
"Value": f"{summary['match_rate']}%"
}, {
"Metric": "Reconciliation %",
"Value": f"{summary['reconciliation_percentage']}%"
}])
# Create match dataframes
def format_matches(matches):
if not matches:
return pd.DataFrame({"Message": ["No matches in this category"]})
formatted = []
for match in matches:
csv_txn = match["csv_transaction"]
img_txn = match["image_transaction"]
formatted.append({
"Confidence": f"{match['confidence_score']*100:.1f}%",
"CSV Date": csv_txn.get("date", ""),
"CSV Vendor": csv_txn.get("vendor", ""),
"CSV Amount": f"${csv_txn.get('amount', 0):.2f}",
"Image Date": img_txn.get("date", ""),
"Image Vendor": img_txn.get("vendor", ""),
"Image Amount": f"${img_txn.get('amount', 0):.2f}",
"Match Reasons": ", ".join(match.get("match_reasons", [])),
"Discrepancies": ", ".join(match.get("discrepancies", []))
})
return pd.DataFrame(formatted)
high_conf_df = format_matches(reconciliation["matches"]["high_confidence"])
med_conf_df = format_matches(reconciliation["matches"]["medium_confidence"])
low_conf_df = format_matches(reconciliation["matches"]["low_confidence"])
# Create unmatched dataframes
unmatched_data = []
for txn in reconciliation["unmatched"]["image_transactions"]:
unmatched_data.append({
"Source": "Image (Unmatched)",
"Date": txn.get("date", ""),
"Vendor": txn.get("vendor", ""),
"Amount": f"${txn.get('amount', 0):.2f}",
"Description": txn.get("description", "")
})
for txn in reconciliation["unmatched"]["csv_transactions"]:
unmatched_data.append({
"Source": "CSV (Unmatched)",
"Date": txn.get("date", ""),
"Vendor": txn.get("vendor", ""),
"Amount": f"${txn.get('amount', 0):.2f}",
"Description": txn.get("description", "")
})
unmatched_df = pd.DataFrame(unmatched_data) if unmatched_data else pd.DataFrame({"Message": ["No unmatched transactions"]})
return status, summary_data, high_conf_df, med_conf_df, low_conf_df, unmatched_df
else:
error_msg = f"β Processing Failed: {result.get('error', 'Unknown error')}"
empty_df = pd.DataFrame({"Error": [result.get('error', 'Unknown error')]})
return error_msg, empty_df, empty_df, empty_df, empty_df, empty_df
except Exception as e:
error_msg = f"β Error during processing: {str(e)}"
empty_df = pd.DataFrame({"Error": [str(e)]})
return error_msg, empty_df, empty_df, empty_df, empty_df, empty_df
# Event handlers
reconcile_btn.click(
fn=process_dual_upload,
inputs=[image_file, csv_file],
outputs=[reconciliation_status, summary_dataframe, high_confidence_dataframe,
medium_confidence_dataframe, low_confidence_dataframe, unmatched_dataframe]
)
# # Quick Test Section with sample data
# gr.Markdown("## π― Quick Test")
# sample_btn = gr.Button("π Load Sample Data (CSV + Mock Image)", variant="secondary", size="lg")
# def load_sample_for_reconciliation():
# """Load sample data and create a mock reconciliation scenario"""
# try:
# # Mock reconciliation result for demonstration
# status = """β
Sample Data Loaded!
# π **Processing Summary:**
# β’ CSV Transactions: 5
# β’ Image Transactions: 3 (simulated)
# β’ Total Matches: 2 (66.7% match rate)
# π― **Confidence Breakdown:**
# β’ High Confidence (β₯85%): 1 transactions
# β’ Medium Confidence (65-84%): 1 transactions
# β’ Low Confidence (<65%): 0 transactions
# π° **Financial Summary:**
# β’ Total Image Amount: $68.49
# β’ Total Matched Amount: $49.50 (72.3%)
# β’ Unmatched Image Transactions: 1
# π§ͺ This is sample data for demonstration purposes."""
# # Create sample summary
# summary_data = pd.DataFrame([
# {"Metric": "CSV Transactions", "Value": 5},
# {"Metric": "Image Transactions", "Value": 3},
# {"Metric": "Total Matches", "Value": "2 (66.7%)"},
# {"Metric": "High Confidence Matches", "Value": 1},
# {"Metric": "Medium Confidence Matches", "Value": 1},
# {"Metric": "Low Confidence Matches", "Value": 0},
# {"Metric": "Match Rate", "Value": "66.7%"},
# {"Metric": "Reconciliation %", "Value": "72.3%"}
# ])
# # Sample high confidence match
# high_conf = pd.DataFrame([{
# "Confidence": "92.5%",
# "CSV Date": "2024-01-15",
# "CSV Vendor": "Coffee Shop Downtown",
# "CSV Amount": "$4.50",
# "Image Date": "2024-01-15",
# "Image Vendor": "Coffee Shop",
# "Image Amount": "$4.50",
# "Match Reasons": "Exact amount match, Exact date match, Partial vendor match",
# "Discrepancies": ""
# }])
# # Sample medium confidence match
# med_conf = pd.DataFrame([{
# "Confidence": "78.0%",
# "CSV Date": "2024-01-16",
# "CSV Vendor": "Shell Gas Station",
# "CSV Amount": "$45.00",
# "Image Date": "2024-01-16",
# "Image Vendor": "Shell",
# "Image Amount": "$45.00",
# "Match Reasons": "Exact amount match, Exact date match, Vendor keyword match",
# "Discrepancies": "Vendor difference: SHELL GAS STATION vs SHELL"
# }])
# # Empty low confidence
# low_conf = pd.DataFrame({"Message": ["No matches in this category"]})
# # Sample unmatched
# unmatched = pd.DataFrame([
# {"Source": "Image (Unmatched)", "Date": "2024-01-17", "Vendor": "Amazon", "Amount": "$18.99", "Description": "Online purchase"},
# {"Source": "CSV (Unmatched)", "Date": "2024-01-17", "Vendor": "Office Depot", "Amount": "$23.99", "Description": "Printer paper"},
# {"Source": "CSV (Unmatched)", "Date": "2024-01-18", "Vendor": "Uber Technologies", "Amount": "$18.75", "Description": "Ride to meeting"},
# {"Source": "CSV (Unmatched)", "Date": "2024-01-19", "Vendor": "Microsoft Corporation", "Amount": "$99.99", "Description": "Office 365"}
# ])
# return status, summary_data, high_conf, med_conf, low_conf, unmatched
# except Exception as e:
# error_msg = f"β Error loading sample data: {str(e)}"
# empty_df = pd.DataFrame({"Error": [str(e)]})
# return error_msg, empty_df, empty_df, empty_df, empty_df, empty_df
# sample_btn.click(
# fn=load_sample_for_reconciliation,
# outputs=[reconciliation_status, summary_dataframe, high_confidence_dataframe,
# medium_confidence_dataframe, low_confidence_dataframe, unmatched_dataframe]
# )
# # AI Analysis handler
# def run_query(question):
# """Run financial query and return formatted results"""
# if not question.strip():
# return "Please enter a question about your financial data."
# result = query_financial_data(question)
# if result.get("status") == "success":
# return f"π‘ QUESTION: {result['question']}\n\nπ INSIGHTS:\n{result['insights']}"
# else:
# return f"β {result.get('error', 'Unknown error')}"
# query_btn.click(
# fn=run_query,
# inputs=[question_input],
# outputs=[llm_results]
# )
# # Auto-query on Enter
# question_input.submit(
# fn=run_query,
# inputs=[question_input],
# outputs=[llm_results]
# )
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
mcp_server=True
) |