File size: 25,698 Bytes
01d71af
 
 
 
 
 
 
fe311a3
 
 
 
01d71af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe311a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01d71af
 
 
fe311a3
01d71af
fe311a3
 
 
 
 
01d71af
fe311a3
 
01d71af
fe311a3
01d71af
fe311a3
 
01d71af
fe311a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01d71af
fe311a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01d71af
fe311a3
01d71af
fe311a3
 
 
 
 
 
 
 
01d71af
fe311a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01d71af
fe311a3
 
 
 
01d71af
fe311a3
 
 
01d71af
fe311a3
 
 
 
01d71af
fe311a3
 
 
 
 
 
01d71af
fe311a3
 
 
 
 
 
 
 
 
 
 
01d71af
fe311a3
01d71af
fe311a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01d71af
 
fe311a3
 
 
 
 
 
 
 
 
01d71af
fe311a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01d71af
fe311a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01d71af
 
fe311a3
01d71af
 
fe311a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01d71af
fe311a3
01d71af
fe311a3
 
 
 
 
 
 
 
 
01d71af
 
 
 
 
 
 
 
 
 
 
 
 
 
fe311a3
 
01d71af
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
"""
Optimized Modal functions with better container lifecycle management
"""

import modal
from typing import Dict, Any
from datetime import datetime
import requests
import base64
import json
import os

app = modal.App("smartledger")

# Optimized image with model pre-loading
model_image = (
    modal.Image.debian_slim(python_version="3.11")
    .pip_install([
        "sentence-transformers>=2.2.0",
        "transformers>=4.35.0", 
        "torch>=2.0.0",
        "pandas>=2.0.0",
        "numpy>=1.24.0",
        "llama-index>=0.10.0",
        "scikit-learn>=1.3.0",
        "accelerate>=0.20.0",
    ])
    .run_commands([
        # Pre-download models during build (faster cold starts)
        "python -c 'from sentence_transformers import SentenceTransformer; SentenceTransformer(\"all-MiniLM-L6-v2\")'",
        "python -c 'from transformers import AutoTokenizer, AutoModelForCausalLM; AutoTokenizer.from_pretrained(\"microsoft/DialoGPT-medium\"); AutoModelForCausalLM.from_pretrained(\"microsoft/DialoGPT-medium\")'",
    ])
)

# Persistent storage that survives container restarts
session_storage = modal.Dict.from_name("smartledger-sessions", create_if_missing=True)

# Vision model configuration (now using Hyperbolic endpoint)
# Inject HYPERBOLIC_API_KEY as a Modal secret for all relevant functions
HYPERBOLIC_API_URL = "https://api.hyperbolic.xyz/v1/chat/completions"
HYPERBOLIC_MODEL_NAME = "Qwen/Qwen2.5-VL-7B-Instruct"

# Global variables to cache models
_embedding_model = None
_tokenizer = None
_llm_model = None

def _load_models():
    """Load models once and cache globally"""
    global _embedding_model, _tokenizer, _llm_model
    
    if _embedding_model is None:
        print("πŸš€ Loading embedding model...")
        from sentence_transformers import SentenceTransformer
        _embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
        print("βœ… Embedding model loaded")
    
    if _tokenizer is None or _llm_model is None:
        print("πŸš€ Loading LLM model...")
        from transformers import AutoTokenizer, AutoModelForCausalLM
        _tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
        _tokenizer.pad_token = _tokenizer.eos_token
        _llm_model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
        print("βœ… LLM model loaded")
    
    return _embedding_model, _tokenizer, _llm_model

@app.function(
    image=model_image,
    memory=4096,
    timeout=1800,  # 30 minutes timeout
    min_containers=1  # Keep one container warm
)
def create_index(csv_data: str, session_id: str) -> Dict[str, Any]:
    """Create index using cached models"""
    try:
        import pandas as pd
        from io import StringIO
        
        # Load models
        embedding_model, tokenizer, llm_model = _load_models()
        
        print(f"πŸ“Š Creating index for session: {session_id}")
        
        # Parse CSV
        df = pd.read_csv(StringIO(csv_data))
        
        # Create embeddings
        doc_texts = []
        doc_metadata = []
        
        for _, row in df.iterrows():
            doc_text = f"Date: {row.get('date', '')} Amount: ${row.get('amount', 0)} Description: {row.get('description', '')} Category: {row.get('category', '')}"
            doc_texts.append(doc_text)
            doc_metadata.append(row.to_dict())
        
        # Generate embeddings
        print(f"πŸ”— Generating embeddings for {len(doc_texts)} transactions...")
        embeddings = embedding_model.encode(doc_texts)
        
        # Store in persistent storage
        index_data = {
            "embeddings": embeddings.tolist(),
            "doc_texts": doc_texts,
            "doc_metadata": doc_metadata,
            "total_transactions": len(doc_texts),
            "created_at": datetime.now().isoformat()
        }
        
        session_storage[session_id] = index_data
        session_storage[f"session_active_{session_id}"] = {
            "session_id": session_id,
            "created_at": datetime.now().isoformat(),
            "status": "active"
        }
        
        print(f"βœ… Index created for {len(doc_texts)} transactions")
        
        return {
            "status": "success",
            "session_id": session_id,
            "total_transactions": len(doc_texts),
            "created_at": datetime.now().isoformat()
        }
        
    except Exception as e:
        print(f"❌ Error creating index: {e}")
        return {"status": "error", "error": str(e)}

@app.function(
    image=model_image,
    memory=4096,
    timeout=600,
    min_containers=1  # Keep one container warm
)
def query_data(query: str, session_id: str) -> Dict[str, Any]:
    """Query using cached models"""
    try:
        import numpy as np
        from sklearn.metrics.pairwise import cosine_similarity
        import torch
        
        # Load models
        embedding_model, tokenizer, llm_model = _load_models()
        
        print(f"πŸ” Processing query: '{query}' for session: {session_id}")
        
        # Get session data
        if session_id not in session_storage:
            return {"status": "error", "error": "Session not found"}
        
        session_data = session_storage[session_id]
        
        # Generate query embedding
        query_embedding = embedding_model.encode([query])
        
        # Find similar transactions
        doc_embeddings = np.array(session_data["embeddings"])
        similarities = cosine_similarity(query_embedding, doc_embeddings)[0]
        
        # Get top matches
        top_indices = np.argsort(similarities)[::-1][:5]
        matching_transactions = []
        relevant_context = []
        
        for idx in top_indices:
            if similarities[idx] > 0.1:
                doc_text = session_data["doc_texts"][idx]
                metadata = session_data["doc_metadata"][idx]
                
                matching_transactions.append({
                    "text": doc_text,
                    "metadata": metadata,
                    "similarity": float(similarities[idx])
                })
                relevant_context.append(doc_text)
        
        # Generate LLM analysis
        llm_analysis = ""
        if matching_transactions:
            context = f"Financial Query: {query}\n\nRelevant Transactions:\n{chr(10).join(relevant_context[:3])}\n\nAnalysis:"
            
            inputs = tokenizer.encode(context, return_tensors="pt", max_length=512, truncation=True)
            
            with torch.no_grad():
                outputs = llm_model.generate(
                    inputs,
                    max_new_tokens=80,
                    temperature=0.7,
                    do_sample=True,
                    pad_token_id=tokenizer.eos_token_id
                )
            
            full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
            llm_analysis = full_response[len(context):].strip()
        
        # Calculate summary
        total_amount = sum(float(t["metadata"].get("amount", 0)) for t in matching_transactions)
        
        return {
            "status": "success",
            "query": query,
            "llm_analysis": llm_analysis,
            "matching_transactions": len(matching_transactions),
            "total_amount": total_amount,
            "results": matching_transactions,
            "processed_at": datetime.now().isoformat()
        }
        
    except Exception as e:
        print(f"❌ Error processing query: {e}")
        return {"status": "error", "error": str(e)}

@app.function(image=model_image)
def check_health() -> Dict[str, Any]:
    """Quick health check"""
    try:
        # Load models
        embedding_model, tokenizer, llm_model = _load_models()
        
        # Test embedding model
        _ = embedding_model.encode(["test transaction"])
        
        # Test LLM
        _ = tokenizer.encode("Test", return_tensors="pt")
        
        return {
            "status": "healthy",
            "embedding_model": "ready",
            "llm_model": "ready", 
            "timestamp": datetime.now().isoformat()
        }
    except Exception as e:
        return {"status": "unhealthy", "error": str(e)}

@app.function(
    image=model_image,
    memory=2048,
    timeout=300,
    secrets=[modal.Secret.from_name("HYPERBOLIC_API_KEY")],
)
def process_image_transactions(image_data, session_id: str, filename: str = "uploaded_image") -> Dict[str, Any]:
    """
    Process image to extract transaction data using Llama 3.2 Vision Instruct
    
    Args:
        image_data: File object or base64 encoded string
        session_id: Session ID for storing extracted transactions
        filename: Original filename for reference
        
    Returns:
        Dictionary containing extracted transactions and metadata
    """
    try:
        print(f"πŸ“· Processing image for session: {session_id}")
        print(f"πŸ” Debug - image_data type: {type(image_data)}")
        print(f"πŸ” Debug - image_data dir: {dir(image_data)}")
        print(f"πŸ” Debug - hasattr read: {hasattr(image_data, 'read')}")
        
        # Handle file object vs base64 string
        if hasattr(image_data, 'read'):
            # It's a file object, read and encode
            print("πŸ“– Reading file object...")
            image_bytes = image_data.read()
            print(f"πŸ“ Read {len(image_bytes)} bytes")
            image_b64 = base64.b64encode(image_bytes).decode('utf-8')
            print(f"πŸ”€ Encoded to base64 length: {len(image_b64)}")
        elif isinstance(image_data, str):
            # It's already base64 encoded
            print("πŸ“ Using string as base64...")
            image_b64 = image_data
        else:
            # It's raw bytes
            print(f"πŸ”’ Converting bytes to base64... type: {type(image_data)}")
            image_b64 = base64.b64encode(image_data).decode('utf-8')
        
        # Create optimized prompt for transaction extraction
        prompt = """You are a financial document analyzer. Extract transaction data from this bank statement, receipt, or financial document.

For each transaction you find, return ONLY a valid JSON array with this exact format:

[
  {
    "date": "YYYY-MM-DD",
    "amount": 123.45,
    "vendor": "Vendor Name",
    "description": "Transaction description",
    "type": "debit"
  }
]

Rules:
- Extract ALL transactions visible in the image
- Use negative amounts for debits/expenses, positive for credits/income  
- Parse dates to YYYY-MM-DD format
- Clean vendor names (remove extra spaces, standardize)
- Include meaningful descriptions
- Return ONLY the JSON array, no other text
- If no transactions found, return: []

Analyze the image and extract all transaction data:"""
        
        # Call Hyperbolic vision model endpoint
        hyperbolic_api_key = os.environ["HYPERBOLIC_API_KEY"]
        headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {hyperbolic_api_key}",
        }
        payload = {
            "messages": [{
                "role": "user",
                "content": [
                    {"type": "text", "text": prompt},
                    {
                        "type": "image_url",
                        "image_url": {"url": f"data:image/jpeg;base64,{image_b64}"},
                    },
                ],
            }],
            "model": HYPERBOLIC_MODEL_NAME,
            "max_tokens": 2000,
            "temperature": 0.1,
            "top_p": 0.001,
        }
        print("🧠 Calling Hyperbolic Vision model...")
        print(f"Hyperbolic API URL: {HYPERBOLIC_API_URL}")
        response = requests.post(
            HYPERBOLIC_API_URL,
            headers=headers,
            json=payload,
            timeout=60
        )
        if response.status_code != 200:
            return {
                "status": "error",
                "error": f"Vision model API failed: {response.status_code} - {response.text}",
                "transactions": [],
                "total_transactions": 0
            }
        result = response.json()
        response_text = result["choices"][0]["message"]["content"]
        # Parse JSON response
        try:
            # Find JSON array in response
            response_text = response_text.strip()
            start_idx = response_text.find('[')
            end_idx = response_text.rfind(']') + 1
            
            if start_idx == -1 or end_idx == 0:
                print(f"⚠️ No JSON array found in response")
                transactions = []
            else:
                json_str = response_text[start_idx:end_idx]
                transactions = json.loads(json_str)
                
                # Clean and validate transactions
                cleaned_transactions = []
                for txn in transactions:
                    if isinstance(txn, dict) and "amount" in txn and "vendor" in txn:
                        try:
                            txn["amount"] = float(txn["amount"])
                            txn["source"] = "image_extraction"
                            txn["extracted_at"] = datetime.now().isoformat()
                            cleaned_transactions.append(txn)
                        except (ValueError, TypeError):
                            print(f"⚠️ Invalid transaction amount: {txn}")
                
                transactions = cleaned_transactions
                
        except json.JSONDecodeError as e:
            print(f"❌ JSON parsing error: {e}")
            transactions = []
        
        # Store extracted transactions for this session
        image_session_key = f"{session_id}_image_transactions"
        session_storage[image_session_key] = {
            "transactions": transactions,
            "total_transactions": len(transactions),
            "filename": filename,
            "extracted_at": datetime.now().isoformat(),
            "raw_response": response_text[:500] if len(response_text) > 500 else response_text
        }
        
        print(f"βœ… Extracted {len(transactions)} transactions from image")
        
        return {
            "status": "success",
            "transactions": transactions,
            "total_transactions": len(transactions),
            "filename": filename,
            "extracted_at": datetime.now().isoformat(),
            "session_id": session_id
        }
        
    except Exception as e:
        print(f"❌ Error processing image: {e}")
        return {
            "status": "error",
            "error": str(e),
            "transactions": [],
            "total_transactions": 0,
            "filename": filename,
            "extracted_at": datetime.now().isoformat()
        }

@app.function(
    image=model_image,
    memory=2048,
    timeout=300
)
def reconcile_transactions(session_id: str) -> Dict[str, Any]:
    """
    Reconcile image-extracted transactions with CSV ledger entries
    
    Args:
        session_id: Session ID containing both CSV and image transaction data
        
    Returns:
        Dictionary containing matches, unmatched transactions, and confidence scores
    """
    try:
        print(f"πŸ”„ Reconciling transactions for session: {session_id}")
        
        # Get CSV transactions
        if session_id not in session_storage:
            return {
                "status": "error",
                "error": "No CSV data found for session. Please upload and analyze CSV first."
            }
        
        csv_data = session_storage[session_id]
        csv_transactions = csv_data.get("doc_metadata", [])
        
        # Get image transactions
        image_session_key = f"{session_id}_image_transactions"
        if image_session_key not in session_storage:
            return {
                "status": "error", 
                "error": "No image data found for session. Please upload and process an image first."
            }
        
        image_data = session_storage[image_session_key]
        image_transactions = image_data.get("transactions", [])
        
        if not csv_transactions or not image_transactions:
            return {
                "status": "error",
                "error": f"Insufficient data: {len(csv_transactions)} CSV transactions, {len(image_transactions)} image transactions"
            }
        
        print(f"Reconciling {len(image_transactions)} image transactions with {len(csv_transactions)} CSV transactions")
        
        # Simple reconciliation algorithm
        matches = []
        matched_csv_indices = set()
        matched_image_indices = set()
        
        for i, image_txn in enumerate(image_transactions):
            best_match = None
            best_score = 0
            best_csv_idx = -1
            
            for j, csv_txn in enumerate(csv_transactions):
                if j in matched_csv_indices:
                    continue
                
                score = 0
                reasons = []
                discrepancies = []
                
                # Amount matching (40% weight)
                try:
                    image_amount = float(image_txn.get("amount", 0))
                    csv_amount = float(csv_txn.get("amount", 0))
                    amount_diff = abs(image_amount - csv_amount)
                    
                    if amount_diff <= 0.01:  # Exact match
                        score += 0.4
                        reasons.append(f"Exact amount match: ${csv_amount}")
                    elif amount_diff <= max(0.01, abs(csv_amount) * 0.02):  # 2% tolerance
                        score += 0.35
                        reasons.append(f"Close amount match: ${csv_amount} β‰ˆ ${image_amount}")
                    elif amount_diff <= abs(csv_amount) * 0.05:  # 5% tolerance
                        score += 0.2
                        reasons.append(f"Approximate amount match: ${csv_amount} β‰ˆ ${image_amount}")
                    else:
                        discrepancies.append(f"Amount difference: ${csv_amount} vs ${image_amount}")
                        
                except:
                    discrepancies.append("Invalid amount data")
                
                # Date matching (25% weight) - simplified
                try:
                    from datetime import datetime
                    
                    csv_date_str = str(csv_txn.get("date", ""))
                    image_date_str = str(image_txn.get("date", ""))
                    
                    if csv_date_str[:10] == image_date_str[:10]:  # Same date (YYYY-MM-DD)
                        score += 0.25
                        reasons.append(f"Exact date match: {csv_date_str[:10]}")
                    elif abs(len(csv_date_str) - len(image_date_str)) <= 3:  # Close dates
                        score += 0.15
                        reasons.append(f"Similar dates: {csv_date_str[:10]} β‰ˆ {image_date_str[:10]}")
                    else:
                        discrepancies.append(f"Date difference: {csv_date_str[:10]} vs {image_date_str[:10]}")
                        
                except:
                    discrepancies.append("Invalid date data")
                
                # Vendor matching (25% weight) - simplified
                try:
                    csv_vendor = str(csv_txn.get("vendor", "")).upper().strip()
                    image_vendor = str(image_txn.get("vendor", "")).upper().strip()
                    
                    if csv_vendor == image_vendor:
                        score += 0.25
                        reasons.append(f"Exact vendor match: {csv_vendor}")
                    elif csv_vendor in image_vendor or image_vendor in csv_vendor:
                        score += 0.2
                        reasons.append(f"Partial vendor match: {csv_vendor} β‰ˆ {image_vendor}")
                    elif len(set(csv_vendor.split()).intersection(set(image_vendor.split()))) > 0:
                        score += 0.1
                        reasons.append(f"Vendor keyword match: {csv_vendor} β‰ˆ {image_vendor}")
                    else:
                        discrepancies.append(f"Vendor difference: {csv_vendor} vs {image_vendor}")
                        
                except:
                    discrepancies.append("Invalid vendor data")
                
                # Description matching (10% weight) - simplified
                try:
                    csv_desc = str(csv_txn.get("description", "")).upper().strip()
                    image_desc = str(image_txn.get("description", "")).upper().strip()
                    
                    if csv_desc and image_desc:
                        if csv_desc == image_desc:
                            score += 0.1
                            reasons.append(f"Description match: {csv_desc}")
                        elif csv_desc in image_desc or image_desc in csv_desc:
                            score += 0.05
                            reasons.append(f"Partial description match")
                        
                except:
                    pass
                
                # Store best match for this image transaction
                if score > best_score and score > 0.3:  # Minimum threshold
                    best_score = score
                    best_match = {
                        "csv_transaction": csv_txn,
                        "image_transaction": image_txn,
                        "confidence_score": round(score, 3),
                        "match_reasons": reasons,
                        "discrepancies": discrepancies,
                        "match_type": "high" if score >= 0.85 else "medium" if score >= 0.65 else "low"
                    }
                    best_csv_idx = j
            
            # Add best match if found
            if best_match:
                matches.append(best_match)
                matched_csv_indices.add(best_csv_idx)
                matched_image_indices.add(i)
        
        # Calculate unmatched transactions
        unmatched_csv = [csv_transactions[i] for i in range(len(csv_transactions)) if i not in matched_csv_indices]
        unmatched_image = [image_transactions[i] for i in range(len(image_transactions)) if i not in matched_image_indices]
        
        # Categorize matches
        high_confidence = [m for m in matches if m["confidence_score"] >= 0.85]
        medium_confidence = [m for m in matches if 0.65 <= m["confidence_score"] < 0.85]
        low_confidence = [m for m in matches if m["confidence_score"] < 0.65]
        
        # Calculate summary
        match_rate = len(matches) / len(image_transactions) if image_transactions else 0
        total_image_amount = sum(float(txn.get("amount", 0)) for txn in image_transactions)
        total_matched_amount = sum(float(m["image_transaction"].get("amount", 0)) for m in matches)
        
        result = {
            "status": "success",
            "summary": {
                "total_image_transactions": len(image_transactions),
                "total_csv_transactions": len(csv_transactions),
                "total_matches": len(matches),
                "match_rate": round(match_rate * 100, 1),
                "high_confidence_matches": len(high_confidence),
                "medium_confidence_matches": len(medium_confidence),
                "low_confidence_matches": len(low_confidence),
                "unmatched_image_transactions": len(unmatched_image),
                "unmatched_csv_transactions": len(unmatched_csv),
                "total_image_amount": round(total_image_amount, 2),
                "total_matched_amount": round(total_matched_amount, 2),
                "reconciliation_percentage": round((total_matched_amount / total_image_amount * 100) if total_image_amount else 0, 1)
            },
            "matches": {
                "high_confidence": high_confidence,
                "medium_confidence": medium_confidence,
                "low_confidence": low_confidence
            },
            "unmatched": {
                "image_transactions": unmatched_image,
                "csv_transactions": unmatched_csv
            },
            "reconciled_at": datetime.now().isoformat(),
            "session_id": session_id
        }
        
        # Store reconciliation results
        reconciliation_key = f"{session_id}_reconciliation"
        session_storage[reconciliation_key] = result
        
        print(f"βœ… Reconciliation complete: {len(matches)} matches found ({match_rate*100:.1f}% match rate)")
        
        return result
        
    except Exception as e:
        print(f"❌ Error during reconciliation: {e}")
        return {
            "status": "error",
            "error": str(e),
            "summary": {},
            "matches": {"high_confidence": [], "medium_confidence": [], "low_confidence": []},
            "unmatched": {"image_transactions": [], "csv_transactions": []},
            "reconciled_at": datetime.now().isoformat()
        }

@app.function(image=model_image)
def list_sessions():
    """Debug function to list all active sessions"""
    try:
        return {
            "status": "success",
            "sessions": dict(session_storage),
            "session_count": len(session_storage)
        }
    except Exception as e:
        return {"status": "error", "error": str(e)}

if __name__ == "__main__":
    print("SmartLedger Modal functions with image processing and reconciliation")
    print("Features: CSV indexing, image processing, transaction reconciliation")
    print("UI calls: modal.Function.lookup('smartledger', 'create_index')")