File size: 18,340 Bytes
fe311a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
"""
Transaction reconciliation engine for matching image-extracted transactions with CSV ledger entries
Uses multiple criteria and confidence scoring to identify potential matches
"""

from typing import Dict, List, Any, Tuple, Optional
from datetime import datetime, timedelta
import difflib
import re
from dataclasses import dataclass

@dataclass
class TransactionMatch:
    """Represents a potential match between two transactions"""
    csv_transaction: Dict[str, Any]
    image_transaction: Dict[str, Any]
    confidence_score: float
    match_reasons: List[str]
    discrepancies: List[str]
    match_type: str  # "exact", "high", "medium", "low", "no_match"

class TransactionReconciler:
    """
    Reconciles transactions from image extraction with CSV ledger entries
    """
    
    def __init__(self, 
                 amount_tolerance: float = 0.01,
                 date_window_days: int = 3,
                 vendor_similarity_threshold: float = 0.6,
                 high_confidence_threshold: float = 0.85,
                 medium_confidence_threshold: float = 0.65):
        """
        Initialize the reconciler with matching parameters
        
        Args:
            amount_tolerance: Acceptable difference in amounts for matching
            date_window_days: Days before/after to consider for date matching
            vendor_similarity_threshold: Minimum similarity for vendor matching
            high_confidence_threshold: Minimum score for high confidence matches
            medium_confidence_threshold: Minimum score for medium confidence matches
        """
        self.amount_tolerance = amount_tolerance
        self.date_window_days = date_window_days
        self.vendor_similarity_threshold = vendor_similarity_threshold
        self.high_confidence_threshold = high_confidence_threshold
        self.medium_confidence_threshold = medium_confidence_threshold
    
    def reconcile_transactions(self, 
                             csv_transactions: List[Dict[str, Any]], 
                             image_transactions: List[Dict[str, Any]]) -> Dict[str, Any]:
        """
        Main reconciliation function that matches image transactions with CSV entries
        
        Args:
            csv_transactions: List of transactions from CSV ledger
            image_transactions: List of transactions extracted from image
            
        Returns:
            Dictionary containing matches, unmatched transactions, and summary statistics
        """
        try:
            print(f"πŸ”„ Reconciling {len(image_transactions)} image transactions with {len(csv_transactions)} CSV transactions")
            
            # Prepare transactions for matching
            csv_prepared = [self._prepare_transaction(txn, "csv") for txn in csv_transactions]
            image_prepared = [self._prepare_transaction(txn, "image") for txn in image_transactions]
            
            # Find all potential matches
            all_matches = []
            matched_csv_indices = set()
            matched_image_indices = set()
            
            for i, image_txn in enumerate(image_prepared):
                best_matches = []
                
                for j, csv_txn in enumerate(csv_prepared):
                    if j in matched_csv_indices:
                        continue
                    
                    match = self._evaluate_match(csv_txn, image_txn)
                    if match.confidence_score > 0:
                        best_matches.append((j, match))
                
                # Sort by confidence and take the best match if above threshold
                best_matches.sort(key=lambda x: x[1].confidence_score, reverse=True)
                
                if best_matches and best_matches[0][1].confidence_score >= 0.3:  # Minimum threshold
                    csv_idx, best_match = best_matches[0]
                    all_matches.append(best_match)
                    matched_csv_indices.add(csv_idx)
                    matched_image_indices.add(i)
            
            # Categorize matches by confidence
            high_confidence_matches = [m for m in all_matches if m.confidence_score >= self.high_confidence_threshold]
            medium_confidence_matches = [m for m in all_matches if self.medium_confidence_threshold <= m.confidence_score < self.high_confidence_threshold]
            low_confidence_matches = [m for m in all_matches if m.confidence_score < self.medium_confidence_threshold]
            
            # Find unmatched transactions
            unmatched_csv = [csv_prepared[i] for i in range(len(csv_prepared)) if i not in matched_csv_indices]
            unmatched_image = [image_prepared[i] for i in range(len(image_prepared)) if i not in matched_image_indices]
            
            # Calculate summary statistics
            total_image_amount = sum(float(txn.get('amount', 0)) for txn in image_prepared)
            total_matched_amount = sum(float(match.image_transaction.get('amount', 0)) for match in all_matches)
            match_rate = len(all_matches) / len(image_prepared) if image_prepared else 0
            
            result = {
                "status": "success",
                "summary": {
                    "total_image_transactions": len(image_transactions),
                    "total_csv_transactions": len(csv_transactions),
                    "total_matches": len(all_matches),
                    "match_rate": round(match_rate * 100, 1),
                    "high_confidence_matches": len(high_confidence_matches),
                    "medium_confidence_matches": len(medium_confidence_matches),
                    "low_confidence_matches": len(low_confidence_matches),
                    "unmatched_image_transactions": len(unmatched_image),
                    "unmatched_csv_transactions": len(unmatched_csv),
                    "total_image_amount": round(total_image_amount, 2),
                    "total_matched_amount": round(total_matched_amount, 2),
                    "reconciliation_percentage": round((total_matched_amount / total_image_amount * 100) if total_image_amount else 0, 1)
                },
                "matches": {
                    "high_confidence": [self._serialize_match(m) for m in high_confidence_matches],
                    "medium_confidence": [self._serialize_match(m) for m in medium_confidence_matches],
                    "low_confidence": [self._serialize_match(m) for m in low_confidence_matches]
                },
                "unmatched": {
                    "image_transactions": unmatched_image,
                    "csv_transactions": unmatched_csv
                },
                "reconciled_at": datetime.now().isoformat()
            }
            
            print(f"βœ… Reconciliation complete: {len(all_matches)} matches found ({match_rate*100:.1f}% match rate)")
            
            return result
            
        except Exception as e:
            print(f"❌ Error during reconciliation: {e}")
            return {
                "status": "error",
                "error": str(e),
                "summary": {},
                "matches": {"high_confidence": [], "medium_confidence": [], "low_confidence": []},
                "unmatched": {"image_transactions": [], "csv_transactions": []},
                "reconciled_at": datetime.now().isoformat()
            }
    
    def _prepare_transaction(self, txn: Dict[str, Any], source: str) -> Dict[str, Any]:
        """Prepare transaction data for matching"""
        prepared = txn.copy()
        prepared["source"] = source
        
        # Standardize date format
        if "date" in prepared:
            try:
                if isinstance(prepared["date"], str):
                    prepared["date"] = datetime.fromisoformat(prepared["date"].replace("Z", "+00:00"))
                elif not isinstance(prepared["date"], datetime):
                    prepared["date"] = datetime.strptime(str(prepared["date"]), "%Y-%m-%d")
            except:
                prepared["date"] = None
        
        # Standardize amount
        if "amount" in prepared:
            try:
                prepared["amount"] = float(prepared["amount"])
            except:
                prepared["amount"] = 0.0
        
        # Clean and standardize vendor/description
        for field in ["vendor", "description"]:
            if field in prepared and prepared[field]:
                prepared[field] = self._clean_text(str(prepared[field]))
        
        return prepared
    
    def _clean_text(self, text: str) -> str:
        """Clean text for better matching"""
        # Remove extra whitespace, standardize case
        text = re.sub(r'\s+', ' ', text.strip().upper())
        
        # Remove common business suffixes
        suffixes = ["INC", "LLC", "LTD", "CORP", "CO", "&", "AND", "THE"]
        words = text.split()
        cleaned_words = [w for w in words if w not in suffixes]
        
        return " ".join(cleaned_words)
    
    def _evaluate_match(self, csv_txn: Dict[str, Any], image_txn: Dict[str, Any]) -> TransactionMatch:
        """Evaluate the match between two transactions"""
        confidence_score = 0.0
        match_reasons = []
        discrepancies = []
        
        # Amount matching (40% weight)
        amount_score = self._compare_amounts(csv_txn.get("amount", 0), image_txn.get("amount", 0))
        confidence_score += amount_score * 0.4
        if amount_score > 0.8:
            match_reasons.append(f"Amount match: ${csv_txn.get('amount', 0)} β‰ˆ ${image_txn.get('amount', 0)}")
        elif amount_score < 0.5:
            discrepancies.append(f"Amount difference: ${csv_txn.get('amount', 0)} vs ${image_txn.get('amount', 0)}")
        
        # Date matching (25% weight)
        date_score = self._compare_dates(csv_txn.get("date"), image_txn.get("date"))
        confidence_score += date_score * 0.25
        if date_score > 0.8:
            match_reasons.append(f"Date match: {csv_txn.get('date')} β‰ˆ {image_txn.get('date')}")
        elif date_score < 0.5:
            discrepancies.append(f"Date difference: {csv_txn.get('date')} vs {image_txn.get('date')}")
        
        # Vendor matching (25% weight)
        vendor_score = self._compare_vendors(
            csv_txn.get("vendor", ""), 
            image_txn.get("vendor", "")
        )
        confidence_score += vendor_score * 0.25
        if vendor_score > 0.7:
            match_reasons.append(f"Vendor match: '{csv_txn.get('vendor', '')}' β‰ˆ '{image_txn.get('vendor', '')}'")
        elif vendor_score < 0.3:
            discrepancies.append(f"Vendor difference: '{csv_txn.get('vendor', '')}' vs '{image_txn.get('vendor', '')}'")
        
        # Description matching (10% weight)
        desc_score = self._compare_descriptions(
            csv_txn.get("description", ""), 
            image_txn.get("description", "")
        )
        confidence_score += desc_score * 0.1
        if desc_score > 0.7:
            match_reasons.append(f"Description similarity: '{csv_txn.get('description', '')}' β‰ˆ '{image_txn.get('description', '')}'")
        
        # Determine match type
        if confidence_score >= self.high_confidence_threshold:
            match_type = "high"
        elif confidence_score >= self.medium_confidence_threshold:
            match_type = "medium"
        elif confidence_score >= 0.3:
            match_type = "low"
        else:
            match_type = "no_match"
        
        return TransactionMatch(
            csv_transaction=csv_txn,
            image_transaction=image_txn,
            confidence_score=round(confidence_score, 3),
            match_reasons=match_reasons,
            discrepancies=discrepancies,
            match_type=match_type
        )
    
    def _compare_amounts(self, amount1: float, amount2: float) -> float:
        """Compare transaction amounts with tolerance"""
        try:
            amount1, amount2 = float(amount1), float(amount2)
            
            # Exact match
            if abs(amount1 - amount2) <= self.amount_tolerance:
                return 1.0
            
            # Close match with scaling tolerance
            diff = abs(amount1 - amount2)
            avg_amount = (abs(amount1) + abs(amount2)) / 2
            
            if avg_amount == 0:
                return 0.0
            
            # Scale tolerance based on amount size
            scaled_tolerance = max(self.amount_tolerance, avg_amount * 0.02)  # 2% tolerance
            
            if diff <= scaled_tolerance:
                return 0.9
            elif diff <= scaled_tolerance * 3:
                return 0.7
            elif diff <= scaled_tolerance * 5:
                return 0.5
            else:
                return 0.0
                
        except:
            return 0.0
    
    def _compare_dates(self, date1: datetime, date2: datetime) -> float:
        """Compare transaction dates with window tolerance"""
        try:
            if not date1 or not date2:
                return 0.0
            
            # Ensure both are datetime objects
            if isinstance(date1, str):
                date1 = datetime.fromisoformat(date1.replace("Z", "+00:00"))
            if isinstance(date2, str):
                date2 = datetime.fromisoformat(date2.replace("Z", "+00:00"))
            
            diff_days = abs((date1 - date2).days)
            
            if diff_days == 0:
                return 1.0
            elif diff_days <= self.date_window_days:
                return 1.0 - (diff_days / self.date_window_days) * 0.3  # Linear decay
            elif diff_days <= self.date_window_days * 2:
                return 0.5
            else:
                return 0.0
                
        except:
            return 0.0
    
    def _compare_vendors(self, vendor1: str, vendor2: str) -> float:
        """Compare vendor names using fuzzy matching"""
        try:
            if not vendor1 or not vendor2:
                return 0.0
            
            vendor1 = self._clean_text(vendor1)
            vendor2 = self._clean_text(vendor2)
            
            # Exact match
            if vendor1 == vendor2:
                return 1.0
            
            # Check if one contains the other
            if vendor1 in vendor2 or vendor2 in vendor1:
                return 0.9
            
            # Use sequence matching
            similarity = difflib.SequenceMatcher(None, vendor1, vendor2).ratio()
            
            # Check for partial word matches
            words1 = set(vendor1.split())
            words2 = set(vendor2.split())
            
            if words1 and words2:
                word_intersection = len(words1.intersection(words2))
                word_union = len(words1.union(words2))
                word_similarity = word_intersection / word_union if word_union > 0 else 0
                
                # Take the maximum of sequence similarity and word similarity
                similarity = max(similarity, word_similarity)
            
            return similarity
            
        except:
            return 0.0
    
    def _compare_descriptions(self, desc1: str, desc2: str) -> float:
        """Compare transaction descriptions"""
        try:
            if not desc1 or not desc2:
                return 0.0
            
            desc1 = self._clean_text(desc1)
            desc2 = self._clean_text(desc2)
            
            if desc1 == desc2:
                return 1.0
            
            # Use sequence matching
            similarity = difflib.SequenceMatcher(None, desc1, desc2).ratio()
            
            # Check for keyword matches
            words1 = set(desc1.split())
            words2 = set(desc2.split())
            
            if words1 and words2:
                word_intersection = len(words1.intersection(words2))
                if word_intersection > 0:
                    similarity = max(similarity, word_intersection / max(len(words1), len(words2)))
            
            return similarity
            
        except:
            return 0.0
    
    def _serialize_match(self, match: TransactionMatch) -> Dict[str, Any]:
        """Convert TransactionMatch to serializable dictionary"""
        return {
            "csv_transaction": match.csv_transaction,
            "image_transaction": match.image_transaction,
            "confidence_score": match.confidence_score,
            "match_reasons": match.match_reasons,
            "discrepancies": match.discrepancies,
            "match_type": match.match_type,
            "recommendation": self._get_recommendation(match)
        }
    
    def _get_recommendation(self, match: TransactionMatch) -> str:
        """Get recommendation for user action based on match confidence"""
        if match.confidence_score >= self.high_confidence_threshold:
            return "Auto-approve: High confidence match"
        elif match.confidence_score >= self.medium_confidence_threshold:
            return "Review recommended: Medium confidence match"
        else:
            return "Manual review required: Low confidence match"


def test_reconciler():
    """Test function for the reconciler"""
    # Sample test data
    csv_transactions = [
        {"date": "2024-01-15", "amount": 4.50, "vendor": "Coffee Shop Downtown", "description": "Morning coffee"},
        {"date": "2024-01-16", "amount": 45.00, "vendor": "Shell Gas Station", "description": "Fuel"},
        {"date": "2024-01-17", "amount": 23.99, "vendor": "Office Depot", "description": "Supplies"}
    ]
    
    image_transactions = [
        {"date": "2024-01-15", "amount": 4.50, "vendor": "Coffee Shop", "description": "Coffee"},
        {"date": "2024-01-16", "amount": 45.00, "vendor": "Shell", "description": "Gas"},
        {"date": "2024-01-18", "amount": 12.99, "vendor": "Amazon", "description": "Online purchase"}
    ]
    
    reconciler = TransactionReconciler()
    result = reconciler.reconcile_transactions(csv_transactions, image_transactions)
    
    print("βœ… Reconciler test completed")
    print(f"Matches found: {result['summary']['total_matches']}")
    print(f"Match rate: {result['summary']['match_rate']}%")


if __name__ == "__main__":
    test_reconciler()