Spaces:
Running
Running
File size: 29,162 Bytes
2710472 096d70b fc45a33 52fe59a 5475a9d 25f5cbc 2710472 3feb691 2710472 52fe59a 25f5cbc 2710472 096d70b 2710472 096d70b 52fe59a 5475a9d fc45a33 2710472 3feb691 2710472 5475a9d 2710472 096d70b 3caa3e9 096d70b 3caa3e9 096d70b e06772e 096d70b e06772e 096d70b 3caa3e9 096d70b 3caa3e9 096d70b 2710472 e06772e 2710472 096d70b 52fe59a 3271610 52fe59a fc45a33 52fe59a 2710472 25f5cbc 096d70b 2710472 096d70b 2710472 3feb691 2710472 3feb691 2710472 1711059 2710472 3feb691 2710472 3feb691 fc45a33 52fe59a 3feb691 fc45a33 52fe59a 3feb691 52fe59a 3feb691 52fe59a 2710472 3feb691 096d70b 3feb691 fc45a33 3feb691 096d70b 3feb691 2710472 5475a9d 096d70b 3feb691 2710472 25f5cbc 096d70b 2710472 3feb691 2710472 096d70b 2710472 3feb691 096d70b fc45a33 3feb691 25f5cbc fc45a33 3feb691 096d70b 3feb691 096d70b fc45a33 096d70b fc45a33 25f5cbc fc45a33 096d70b fc45a33 096d70b 25f5cbc 096d70b 3feb691 3fe27ba 3feb691 2710472 52fe59a 096d70b 52fe59a 096d70b 52fe59a 2710472 096d70b 2710472 096d70b 5475a9d 096d70b 3feb691 52fe59a 25f5cbc 3feb691 25f5cbc 52fe59a 25f5cbc 52fe59a 25f5cbc 096d70b 25f5cbc 096d70b 25f5cbc 096d70b 25f5cbc 096d70b 25f5cbc 3fe27ba 25f5cbc 096d70b 25f5cbc 3feb691 25f5cbc 0a1ac14 2710472 096d70b 25f5cbc 096d70b 25f5cbc 096d70b 2710472 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 |
from __future__ import annotations
import dataclasses
import enum
import os
from collections import OrderedDict
from collections.abc import Mapping, Sequence
from pathlib import Path
from types import MappingProxyType
from typing import TYPE_CHECKING, Any
import boto3
import botocore
import botocore.exceptions
import gradio as gr
import gradio.themes as gr_themes
import markdown
from langchain_aws import ChatBedrock
from langchain_core.callbacks import BaseCallbackHandler
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
from langchain_core.tools import BaseTool
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain_openai import AzureChatOpenAI
from langgraph.prebuilt import create_react_agent
from openai import OpenAI
from openai.types.chat import ChatCompletion
from tdagent.grcomponents import MutableCheckBoxGroup, MutableCheckBoxGroupEntry
if TYPE_CHECKING:
from langgraph.graph.graph import CompiledGraph
#### Constants ####
class AgentType(str, enum.Enum):
"""TDAgent type."""
DATA_ENRICHER = "Data enricher"
INCIDENT_HANDLER = "Incident handler"
PEN_TESTER = "PenTester"
def __str__(self) -> str: # noqa: D105
return self.value
AGENT_SYSTEM_MESSAGES = OrderedDict(
(
(
AgentType.DATA_ENRICHER,
"""
You are a cybersecurity incidence data enriching assistant. Analysts
will present information about security incidents and you must use
all the tools at your disposal to enrich the data as much as possible.
""".strip(),
),
(
AgentType.INCIDENT_HANDLER,
"""
You are a security analyst assistant responsible for collecting, analyzing
and disseminating actionable intelligence related to cyber threats,
vulnerabilities and threat actors.
When presented with potential incidents information or tickets, you should
evaluate the presented evidence, gather additional data using any tool at
your disposal and take corrective actions if possible.
Afterwards, generate a cybersecurity report including: key findings, challenges,
actions taken and recommendations.
Never use external means of communication, like emails or SMS, unless
instructed to do so.
""".strip(),
),
(
AgentType.PEN_TESTER,
"""
You are a cybersecurity pentester. You use tools to analyze domain to try to discover system vulnerabilities.
Always report you findings and suggest next steps to deep dive where applicable.
""".strip(),
),
),
)
GRADIO_ROLE_TO_LG_MESSAGE_TYPE = MappingProxyType(
{
"user": HumanMessage,
"assistant": AIMessage,
},
)
MODEL_OPTIONS = OrderedDict( # Initialize with tuples to preserve options order
(
(
"HuggingFace",
{
"Mistral 7B Instruct": "mistralai/Mistral-7B-Instruct-v0.3",
"Llama 3.1 8B Instruct": "meta-llama/Llama-3.1-8B-Instruct",
# "Qwen3 235B A22B": "Qwen/Qwen3-235B-A22B", # Slow inference
"Microsoft Phi-3.5-mini Instruct": "microsoft/Phi-3.5-mini-instruct",
# "Deepseek R1 distill-llama 70B": "deepseek-ai/DeepSeek-R1-Distill-Llama-70B", # noqa: E501
# "Deepseek V3": "deepseek-ai/DeepSeek-V3",
},
),
(
"AWS Bedrock",
{
"Anthropic Claude 3.5 Sonnet (EU)": (
"eu.anthropic.claude-3-5-sonnet-20240620-v1:0"
),
"Anthropic Claude 3.7 Sonnet": (
"anthropic.claude-3-7-sonnet-20250219-v1:0"
),
"Claude Sonnet 4": (
"anthropic.claude-sonnet-4-20250514-v1:0"
),
},
),
(
"Azure OpenAI",
{
"GPT-4o": ("ggpt-4o-global-standard"),
"GPT-4o Mini": ("o4-mini"),
"GPT-4.5 Preview": ("gpt-4.5-preview"),
},
),
),
)
CONNECT_STATE_DEFAULT = gr.State()
@dataclasses.dataclass
class ToolInvocationInfo:
"""Information related to a tool invocation by the LLM."""
name: str
inputs: Mapping[str, Any]
class ToolsTracerCallback(BaseCallbackHandler):
"""Callback that registers tools invoked by the Agent."""
def __init__(self) -> None:
self._tools_trace: list[ToolInvocationInfo] = []
def on_tool_start( # noqa: D102
self,
serialized: dict[str, Any],
*args: Any,
inputs: dict[str, Any] | None = None,
**kwargs: Any,
) -> Any:
self._tools_trace.append(
ToolInvocationInfo(
name=serialized.get("name", "<unknown-function-name>"),
inputs=inputs if inputs else {},
),
)
return super().on_tool_start(serialized, *args, inputs=inputs, **kwargs)
@property
def tools_trace(self) -> Sequence[ToolInvocationInfo]:
"""Tools trace information."""
return self._tools_trace
def clear(self) -> None:
"""Clear tools trace."""
self._tools_trace.clear()
#### Shared variables ####
llm_agent: CompiledGraph | None = None
llm_tools_tracer: ToolsTracerCallback | None = None
#### Utility functions ####
## Bedrock LLM creation ##
def create_bedrock_llm(
bedrock_model_id: str,
aws_access_key: str,
aws_secret_key: str,
aws_session_token: str,
aws_region: str,
temperature: float = 0.8,
max_tokens: int = 512,
) -> tuple[ChatBedrock | None, str]:
"""Create a LangGraph Bedrock agent."""
boto3_config = {
"aws_access_key_id": aws_access_key,
"aws_secret_access_key": aws_secret_key,
"aws_session_token": aws_session_token if aws_session_token else None,
"region_name": aws_region,
}
# Verify credentials
try:
sts = boto3.client("sts", **boto3_config)
sts.get_caller_identity()
except botocore.exceptions.ClientError as err:
return None, str(err)
try:
bedrock_client = boto3.client("bedrock-runtime", **boto3_config)
llm = ChatBedrock(
model=bedrock_model_id,
client=bedrock_client,
model_kwargs={"temperature": temperature, "max_tokens": max_tokens},
)
except Exception as e: # noqa: BLE001
return None, str(e)
return llm, ""
## Hugging Face LLM creation ##
def create_hf_llm(
hf_model_id: str,
huggingfacehub_api_token: str | None = None,
temperature: float = 0.8,
max_tokens: int = 512,
) -> tuple[ChatHuggingFace | None, str]:
"""Create a LangGraph Hugging Face agent."""
try:
llm = HuggingFaceEndpoint(
model=hf_model_id,
temperature=temperature,
max_new_tokens=max_tokens,
task="text-generation",
huggingfacehub_api_token=huggingfacehub_api_token,
)
chat_llm = ChatHuggingFace(llm=llm)
except Exception as e: # noqa: BLE001
return None, str(e)
return chat_llm, ""
## OpenAI LLM creation ##
def create_openai_llm(
model_id: str,
token_id: str,
) -> tuple[ChatCompletion | None, str]:
"""Create a LangGraph OpenAI agent."""
try:
client = OpenAI(
base_url="https://api.studio.nebius.com/v1/",
api_key=token_id,
)
llm = client.chat.completions.create(
messages=[], # needs to be fixed
model=model_id,
max_tokens=512,
temperature=0.8,
)
except Exception as e: # noqa: BLE001
return None, str(e)
return llm, ""
def create_azure_llm(
model_id: str,
api_version: str,
endpoint: str,
token_id: str,
temperature: float = 0.8,
max_tokens: int = 512,
) -> tuple[AzureChatOpenAI | None, str]:
"""Create a LangGraph Azure OpenAI agent."""
try:
os.environ["AZURE_OPENAI_ENDPOINT"] = endpoint
os.environ["AZURE_OPENAI_API_KEY"] = token_id
if "o4-mini" in model_id:
kwargs = {"max_completion_tokens": max_tokens}
else:
kwargs = {"max_tokens": max_tokens}
llm = AzureChatOpenAI(
azure_deployment=model_id,
api_key=token_id,
api_version=api_version,
temperature=temperature,
**kwargs,
)
except Exception as e: # noqa: BLE001
return None, str(e)
return llm, ""
#### UI functionality ####
async def gr_fetch_mcp_tools(
mcp_servers: Sequence[MutableCheckBoxGroupEntry] | None,
*,
trace_tools: bool,
) -> list[BaseTool]:
"""Fetch tools from MCP servers."""
global llm_tools_tracer # noqa: PLW0603
if mcp_servers:
client = MultiServerMCPClient(
{
server.name.replace(" ", "-"): {
"url": server.value,
"transport": "sse",
}
for server in mcp_servers
},
)
tools = await client.get_tools()
if trace_tools:
llm_tools_tracer = ToolsTracerCallback()
for tool in tools:
if tool.callbacks is None:
tool.callbacks = [llm_tools_tracer]
elif isinstance(tool.callbacks, list):
tool.callbacks.append(llm_tools_tracer)
else:
tool.callbacks.add_handler(llm_tools_tracer)
else:
llm_tools_tracer = None
return tools
return []
def gr_make_system_message(
agent_type: AgentType,
) -> SystemMessage:
"""Make agent's system message."""
try:
system_msg = AGENT_SYSTEM_MESSAGES[agent_type]
except KeyError as err:
raise gr.Error(f"Unknown agent type '{agent_type}'") from err
return SystemMessage(system_msg)
async def gr_connect_to_bedrock( # noqa: PLR0913
model_id: str,
access_key: str,
secret_key: str,
session_token: str,
region: str,
mcp_servers: Sequence[MutableCheckBoxGroupEntry] | None,
agent_type: AgentType,
trace_tool_calls: bool,
temperature: float = 0.8,
max_tokens: int = 512,
) -> str:
"""Initialize Bedrock agent."""
global llm_agent # noqa: PLW0603
CONNECT_STATE_DEFAULT.value = True
if not access_key or not secret_key:
return "β Please provide both Access Key ID and Secret Access Key"
llm, error = create_bedrock_llm(
model_id,
access_key.strip(),
secret_key.strip(),
session_token.strip(),
region,
temperature=temperature,
max_tokens=max_tokens,
)
if llm is None:
return f"β Connection failed: {error}"
llm_agent = create_react_agent(
model=llm,
tools=await gr_fetch_mcp_tools(
mcp_servers,
trace_tools=trace_tool_calls,
),
prompt=gr_make_system_message(agent_type=agent_type),
)
return "β
Successfully connected to AWS Bedrock!"
async def gr_connect_to_hf(
model_id: str,
hf_access_token_textbox: str | None,
mcp_servers: Sequence[MutableCheckBoxGroupEntry] | None,
agent_type: AgentType,
trace_tool_calls: bool,
temperature: float = 0.8,
max_tokens: int = 512,
) -> str:
"""Initialize Hugging Face agent."""
global llm_agent # noqa: PLW0603
CONNECT_STATE_DEFAULT.value = True
llm, error = create_hf_llm(
model_id,
hf_access_token_textbox,
temperature=temperature,
max_tokens=max_tokens,
)
if llm is None:
return f"β Connection failed: {error}"
llm_agent = create_react_agent(
model=llm,
tools=await gr_fetch_mcp_tools(
mcp_servers,
trace_tools=trace_tool_calls,
),
prompt=gr_make_system_message(agent_type=agent_type),
)
return "β
Successfully connected to Hugging Face!"
async def gr_connect_to_azure( # noqa: PLR0913
model_id: str,
azure_endpoint: str,
api_key: str,
api_version: str,
mcp_servers: Sequence[MutableCheckBoxGroupEntry] | None,
agent_type: AgentType,
trace_tool_calls: bool,
temperature: float = 0.8,
max_tokens: int = 512,
) -> str:
"""Initialize Hugging Face agent."""
global llm_agent # noqa: PLW0603
CONNECT_STATE_DEFAULT.value = True
llm, error = create_azure_llm(
model_id,
api_version=api_version,
endpoint=azure_endpoint,
token_id=api_key,
temperature=temperature,
max_tokens=max_tokens,
)
if llm is None:
return f"β Connection failed: {error}"
llm_agent = create_react_agent(
model=llm,
tools=await gr_fetch_mcp_tools(mcp_servers, trace_tools=trace_tool_calls),
prompt=gr_make_system_message(agent_type=agent_type),
)
return "β
Successfully connected to Azure OpenAI!"
# async def gr_connect_to_nebius(
# model_id: str,
# nebius_access_token_textbox: str,
# mcp_servers: Sequence[MutableCheckBoxGroupEntry] | None,
# ) -> str:
# """Initialize Hugging Face agent."""
# global llm_agent
# connected_state.value = True
# llm, error = create_openai_llm(model_id, nebius_access_token_textbox)
# if llm is None:
# return f"β Connection failed: {error}"
# tools = []
# if mcp_servers:
# client = MultiServerMCPClient(
# {
# server.name.replace(" ", "-"): {
# "url": server.value,
# "transport": "sse",
# }
# for server in mcp_servers
# },
# )
# tools = await client.get_tools()
# llm_agent = create_react_agent(
# model=str(llm),
# tools=tools,
# prompt=SYSTEM_MESSAGE,
# )
# return "β
Successfully connected to nebius!"
with open("exfiltration_ticket.txt") as fhandle: # noqa: PTH123
exfiltration_ticket = fhandle.read()
with open("sample_kali_linux_1.txt") as fhandle1: # noqa: PTH123
service_discovery_ticket = fhandle1.read()
async def gr_chat_function( # noqa: D103
message: str,
history: list[Mapping[str, str]],
) -> str:
if llm_agent is None:
return "Please configure your credentials first."
messages = []
for hist_msg in history:
role = hist_msg["role"]
message_type = GRADIO_ROLE_TO_LG_MESSAGE_TYPE[role]
messages.append(message_type(content=hist_msg["content"]))
messages.append(HumanMessage(content=message))
try:
if llm_tools_tracer is not None:
llm_tools_tracer.clear()
llm_response = await llm_agent.ainvoke(
{
"messages": messages,
},
)
return _add_tools_trace_to_message(
llm_response["messages"][-1].content,
)
except Exception as err:
raise gr.Error(
f"We encountered an error while invoking the model:\n{err}",
print_exception=True,
) from err
def _add_tools_trace_to_message(message: str) -> str:
if not llm_tools_tracer or not llm_tools_tracer.tools_trace:
return message
import json
traces = []
for index, tool_info in enumerate(llm_tools_tracer.tools_trace):
trace_msg = f" {index}. {tool_info.name}"
if tool_info.inputs:
trace_msg += "\n"
trace_msg += " * Arguments:\n"
trace_msg += " ```json\n"
trace_msg += f" {json.dumps(tool_info.inputs, indent=4)}\n"
trace_msg += " ```\n"
traces.append(trace_msg)
return f"{message}\n\n# Tools Trace\n\n" + "\n".join(traces)
def _read_markdown_body_as_html(path: str = "README.md") -> str:
with Path(path).open(encoding="utf-8") as f: # Default mode is "r"
lines = f.readlines()
# Skip YAML front matter if present
if lines and lines[0].strip() == "---":
for i in range(1, len(lines)):
if lines[i].strip() == "---":
lines = lines[i + 1 :] # skip metadata block
break
markdown_body = "".join(lines).strip()
return markdown.markdown(markdown_body)
## UI components ##
custom_css = """
.main-header {
background: linear-gradient(135deg, #00a388 0%, #ffae00 100%);
padding: 30px;
border-radius: 5px;
margin-bottom: 20px;
text-align: center;
}
"""
with (
gr.Blocks(
theme=gr_themes.Origin(
primary_hue="teal",
spacing_size="sm",
font="sans-serif",
),
title="TDAgent",
fill_height=True,
fill_width=True,
css=custom_css,
) as gr_app,
):
gr.HTML(
"""
<div class="main-header">
<h1>π©βπ» TDAgentTools & TDAgent π¨βπ»</h1>
<p style="font-size: 1.2em; margin: 10px 0 0 0;">
Empowering Cybersecurity with Agentic AI
</p>
</div>
""",
)
with gr.Tabs():
with gr.TabItem("About"), gr.Row():
html_content = _read_markdown_body_as_html("README.md")
gr.Markdown(html_content)
with gr.TabItem("TDAgent"), gr.Row():
with gr.Column(scale=1):
with gr.Accordion("π MCP Servers", open=False):
mcp_list = MutableCheckBoxGroup(
values=[
MutableCheckBoxGroupEntry(
name="TDAgent tools",
value="https://agents-mcp-hackathon-tdagenttools.hf.space/gradio_api/mcp/sse",
),
],
label="MCP Servers",
new_value_label="MCP endpoint",
new_name_label="MCP endpoint name",
new_value_placeholder="https://my-cool-mcp-server.com/mcp/sse",
new_name_placeholder="Swiss army knife of MCPs",
)
with gr.Accordion("βοΈ Provider Configuration", open=True):
model_provider = gr.Dropdown(
choices=list(MODEL_OPTIONS.keys()),
value=None,
label="Select Model Provider",
)
## Amazon Bedrock Configuration ##
with gr.Group(visible=False) as aws_bedrock_conf_group:
aws_access_key_textbox = gr.Textbox(
label="AWS Access Key ID",
type="password",
placeholder="Enter your AWS Access Key ID",
)
aws_secret_key_textbox = gr.Textbox(
label="AWS Secret Access Key",
type="password",
placeholder="Enter your AWS Secret Access Key",
)
aws_region_dropdown = gr.Dropdown(
label="AWS Region",
choices=[
"us-east-1",
"us-west-2",
"eu-west-1",
"eu-central-1",
"ap-southeast-1",
],
value="eu-west-1",
)
aws_session_token_textbox = gr.Textbox(
label="AWS Session Token",
type="password",
placeholder="Enter your AWS session token",
)
## Huggingface Configuration ##
with gr.Group(visible=False) as hf_conf_group:
hf_token = gr.Textbox(
label="HuggingFace Token",
type="password",
placeholder="Enter your Hugging Face Access Token",
)
## Azure Configuration ##
with gr.Group(visible=False) as azure_conf_group:
azure_endpoint = gr.Textbox(
label="Azure OpenAI Endpoint",
type="text",
placeholder="Enter your Azure OpenAI Endpoint",
)
azure_api_token = gr.Textbox(
label="Azure Access Token",
type="password",
placeholder="Enter your Azure OpenAI Access Token",
)
azure_api_version = gr.Textbox(
label="Azure OpenAI API Version",
type="text",
placeholder="Enter your Azure OpenAI API Version",
value="2024-12-01-preview",
)
with gr.Accordion("π§ Model Configuration", open=True):
model_id_dropdown = gr.Dropdown(
label="Select known model id or type your own below",
choices=[],
visible=False,
)
model_id_textbox = gr.Textbox(
label="Model ID",
type="text",
placeholder="Enter the model ID",
visible=False,
interactive=True,
)
# Agent configuration options
with gr.Group():
agent_system_message_radio = gr.Radio(
choices=list(AGENT_SYSTEM_MESSAGES.keys()),
value=next(iter(AGENT_SYSTEM_MESSAGES.keys())),
label="Agent type",
info=(
"Changes the system message to pre-condition the agent"
" to act in a desired way."
),
)
agent_trace_tools_checkbox = gr.Checkbox(
value=False,
label="Trace tool calls",
info=(
"Add the invoked tools trace at the end of the"
" message"
),
)
# Initialize the temperature and max tokens based on model specs
temperature = gr.Slider(
label="Temperature",
minimum=0.0,
maximum=1.0,
value=0.8,
step=0.1,
)
max_tokens = gr.Slider(
label="Max Tokens",
minimum=128,
maximum=8192,
value=2048,
step=64,
)
connect_aws_bedrock_btn = gr.Button(
"π Connect to Bedrock",
variant="primary",
visible=False,
)
connect_hf_btn = gr.Button(
"π Connect to Huggingface π€",
variant="primary",
visible=False,
)
connect_azure_btn = gr.Button(
"π Connect to Azure",
variant="primary",
visible=False,
)
status_textbox = gr.Textbox(
label="Connection Status",
interactive=False,
)
with gr.Column(scale=2):
chat_interface = gr.ChatInterface(
fn=gr_chat_function,
type="messages",
examples=[exfiltration_ticket, service_discovery_ticket],
example_labels=[
"Enrich & Handle exfiltration ticket π΅οΈββοΈ",
"Handle service discovery ticket π€π»"],
description="A simple threat analyst agent with MCP tools.",
)
with gr.TabItem("Demo"):
gr.Markdown(
"""
This is a demo of TDAgent, a simple threat analyst agent with MCP tools.
You can configure the agent to use different LLM providers and connect to
various MCP servers to access tools.
""",
)
gr.HTML(
"""<iframe width="560" height="315" src="https://www.youtube.com/embed/C6Z9EOW-3lE" frameborder="0" allowfullscreen></iframe>""", # noqa: E501
)
## UI Events ##
def _toggle_model_choices_ui(
provider: str,
) -> dict[str, Any]:
if provider in MODEL_OPTIONS:
model_choices = list(MODEL_OPTIONS[provider].keys())
return gr.update(
choices=model_choices,
value=model_choices[0],
visible=True,
interactive=True,
)
return gr.update(choices=[], visible=False)
def _toggle_model_aws_bedrock_conf_ui(
provider: str,
) -> tuple[dict[str, Any], ...]:
is_aws = provider == "AWS Bedrock"
return gr.update(visible=is_aws), gr.update(visible=is_aws)
def _toggle_model_hf_conf_ui(
provider: str,
) -> tuple[dict[str, Any], ...]:
is_hf = provider == "HuggingFace"
return gr.update(visible=is_hf), gr.update(visible=is_hf)
def _toggle_model_azure_conf_ui(
provider: str,
) -> tuple[dict[str, Any], ...]:
is_azure = provider == "Azure OpenAI"
return gr.update(visible=is_azure), gr.update(visible=is_azure)
# Initialize a flag to check if connected
def _on_change_model_configuration(*args: str) -> Any: # noqa: ARG001
# If model configuration changes after connecting, issue a warning
if CONNECT_STATE_DEFAULT.value:
CONNECT_STATE_DEFAULT.value = False # Reset the state
return gr.Warning(
"When changing model configuration, you need to reconnect.",
duration=5,
)
return gr.update()
## Connect Event Listeners ##
model_provider.change(
_toggle_model_choices_ui,
inputs=[model_provider],
outputs=[model_id_dropdown],
)
model_provider.change(
_toggle_model_aws_bedrock_conf_ui,
inputs=[model_provider],
outputs=[aws_bedrock_conf_group, connect_aws_bedrock_btn],
)
model_provider.change(
_toggle_model_hf_conf_ui,
inputs=[model_provider],
outputs=[hf_conf_group, connect_hf_btn],
)
model_provider.change(
_toggle_model_azure_conf_ui,
inputs=[model_provider],
outputs=[azure_conf_group, connect_azure_btn],
)
connect_aws_bedrock_btn.click(
gr_connect_to_bedrock,
inputs=[
model_id_textbox,
aws_access_key_textbox,
aws_secret_key_textbox,
aws_session_token_textbox,
aws_region_dropdown,
mcp_list.state,
agent_system_message_radio,
agent_trace_tools_checkbox,
temperature,
max_tokens,
],
outputs=[status_textbox],
)
connect_hf_btn.click(
gr_connect_to_hf,
inputs=[
model_id_textbox,
hf_token,
mcp_list.state,
agent_system_message_radio,
agent_trace_tools_checkbox,
temperature,
max_tokens,
],
outputs=[status_textbox],
)
connect_azure_btn.click(
gr_connect_to_azure,
inputs=[
model_id_textbox,
azure_endpoint,
azure_api_token,
azure_api_version,
mcp_list.state,
agent_system_message_radio,
agent_trace_tools_checkbox,
temperature,
max_tokens,
],
outputs=[status_textbox],
)
model_id_dropdown.change(
lambda x, y: (
gr.update(
value=MODEL_OPTIONS.get(y, {}).get(x),
visible=True,
)
if x
else model_id_textbox.value
),
inputs=[model_id_dropdown, model_provider],
outputs=[model_id_textbox],
)
model_provider.change(
_on_change_model_configuration,
inputs=[model_provider],
)
model_id_dropdown.change(
_on_change_model_configuration,
inputs=[model_id_dropdown, model_provider],
)
## Entry Point ##
if __name__ == "__main__":
gr_app.launch()
|