Spaces:
Running
Running
File size: 16,415 Bytes
2710472 7813b1d 5475a9d 2710472 3feb691 2710472 7813b1d 2710472 7813b1d 5475a9d 2710472 3feb691 2710472 5475a9d 2710472 e06772e 2710472 e06772e 2710472 7813b1d c86beb0 7813b1d 2710472 3feb691 2710472 3feb691 2710472 5475a9d 2710472 3feb691 2710472 3feb691 7813b1d 3feb691 7813b1d 3feb691 7813b1d 3feb691 7813b1d 2710472 3feb691 2710472 5475a9d 3feb691 2710472 3feb691 2710472 5475a9d 2710472 5475a9d 2710472 3feb691 2710472 7813b1d 2710472 5475a9d 3feb691 7813b1d 3feb691 7813b1d 3feb691 7813b1d 3feb691 7813b1d 3feb691 7813b1d 3feb691 5b1ca13 3feb691 2710472 3feb691 2710472 3feb691 2710472 3feb691 2710472 3feb691 2710472 3feb691 2710472 3feb691 2710472 3feb691 2710472 3feb691 2710472 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
from __future__ import annotations
from collections import OrderedDict
from collections.abc import Mapping, Sequence
from types import MappingProxyType
from typing import TYPE_CHECKING, Any
import boto3
import botocore
import botocore.exceptions
import gradio as gr
import gradio.themes as gr_themes
from langchain_aws import ChatBedrock
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_mcp_adapters.client import MultiServerMCPClient
from langgraph.prebuilt import create_react_agent
from openai import OpenAI
from openai.types.chat import ChatCompletion
from tdagent.grcomponents import MutableCheckBoxGroup, MutableCheckBoxGroupEntry
if TYPE_CHECKING:
from langgraph.graph.graph import CompiledGraph
#### Constants ####
SYSTEM_MESSAGE = SystemMessage(
"""
You are a security analyst assistant responsible for collecting, analyzing
and disseminating actionable intelligence related to cyber threats,
vulnerabilities and threat actors.
When presented with potential incidents information or tickets, you should
evaluate the presented evidence, decide what is missing and gather
additional data using any tool at your disposal. After gathering more
information you must evaluate if the incident is a threat or
not and, if possible, remediation actions.
You must always present the conducted analysis and final conclusion.
Never use external means of communication, like emails or SMS, unless
instructed to do so.
""".strip(),
)
GRADIO_ROLE_TO_LG_MESSAGE_TYPE = MappingProxyType(
{
"user": HumanMessage,
"assistant": AIMessage,
},
)
MODEL_OPTIONS = OrderedDict( # Initialize with tuples to preserve options order
(
(
"HuggingFace",
{
"Mistral 7B Instruct": "mistralai/Mistral-7B-Instruct-v0.3",
"Llama 3.1 8B Instruct": "meta-llama/Llama-3.1-8B-Instruct",
# "Qwen3 235B A22B": "Qwen/Qwen3-235B-A22B", # Slow inference
"Microsoft Phi-3.5-mini Instruct": "microsoft/Phi-3.5-mini-instruct",
# "Deepseek R1 distill-llama 70B": "deepseek-ai/DeepSeek-R1-Distill-Llama-70B", # noqa: E501
# "Deepseek V3": "deepseek-ai/DeepSeek-V3",
},
),
(
"AWS Bedrock",
{
"Anthropic Claude 3.5 Sonnet (EU)": (
"eu.anthropic.claude-3-5-sonnet-20240620-v1:0"
),
# "Anthropic Claude 3.7 Sonnet": (
# "anthropic.claude-3-7-sonnet-20250219-v1:0"
# ),
},
),
),
)
#### Shared variables ####
llm_agent: CompiledGraph | None = None
#### Utility functions ####
## Bedrock LLM creation ##
def create_bedrock_llm(
bedrock_model_id: str,
aws_access_key: str,
aws_secret_key: str,
aws_session_token: str,
aws_region: str,
temperature: float = 0.8,
max_tokens: int = 512,
) -> tuple[ChatBedrock | None, str]:
"""Create a LangGraph Bedrock agent."""
boto3_config = {
"aws_access_key_id": aws_access_key,
"aws_secret_access_key": aws_secret_key,
"aws_session_token": aws_session_token if aws_session_token else None,
"region_name": aws_region,
}
# Verify credentials
try:
sts = boto3.client("sts", **boto3_config)
sts.get_caller_identity()
except botocore.exceptions.ClientError as err:
return None, str(err)
try:
bedrock_client = boto3.client("bedrock-runtime", **boto3_config)
llm = ChatBedrock(
model_id=bedrock_model_id,
client=bedrock_client,
model_kwargs={"temperature": temperature, "max_tokens": max_tokens},
)
except Exception as e: # noqa: BLE001
return None, str(e)
return llm, ""
## Hugging Face LLM creation ##
def create_hf_llm(
hf_model_id: str,
huggingfacehub_api_token: str | None = None,
) -> tuple[ChatHuggingFace | None, str]:
"""Create a LangGraph Hugging Face agent."""
try:
llm = HuggingFaceEndpoint(
model=hf_model_id,
temperature=0.8,
task="text-generation",
huggingfacehub_api_token=huggingfacehub_api_token,
)
chat_llm = ChatHuggingFace(llm=llm)
except Exception as e: # noqa: BLE001
return None, str(e)
return chat_llm, ""
## OpenAI LLM creation ##
def create_openai_llm(
model_id: str,
token_id: str,
) -> tuple[ChatCompletion | None, str]:
"""Create a LangGraph OpenAI agent."""
try:
client = OpenAI(
base_url="https://api.studio.nebius.com/v1/",
api_key=token_id,
)
llm = client.chat.completions.create(
messages=[], # needs to be fixed
model=model_id,
max_tokens=512,
temperature=0.8,
)
except Exception as e: # noqa: BLE001
return None, str(e)
return llm, ""
#### UI functionality ####
async def gr_connect_to_bedrock( # noqa: PLR0913
model_id: str,
access_key: str,
secret_key: str,
session_token: str,
region: str,
mcp_servers: Sequence[MutableCheckBoxGroupEntry] | None,
temperature: float = 0.8,
max_tokens: int = 512,
) -> str:
"""Initialize Bedrock agent."""
global llm_agent # noqa: PLW0603
if not access_key or not secret_key:
return "β Please provide both Access Key ID and Secret Access Key"
llm, error = create_bedrock_llm(
model_id,
access_key.strip(),
secret_key.strip(),
session_token.strip(),
region,
temperature=temperature,
max_tokens=max_tokens,
)
if llm is None:
return f"β Connection failed: {error}"
# client = MultiServerMCPClient(
# {
# "toolkit": {
# "url": "https://agents-mcp-hackathon-tdagenttools.hf.space/gradio_api/mcp/sse",
# "transport": "sse",
# },
# }
# )
# tools = await client.get_tools()
if mcp_servers:
client = MultiServerMCPClient(
{
server.name.replace(" ", "-"): {
"url": server.value,
"transport": "sse",
}
for server in mcp_servers
},
)
tools = await client.get_tools()
else:
tools = []
llm_agent = create_react_agent(
model=llm,
tools=tools,
prompt=SYSTEM_MESSAGE,
)
return "β
Successfully connected to AWS Bedrock!"
async def gr_connect_to_hf(
model_id: str,
hf_access_token_textbox: str | None,
mcp_servers: Sequence[MutableCheckBoxGroupEntry] | None,
) -> str:
"""Initialize Hugging Face agent."""
global llm_agent # noqa: PLW0603
llm, error = create_hf_llm(model_id, hf_access_token_textbox)
if llm is None:
return f"β Connection failed: {error}"
tools = []
if mcp_servers:
client = MultiServerMCPClient(
{
server.name.replace(" ", "-"): {
"url": server.value,
"transport": "sse",
}
for server in mcp_servers
},
)
tools = await client.get_tools()
llm_agent = create_react_agent(
model=llm,
tools=tools,
prompt=SYSTEM_MESSAGE,
)
return "β
Successfully connected to Hugging Face!"
async def gr_connect_to_nebius(
model_id: str,
nebius_access_token_textbox: str,
mcp_servers: Sequence[MutableCheckBoxGroupEntry] | None,
) -> str:
"""Initialize Hugging Face agent."""
global llm_agent # noqa: PLW0603
llm, error = create_openai_llm(model_id, nebius_access_token_textbox)
if llm is None:
return f"β Connection failed: {error}"
tools = []
if mcp_servers:
client = MultiServerMCPClient(
{
server.name.replace(" ", "-"): {
"url": server.value,
"transport": "sse",
}
for server in mcp_servers
},
)
tools = await client.get_tools()
llm_agent = create_react_agent(
model=str(llm),
tools=tools,
prompt=SYSTEM_MESSAGE,
)
return "β
Successfully connected to nebius!"
async def gr_chat_function( # noqa: D103
message: str,
history: list[Mapping[str, str]],
) -> str:
if llm_agent is None:
return "Please configure your credentials first."
messages = []
for hist_msg in history:
role = hist_msg["role"]
message_type = GRADIO_ROLE_TO_LG_MESSAGE_TYPE[role]
messages.append(message_type(content=hist_msg["content"]))
messages.append(HumanMessage(content=message))
try:
llm_response = await llm_agent.ainvoke(
{
"messages": messages,
},
)
return llm_response["messages"][-1].content
except Exception as err:
raise gr.Error(
f"We encountered an error while invoking the model:\n{err}",
print_exception=True,
) from err
## UI components ##
# Function to toggle visibility and set model IDs
def toggle_model_fields(
provider: str,
) -> tuple[
dict[str, Any],
dict[str, Any],
dict[str, Any],
dict[str, Any],
dict[str, Any],
dict[str, Any],
]: # ignore: F821
"""Toggle visibility of model fields based on the selected provider."""
# Update model choices based on the selected provider
if provider in MODEL_OPTIONS:
model_choices = list(MODEL_OPTIONS[provider].keys())
model_pretty = gr.update(
choices=model_choices,
value=model_choices[0],
visible=True,
interactive=True,
)
else:
model_pretty = gr.update(choices=[], visible=False)
# Visibility settings for fields specific to each provider
is_aws = provider == "AWS Bedrock"
is_hf = provider == "HuggingFace"
return (
model_pretty,
gr.update(visible=is_aws, interactive=is_aws),
gr.update(visible=is_aws, interactive=is_aws),
gr.update(visible=is_aws, interactive=is_aws),
gr.update(visible=is_aws, interactive=is_aws),
gr.update(visible=is_hf, interactive=is_hf),
)
async def update_connection_status( # noqa: PLR0913
provider: str,
pretty_model: str,
mcp_list_state: Sequence[MutableCheckBoxGroupEntry] | None,
aws_access_key_textbox: str,
aws_secret_key_textbox: str,
aws_session_token_textbox: str,
aws_region_dropdown: str,
hf_token: str,
temperature: float,
max_tokens: int,
) -> str:
"""Update the connection status based on the selected provider and model."""
if not provider or not pretty_model:
return "β Please select a provider and model."
model_id = MODEL_OPTIONS.get(provider, {}).get(pretty_model)
connection = "β Invalid provider"
if model_id:
if provider == "AWS Bedrock":
connection = await gr_connect_to_bedrock(
model_id,
aws_access_key_textbox,
aws_secret_key_textbox,
aws_session_token_textbox,
aws_region_dropdown,
mcp_list_state,
temperature,
max_tokens,
)
elif provider == "HuggingFace":
connection = await gr_connect_to_hf(model_id, hf_token, mcp_list_state)
elif provider == "Nebius":
connection = await gr_connect_to_nebius(model_id, hf_token, mcp_list_state)
return connection
with (
gr.Blocks(
theme=gr_themes.Origin(
primary_hue="teal",
spacing_size="sm",
font="sans-serif",
),
title="TDAgent",
) as gr_app,
gr.Row(),
):
with gr.Column(scale=1):
with gr.Accordion("π MCP Servers", open=False):
mcp_list = MutableCheckBoxGroup(
values=[
MutableCheckBoxGroupEntry(
name="TDAgent tools",
value="https://agents-mcp-hackathon-tdagenttools.hf.space/gradio_api/mcp/sse",
),
],
label="MCP Servers",
new_value_label="MCP endpoint",
new_name_label="MCP endpoint name",
new_value_placeholder="https://my-cool-mcp-server.com/mcp/sse",
new_name_placeholder="Swiss army knife of MCPs",
)
with gr.Accordion("βοΈ Provider Configuration", open=True):
model_provider = gr.Dropdown(
choices=list(MODEL_OPTIONS.keys()),
value=None,
label="Select Model Provider",
)
aws_access_key_textbox = gr.Textbox(
label="AWS Access Key ID",
type="password",
placeholder="Enter your AWS Access Key ID",
visible=False,
)
aws_secret_key_textbox = gr.Textbox(
label="AWS Secret Access Key",
type="password",
placeholder="Enter your AWS Secret Access Key",
visible=False,
)
aws_region_dropdown = gr.Dropdown(
label="AWS Region",
choices=[
"us-east-1",
"us-west-2",
"eu-west-1",
"eu-central-1",
"ap-southeast-1",
],
value="eu-west-1",
visible=False,
)
aws_session_token_textbox = gr.Textbox(
label="AWS Session Token",
type="password",
placeholder="Enter your AWS session token",
visible=False,
)
hf_token = gr.Textbox(
label="HuggingFace Token",
type="password",
placeholder="Enter your Hugging Face Access Token",
visible=False,
)
with gr.Accordion("π§ Model Configuration", open=True):
model_display_id = gr.Dropdown(
label="Select Model ID",
choices=[],
visible=False,
)
model_provider.change(
toggle_model_fields,
inputs=[model_provider],
outputs=[
model_display_id,
aws_access_key_textbox,
aws_secret_key_textbox,
aws_session_token_textbox,
aws_region_dropdown,
hf_token,
],
)
# Initialize the temperature and max tokens based on model specifications
temperature = gr.Slider(
label="Temperature",
minimum=0.0,
maximum=1.0,
value=0.8,
step=0.1,
)
max_tokens = gr.Slider(
label="Max Tokens",
minimum=64,
maximum=4096,
value=512,
step=64,
)
connect_btn = gr.Button("π Connect to Model", variant="primary")
status_textbox = gr.Textbox(label="Connection Status", interactive=False)
connect_btn.click(
update_connection_status,
inputs=[
model_provider,
model_display_id,
mcp_list.state,
aws_access_key_textbox,
aws_secret_key_textbox,
aws_session_token_textbox,
aws_region_dropdown,
hf_token,
temperature,
max_tokens,
],
outputs=[status_textbox],
)
with gr.Column(scale=2):
chat_interface = gr.ChatInterface(
fn=gr_chat_function,
type="messages",
examples=[], # Add examples if needed
title="π©βπ» TDAgent",
description="This is a simple agent that uses MCP tools.",
)
if __name__ == "__main__":
gr_app.launch()
|