File size: 16,415 Bytes
2710472
 
7813b1d
5475a9d
2710472
3feb691
2710472
 
 
 
 
7813b1d
2710472
 
7813b1d
5475a9d
2710472
3feb691
 
2710472
5475a9d
 
 
 
 
 
2710472
 
 
 
e06772e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2710472
 
e06772e
2710472
 
 
 
 
 
 
7813b1d
 
 
 
 
 
 
c86beb0
 
 
 
7813b1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2710472
 
 
 
 
 
 
 
3feb691
2710472
 
 
 
 
 
3feb691
 
2710472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5475a9d
2710472
3feb691
2710472
 
 
 
 
 
 
3feb691
 
 
 
7813b1d
3feb691
 
 
 
 
7813b1d
 
3feb691
7813b1d
3feb691
 
 
7813b1d
2710472
 
3feb691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2710472
 
 
 
 
5475a9d
3feb691
 
2710472
 
 
 
 
 
 
 
 
 
 
 
3feb691
 
2710472
 
 
 
 
5475a9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2710472
 
5475a9d
2710472
 
 
 
 
 
3feb691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2710472
 
 
 
 
 
 
 
 
 
 
 
 
 
7813b1d
 
 
 
 
 
 
 
 
 
 
 
2710472
 
 
 
5475a9d
3feb691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7813b1d
 
 
 
 
 
3feb691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7813b1d
3feb691
7813b1d
3feb691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7813b1d
 
3feb691
 
7813b1d
 
 
 
 
 
 
 
 
 
 
3feb691
 
 
 
 
 
 
 
 
 
5b1ca13
 
 
 
3feb691
 
 
 
 
 
 
2710472
 
 
 
 
3feb691
2710472
 
 
 
 
3feb691
2710472
 
 
 
 
 
 
 
 
 
 
3feb691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2710472
 
3feb691
2710472
 
 
3feb691
2710472
3feb691
 
 
2710472
 
 
 
3feb691
 
 
2710472
 
 
 
3feb691
 
 
 
 
 
 
 
2710472
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
from __future__ import annotations

from collections import OrderedDict
from collections.abc import Mapping, Sequence
from types import MappingProxyType
from typing import TYPE_CHECKING, Any

import boto3
import botocore
import botocore.exceptions
import gradio as gr
import gradio.themes as gr_themes
from langchain_aws import ChatBedrock
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_mcp_adapters.client import MultiServerMCPClient
from langgraph.prebuilt import create_react_agent
from openai import OpenAI
from openai.types.chat import ChatCompletion

from tdagent.grcomponents import MutableCheckBoxGroup, MutableCheckBoxGroupEntry


if TYPE_CHECKING:
    from langgraph.graph.graph import CompiledGraph


#### Constants ####

SYSTEM_MESSAGE = SystemMessage(
    """
You are a security analyst assistant responsible for collecting, analyzing
and disseminating actionable intelligence related to cyber threats,
vulnerabilities and threat actors.

When presented with potential incidents information or tickets, you should
evaluate the presented evidence, decide what is missing and gather
additional data using any tool at your disposal. After gathering more
information you must evaluate if the incident is a threat or
not and, if possible, remediation actions.

You must always present the conducted analysis and final conclusion.
Never use external means of communication, like emails or SMS, unless
instructed to do so.
""".strip(),
)


GRADIO_ROLE_TO_LG_MESSAGE_TYPE = MappingProxyType(
    {
        "user": HumanMessage,
        "assistant": AIMessage,
    },
)

MODEL_OPTIONS = OrderedDict(  # Initialize with tuples to preserve options order
    (
        (
            "HuggingFace",
            {
                "Mistral 7B Instruct": "mistralai/Mistral-7B-Instruct-v0.3",
                "Llama 3.1 8B Instruct": "meta-llama/Llama-3.1-8B-Instruct",
                # "Qwen3 235B A22B": "Qwen/Qwen3-235B-A22B",  # Slow inference
                "Microsoft Phi-3.5-mini Instruct": "microsoft/Phi-3.5-mini-instruct",
                # "Deepseek R1 distill-llama 70B": "deepseek-ai/DeepSeek-R1-Distill-Llama-70B",  # noqa: E501
                # "Deepseek V3": "deepseek-ai/DeepSeek-V3",
            },
        ),
        (
            "AWS Bedrock",
            {
                "Anthropic Claude 3.5 Sonnet (EU)": (
                    "eu.anthropic.claude-3-5-sonnet-20240620-v1:0"
                ),
                #  "Anthropic Claude 3.7 Sonnet": (
                #   "anthropic.claude-3-7-sonnet-20250219-v1:0"
                # ),
            },
        ),
    ),
)

#### Shared variables ####

llm_agent: CompiledGraph | None = None

#### Utility functions ####


## Bedrock LLM creation ##
def create_bedrock_llm(
    bedrock_model_id: str,
    aws_access_key: str,
    aws_secret_key: str,
    aws_session_token: str,
    aws_region: str,
    temperature: float = 0.8,
    max_tokens: int = 512,
) -> tuple[ChatBedrock | None, str]:
    """Create a LangGraph Bedrock agent."""
    boto3_config = {
        "aws_access_key_id": aws_access_key,
        "aws_secret_access_key": aws_secret_key,
        "aws_session_token": aws_session_token if aws_session_token else None,
        "region_name": aws_region,
    }
    # Verify credentials
    try:
        sts = boto3.client("sts", **boto3_config)
        sts.get_caller_identity()
    except botocore.exceptions.ClientError as err:
        return None, str(err)

    try:
        bedrock_client = boto3.client("bedrock-runtime", **boto3_config)
        llm = ChatBedrock(
            model_id=bedrock_model_id,
            client=bedrock_client,
            model_kwargs={"temperature": temperature, "max_tokens": max_tokens},
        )
    except Exception as e:  # noqa: BLE001
        return None, str(e)

    return llm, ""


## Hugging Face LLM creation ##
def create_hf_llm(
    hf_model_id: str,
    huggingfacehub_api_token: str | None = None,
) -> tuple[ChatHuggingFace | None, str]:
    """Create a LangGraph Hugging Face agent."""
    try:
        llm = HuggingFaceEndpoint(
            model=hf_model_id,
            temperature=0.8,
            task="text-generation",
            huggingfacehub_api_token=huggingfacehub_api_token,
        )
        chat_llm = ChatHuggingFace(llm=llm)
    except Exception as e:  # noqa: BLE001
        return None, str(e)

    return chat_llm, ""


## OpenAI LLM creation ##
def create_openai_llm(
    model_id: str,
    token_id: str,
) -> tuple[ChatCompletion | None, str]:
    """Create a LangGraph OpenAI agent."""
    try:
        client = OpenAI(
            base_url="https://api.studio.nebius.com/v1/",
            api_key=token_id,
        )
        llm = client.chat.completions.create(
            messages=[],  # needs to be fixed
            model=model_id,
            max_tokens=512,
            temperature=0.8,
        )
    except Exception as e:  # noqa: BLE001
        return None, str(e)
    return llm, ""


#### UI functionality ####
async def gr_connect_to_bedrock(  # noqa: PLR0913
    model_id: str,
    access_key: str,
    secret_key: str,
    session_token: str,
    region: str,
    mcp_servers: Sequence[MutableCheckBoxGroupEntry] | None,
    temperature: float = 0.8,
    max_tokens: int = 512,
) -> str:
    """Initialize Bedrock agent."""
    global llm_agent  # noqa: PLW0603
    if not access_key or not secret_key:
        return "❌ Please provide both Access Key ID and Secret Access Key"

    llm, error = create_bedrock_llm(
        model_id,
        access_key.strip(),
        secret_key.strip(),
        session_token.strip(),
        region,
        temperature=temperature,
        max_tokens=max_tokens,
    )

    if llm is None:
        return f"❌ Connection failed: {error}"

    # client = MultiServerMCPClient(
    #     {
    #         "toolkit": {
    #             "url": "https://agents-mcp-hackathon-tdagenttools.hf.space/gradio_api/mcp/sse",
    #             "transport": "sse",
    #         },
    #     }
    # )
    # tools = await client.get_tools()
    if mcp_servers:
        client = MultiServerMCPClient(
            {
                server.name.replace(" ", "-"): {
                    "url": server.value,
                    "transport": "sse",
                }
                for server in mcp_servers
            },
        )
        tools = await client.get_tools()
    else:
        tools = []
    llm_agent = create_react_agent(
        model=llm,
        tools=tools,
        prompt=SYSTEM_MESSAGE,
    )

    return "βœ… Successfully connected to AWS Bedrock!"


async def gr_connect_to_hf(
    model_id: str,
    hf_access_token_textbox: str | None,
    mcp_servers: Sequence[MutableCheckBoxGroupEntry] | None,
) -> str:
    """Initialize Hugging Face agent."""
    global llm_agent  # noqa: PLW0603

    llm, error = create_hf_llm(model_id, hf_access_token_textbox)

    if llm is None:
        return f"❌ Connection failed: {error}"
    tools = []
    if mcp_servers:
        client = MultiServerMCPClient(
            {
                server.name.replace(" ", "-"): {
                    "url": server.value,
                    "transport": "sse",
                }
                for server in mcp_servers
            },
        )
        tools = await client.get_tools()

    llm_agent = create_react_agent(
        model=llm,
        tools=tools,
        prompt=SYSTEM_MESSAGE,
    )

    return "βœ… Successfully connected to Hugging Face!"


async def gr_connect_to_nebius(
    model_id: str,
    nebius_access_token_textbox: str,
    mcp_servers: Sequence[MutableCheckBoxGroupEntry] | None,
) -> str:
    """Initialize Hugging Face agent."""
    global llm_agent  # noqa: PLW0603

    llm, error = create_openai_llm(model_id, nebius_access_token_textbox)

    if llm is None:
        return f"❌ Connection failed: {error}"
    tools = []
    if mcp_servers:
        client = MultiServerMCPClient(
            {
                server.name.replace(" ", "-"): {
                    "url": server.value,
                    "transport": "sse",
                }
                for server in mcp_servers
            },
        )
        tools = await client.get_tools()

    llm_agent = create_react_agent(
        model=str(llm),
        tools=tools,
        prompt=SYSTEM_MESSAGE,
    )
    return "βœ… Successfully connected to nebius!"


async def gr_chat_function(  # noqa: D103
    message: str,
    history: list[Mapping[str, str]],
) -> str:
    if llm_agent is None:
        return "Please configure your credentials first."

    messages = []
    for hist_msg in history:
        role = hist_msg["role"]
        message_type = GRADIO_ROLE_TO_LG_MESSAGE_TYPE[role]
        messages.append(message_type(content=hist_msg["content"]))

    messages.append(HumanMessage(content=message))
    try:
        llm_response = await llm_agent.ainvoke(
            {
                "messages": messages,
            },
        )
        return llm_response["messages"][-1].content
    except Exception as err:
        raise gr.Error(
            f"We encountered an error while invoking the model:\n{err}",
            print_exception=True,
        ) from err


## UI components ##


# Function to toggle visibility and set model IDs
def toggle_model_fields(
    provider: str,
) -> tuple[
    dict[str, Any],
    dict[str, Any],
    dict[str, Any],
    dict[str, Any],
    dict[str, Any],
    dict[str, Any],
]:  # ignore: F821
    """Toggle visibility of model fields based on the selected provider."""
    # Update model choices based on the selected provider
    if provider in MODEL_OPTIONS:
        model_choices = list(MODEL_OPTIONS[provider].keys())
        model_pretty = gr.update(
            choices=model_choices,
            value=model_choices[0],
            visible=True,
            interactive=True,
        )
    else:
        model_pretty = gr.update(choices=[], visible=False)

    # Visibility settings for fields specific to each provider
    is_aws = provider == "AWS Bedrock"
    is_hf = provider == "HuggingFace"
    return (
        model_pretty,
        gr.update(visible=is_aws, interactive=is_aws),
        gr.update(visible=is_aws, interactive=is_aws),
        gr.update(visible=is_aws, interactive=is_aws),
        gr.update(visible=is_aws, interactive=is_aws),
        gr.update(visible=is_hf, interactive=is_hf),
    )


async def update_connection_status(  # noqa: PLR0913
    provider: str,
    pretty_model: str,
    mcp_list_state: Sequence[MutableCheckBoxGroupEntry] | None,
    aws_access_key_textbox: str,
    aws_secret_key_textbox: str,
    aws_session_token_textbox: str,
    aws_region_dropdown: str,
    hf_token: str,
    temperature: float,
    max_tokens: int,
) -> str:
    """Update the connection status based on the selected provider and model."""
    if not provider or not pretty_model:
        return "❌ Please select a provider and model."

    model_id = MODEL_OPTIONS.get(provider, {}).get(pretty_model)
    connection = "❌ Invalid provider"
    if model_id:
        if provider == "AWS Bedrock":
            connection = await gr_connect_to_bedrock(
                model_id,
                aws_access_key_textbox,
                aws_secret_key_textbox,
                aws_session_token_textbox,
                aws_region_dropdown,
                mcp_list_state,
                temperature,
                max_tokens,
            )
        elif provider == "HuggingFace":
            connection = await gr_connect_to_hf(model_id, hf_token, mcp_list_state)
        elif provider == "Nebius":
            connection = await gr_connect_to_nebius(model_id, hf_token, mcp_list_state)

    return connection


with (
    gr.Blocks(
        theme=gr_themes.Origin(
            primary_hue="teal",
            spacing_size="sm",
            font="sans-serif",
        ),
        title="TDAgent",
    ) as gr_app,
    gr.Row(),
):
    with gr.Column(scale=1):
        with gr.Accordion("πŸ”Œ  MCP Servers", open=False):
            mcp_list = MutableCheckBoxGroup(
                values=[
                    MutableCheckBoxGroupEntry(
                        name="TDAgent tools",
                        value="https://agents-mcp-hackathon-tdagenttools.hf.space/gradio_api/mcp/sse",
                    ),
                ],
                label="MCP Servers",
                new_value_label="MCP endpoint",
                new_name_label="MCP endpoint name",
                new_value_placeholder="https://my-cool-mcp-server.com/mcp/sse",
                new_name_placeholder="Swiss army knife of MCPs",
            )

        with gr.Accordion("βš™οΈ  Provider Configuration", open=True):
            model_provider = gr.Dropdown(
                choices=list(MODEL_OPTIONS.keys()),
                value=None,
                label="Select Model Provider",
            )
            aws_access_key_textbox = gr.Textbox(
                label="AWS Access Key ID",
                type="password",
                placeholder="Enter your AWS Access Key ID",
                visible=False,
            )
            aws_secret_key_textbox = gr.Textbox(
                label="AWS Secret Access Key",
                type="password",
                placeholder="Enter your AWS Secret Access Key",
                visible=False,
            )
            aws_region_dropdown = gr.Dropdown(
                label="AWS Region",
                choices=[
                    "us-east-1",
                    "us-west-2",
                    "eu-west-1",
                    "eu-central-1",
                    "ap-southeast-1",
                ],
                value="eu-west-1",
                visible=False,
            )
            aws_session_token_textbox = gr.Textbox(
                label="AWS Session Token",
                type="password",
                placeholder="Enter your AWS session token",
                visible=False,
            )
            hf_token = gr.Textbox(
                label="HuggingFace Token",
                type="password",
                placeholder="Enter your Hugging Face Access Token",
                visible=False,
            )

        with gr.Accordion("🧠  Model Configuration", open=True):
            model_display_id = gr.Dropdown(
                label="Select Model ID",
                choices=[],
                visible=False,
            )
            model_provider.change(
                toggle_model_fields,
                inputs=[model_provider],
                outputs=[
                    model_display_id,
                    aws_access_key_textbox,
                    aws_secret_key_textbox,
                    aws_session_token_textbox,
                    aws_region_dropdown,
                    hf_token,
                ],
            )
            # Initialize the temperature and max tokens based on model specifications
            temperature = gr.Slider(
                label="Temperature",
                minimum=0.0,
                maximum=1.0,
                value=0.8,
                step=0.1,
            )
            max_tokens = gr.Slider(
                label="Max Tokens",
                minimum=64,
                maximum=4096,
                value=512,
                step=64,
            )

        connect_btn = gr.Button("πŸ”Œ  Connect to Model", variant="primary")
        status_textbox = gr.Textbox(label="Connection Status", interactive=False)

        connect_btn.click(
            update_connection_status,
            inputs=[
                model_provider,
                model_display_id,
                mcp_list.state,
                aws_access_key_textbox,
                aws_secret_key_textbox,
                aws_session_token_textbox,
                aws_region_dropdown,
                hf_token,
                temperature,
                max_tokens,
            ],
            outputs=[status_textbox],
        )

    with gr.Column(scale=2):
        chat_interface = gr.ChatInterface(
            fn=gr_chat_function,
            type="messages",
            examples=[],  # Add examples if needed
            title="πŸ‘©β€πŸ’» TDAgent",
            description="This is a simple agent that uses MCP tools.",
        )


if __name__ == "__main__":
    gr_app.launch()