Spaces:
Running
Running
File size: 5,428 Bytes
4a76b1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
from __future__ import annotations
from collections.abc import Mapping
from types import MappingProxyType
import boto3
import botocore
import botocore.exceptions
import gradio as gr
from langchain_aws import ChatBedrock
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
from langgraph.graph.graph import CompiledGraph
from langgraph.prebuilt import create_react_agent
#### Constants ####
SYSTEM_MESSAGE = SystemMessage(
"You are a helpful assistant.",
)
GRADIO_ROLE_TO_LG_MESSAGE_TYPE = MappingProxyType(
{
"user": HumanMessage,
"assistant": AIMessage,
},
)
#### Shared variables ####
llm_agent: CompiledGraph | None = None
#### Utility functions ####
def create_bedrock_llm(
bedrock_model_id: str,
aws_access_key: str,
aws_secret_key: str,
aws_session_token: str,
aws_region: str,
) -> tuple[ChatBedrock | None, str]:
"""Create a LangGraph Bedrock agent."""
boto3_config = {
"aws_access_key_id": aws_access_key,
"aws_secret_access_key": aws_secret_key,
"aws_session_token": aws_session_token if aws_session_token else None,
"region_name": aws_region,
}
# Verify credentials
try:
sts = boto3.client("sts", **boto3_config)
sts.get_caller_identity()
except botocore.exceptions.ClientError as err:
return None, str(err)
try:
bedrock_client = boto3.client("bedrock-runtime", **boto3_config)
llm = ChatBedrock(
model=bedrock_model_id,
client=bedrock_client,
model_kwargs={"temperature": 0.7},
)
except Exception as e: # noqa: BLE001
return None, str(e)
return llm, ""
#### UI functionality ####
async def gr_connect_to_bedrock(
model_id: str,
access_key: str,
secret_key: str,
session_token: str,
region: str,
) -> str:
"""Initialize Bedrock agent."""
global llm_agent # noqa: PLW0603
if not access_key or not secret_key:
return "β Please provide both Access Key ID and Secret Access Key"
llm, error = create_bedrock_llm(
model_id,
access_key.strip(),
secret_key.strip(),
session_token.strip(),
region,
)
if llm is None:
return f"β Connection failed: {error}"
llm_agent = create_react_agent(
model=llm,
tools=[],
prompt=SYSTEM_MESSAGE,
)
return "β
Successfully connected to AWS Bedrock!"
async def gr_chat_function( # noqa: D103
message: str,
history: list[Mapping[str, str]],
) -> str:
if llm_agent is None:
return "Please configure your credentials first."
messages = []
for hist_msg in history:
role = hist_msg["role"]
message_type = GRADIO_ROLE_TO_LG_MESSAGE_TYPE[role]
messages.append(message_type(content=hist_msg["content"]))
messages.append(HumanMessage(content=message))
llm_response = await llm_agent.ainvoke(
{
"messages": messages,
},
)
return llm_response["messages"][-1].content
## UI components ##
with gr.Blocks() as gr_app:
gr.Markdown("# π Secure Bedrock Chatbot")
# Credentials section (collapsible)
with gr.Accordion("π Bedrock Configuration", open=True):
gr.Markdown(
"**Note**: Credentials are only stored in memory during your session.",
)
with gr.Row():
bedrock_model_id_textbox = gr.Textbox(
label="Bedrock Model Id",
value="eu.anthropic.claude-3-5-sonnet-20240620-v1:0",
)
with gr.Row():
aws_access_key_textbox = gr.Textbox(
label="AWS Access Key ID",
type="password",
placeholder="Enter your AWS Access Key ID",
)
aws_secret_key_textbox = gr.Textbox(
label="AWS Secret Access Key",
type="password",
placeholder="Enter your AWS Secret Access Key",
)
with gr.Row():
aws_session_token_textbox = gr.Textbox(
label="AWS Session Token",
type="password",
placeholder="Enter your AWS session token",
)
with gr.Row():
aws_region_dropdown = gr.Dropdown(
label="AWS Region",
choices=[
"us-east-1",
"us-west-2",
"eu-west-1",
"eu-central-1",
"ap-southeast-1",
],
value="eu-west-1",
)
connect_btn = gr.Button("π Connect to Bedrock", variant="primary")
status_textbox = gr.Textbox(label="Connection Status", interactive=False)
connect_btn.click(
gr_connect_to_bedrock,
inputs=[
bedrock_model_id_textbox,
aws_access_key_textbox,
aws_secret_key_textbox,
aws_session_token_textbox,
aws_region_dropdown,
],
outputs=[status_textbox],
)
chat_interface = gr.ChatInterface(
fn=gr_chat_function,
type="messages",
examples=[],
title="Agent with MCP Tools",
description="This is a simple agent that uses MCP tools.",
)
if __name__ == "__main__":
gr_app.launch()
|