File size: 5,428 Bytes
4a76b1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
from __future__ import annotations

from collections.abc import Mapping
from types import MappingProxyType

import boto3
import botocore
import botocore.exceptions
import gradio as gr
from langchain_aws import ChatBedrock
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
from langgraph.graph.graph import CompiledGraph
from langgraph.prebuilt import create_react_agent


#### Constants ####

SYSTEM_MESSAGE = SystemMessage(
    "You are a helpful assistant.",
)

GRADIO_ROLE_TO_LG_MESSAGE_TYPE = MappingProxyType(
    {
        "user": HumanMessage,
        "assistant": AIMessage,
    },
)


#### Shared variables ####

llm_agent: CompiledGraph | None = None

#### Utility functions ####


def create_bedrock_llm(
    bedrock_model_id: str,
    aws_access_key: str,
    aws_secret_key: str,
    aws_session_token: str,
    aws_region: str,
) -> tuple[ChatBedrock | None, str]:
    """Create a LangGraph Bedrock agent."""
    boto3_config = {
        "aws_access_key_id": aws_access_key,
        "aws_secret_access_key": aws_secret_key,
        "aws_session_token": aws_session_token if aws_session_token else None,
        "region_name": aws_region,
    }

    # Verify credentials
    try:
        sts = boto3.client("sts", **boto3_config)
        sts.get_caller_identity()
    except botocore.exceptions.ClientError as err:
        return None, str(err)

    try:
        bedrock_client = boto3.client("bedrock-runtime", **boto3_config)
        llm = ChatBedrock(
            model=bedrock_model_id,
            client=bedrock_client,
            model_kwargs={"temperature": 0.7},
        )
    except Exception as e:  # noqa: BLE001
        return None, str(e)

    return llm, ""


#### UI functionality ####


async def gr_connect_to_bedrock(
    model_id: str,
    access_key: str,
    secret_key: str,
    session_token: str,
    region: str,
) -> str:
    """Initialize Bedrock agent."""
    global llm_agent  # noqa: PLW0603

    if not access_key or not secret_key:
        return "❌ Please provide both Access Key ID and Secret Access Key"

    llm, error = create_bedrock_llm(
        model_id,
        access_key.strip(),
        secret_key.strip(),
        session_token.strip(),
        region,
    )

    if llm is None:
        return f"❌ Connection failed: {error}"

    llm_agent = create_react_agent(
        model=llm,
        tools=[],
        prompt=SYSTEM_MESSAGE,
    )

    return "βœ… Successfully connected to AWS Bedrock!"


async def gr_chat_function(  # noqa: D103
    message: str,
    history: list[Mapping[str, str]],
) -> str:
    if llm_agent is None:
        return "Please configure your credentials first."

    messages = []
    for hist_msg in history:
        role = hist_msg["role"]
        message_type = GRADIO_ROLE_TO_LG_MESSAGE_TYPE[role]
        messages.append(message_type(content=hist_msg["content"]))

    messages.append(HumanMessage(content=message))

    llm_response = await llm_agent.ainvoke(
        {
            "messages": messages,
        },
    )

    return llm_response["messages"][-1].content


## UI components ##

with gr.Blocks() as gr_app:
    gr.Markdown("# πŸ” Secure Bedrock Chatbot")

    # Credentials section (collapsible)
    with gr.Accordion("πŸ”‘ Bedrock Configuration", open=True):
        gr.Markdown(
            "**Note**: Credentials are only stored in memory during your session.",
        )
        with gr.Row():
            bedrock_model_id_textbox = gr.Textbox(
                label="Bedrock Model Id",
                value="eu.anthropic.claude-3-5-sonnet-20240620-v1:0",
            )
        with gr.Row():
            aws_access_key_textbox = gr.Textbox(
                label="AWS Access Key ID",
                type="password",
                placeholder="Enter your AWS Access Key ID",
            )
            aws_secret_key_textbox = gr.Textbox(
                label="AWS Secret Access Key",
                type="password",
                placeholder="Enter your AWS Secret Access Key",
            )
        with gr.Row():
            aws_session_token_textbox = gr.Textbox(
                label="AWS Session Token",
                type="password",
                placeholder="Enter your AWS session token",
            )
        with gr.Row():
            aws_region_dropdown = gr.Dropdown(
                label="AWS Region",
                choices=[
                    "us-east-1",
                    "us-west-2",
                    "eu-west-1",
                    "eu-central-1",
                    "ap-southeast-1",
                ],
                value="eu-west-1",
            )
            connect_btn = gr.Button("πŸ”Œ Connect to Bedrock", variant="primary")

        status_textbox = gr.Textbox(label="Connection Status", interactive=False)

        connect_btn.click(
            gr_connect_to_bedrock,
            inputs=[
                bedrock_model_id_textbox,
                aws_access_key_textbox,
                aws_secret_key_textbox,
                aws_session_token_textbox,
                aws_region_dropdown,
            ],
            outputs=[status_textbox],
        )

    chat_interface = gr.ChatInterface(
        fn=gr_chat_function,
        type="messages",
        examples=[],
        title="Agent with MCP Tools",
        description="This is a simple agent that uses MCP tools.",
    )


if __name__ == "__main__":
    gr_app.launch()