Spaces:
Sleeping
Sleeping
File size: 3,401 Bytes
217440f dbca1df 217440f dbca1df 1fcafa8 8a11446 1fcafa8 f3f06e4 1fcafa8 67d7d43 7d58c6f 1fcafa8 f3f06e4 1fcafa8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
---
title: Craftwise
emoji: π§Ά
colorFrom: green
colorTo: green
sdk: gradio
sdk_version: 5.33.0
app_file: app.py
pinned: false
license: mit
tags:
- agent-demo-track
- agents
---
# π§Ά Agent Demo Track: Craftwise
**Craftwise** is an AI-native learning assistant for hands-on crafts including (but not limited to!) origami, knitting, and crochet, and even more exotic crafts like Balkan lacework or Kente cloth making.
It guides users through creative projects with smart project suggestions, real-time explanations, YouTube tutorial retrieval, and visual feedback on uploaded photos.
Built with a multi-agent architecture using LangGraph and powered by LLMs, Craftwise helps users learn-by-doingβjust like a friendly workshop mentor.
**Watch our [demo video on Loom](https://www.loom.com/share/fb64d6e163c142a8bd634e483c6165b1#Settings)**
---
## β¨ Features
- π¨ Personalized craft project recommendations
- π€ Multi-agent orchestration with LangGraph
- π YouTube tutorial search
- π· Visual feedback on uploaded craft work
- π¬ Conversational interface via Gradio
- π§΅ Modular agent setup for easy extension
---
## π Getting Started
### 1. **Clone the Repository**
```bash
git clone https://huggingface.co/spaces/Agents-MCP-Hackathon/craftwise
cd craftwise
```
### 2. **Install Dependencies with [uv](https://github.com/astral-sh/uv)**
```bash
uv venv
source .venv/bin/activate
uv sync
```
> βΉοΈ Don't have `uv` installed?
> Install via pip: `pip install uv`
---
### 3. **Configure Environment Variables**
Copy the example file and set your keys:
```bash
cp .env.example .env
```
Fill in:
- Gemini API key - for the LLM calls
- Google Maps API key - for searching local craft shops
- YouTube API key (usually the same as Google Maps API key retrieved from your Google Cloud Console)
- Tavily API key - for searching the web
---
### 4. **Run the Gradio App**
```bash
gradio app.py
```
Then open your browser at: [http://localhost:7860](http://localhost:7860)
---
## π§ Project Structure
```
craftwise/
βββ agents/ # LangGraph agents: Planner, Mentor, Perception
βββ analysis_utils.py # Media analysis logic
βββ app.py # Gradio interface
βββ main.py # LangGraph supervisor setup
βββ .env.example # Sample environment config
βββ resources/ # Static images, backgrounds, styles
```
---
## π§ͺ Development Notes
- π§ Agents are defined modularly under `agents/`
- π§΅ Media feedback handled by PerceptionAgent (`analyze_media_structured`)
- π YouTube search is integrated via API with fallback validation
- π Background and UI assets are served via FastAPI + Gradio hybrid
---
## π§© Ideas for Expansion
- Track user learning progress over time
- Search for online or in-presence workshops and connect to teachers who know the craft
---
## π€ Contributing
Pull requests and forks welcome!
To contribute:
1. Fork the repo
2. Create a feature branch: `git checkout -b feature/my-feature`
3. Commit your changes: `git commit -m "Add awesome feature"`
4. Push and open a PR
---
## π License
MIT License Β© 2025
Made by: [Alisa Bogatinovski](https://www.linkedin.com/in/alisakrstova) and [Jasmin Bogatinovski](https://www.linkedin.com/in/bogatinovskijasmin/)
---
> Made with code, curiosity, and a little bit of yarn. π§Ά
|