File size: 39,184 Bytes
825a805 506884b 0733fd6 519bc7d 0733fd6 506884b 0733fd6 825a805 0733fd6 825a805 0733fd6 7209b84 0733fd6 7209b84 0733fd6 7209b84 d65ad43 0733fd6 d65ad43 0733fd6 d65ad43 0733fd6 506884b 0733fd6 506884b 0733fd6 506884b 825a805 0733fd6 506884b 0733fd6 506884b 7209b84 506884b 0733fd6 825a805 0733fd6 506884b 0733fd6 825a805 0733fd6 506884b 0733fd6 506884b 7209b84 506884b 0733fd6 825a805 7209b84 0733fd6 506884b 0733fd6 506884b 0733fd6 506884b 0733fd6 506884b 0733fd6 506884b 0733fd6 506884b 0733fd6 506884b 0733fd6 506884b 0733fd6 506884b 0733fd6 7209b84 0733fd6 506884b 0733fd6 7209b84 0733fd6 506884b 0733fd6 7209b84 0733fd6 506884b 0733fd6 506884b 0733fd6 506884b 0733fd6 506884b 0733fd6 506884b 0733fd6 506884b 0733fd6 506884b db2b242 0733fd6 db2b242 0733fd6 506884b 0733fd6 506884b 0733fd6 d65ad43 0733fd6 5c9e521 0733fd6 d65ad43 0733fd6 506884b 0733fd6 506884b 0733fd6 519bc7d f217250 506884b f217250 0733fd6 f217250 506884b 0733fd6 5c9e521 0733fd6 f217250 0733fd6 f217250 0733fd6 f217250 0733fd6 f217250 5c9e521 f217250 5c9e521 f217250 5c9e521 506884b 0733fd6 f217250 519bc7d f217250 519bc7d f217250 519bc7d f217250 519bc7d f217250 506884b 519bc7d 506884b 0733fd6 d65ad43 0733fd6 519bc7d 0733fd6 d65ad43 0733fd6 519bc7d 0733fd6 501015f 0733fd6 501015f 519bc7d 501015f 519bc7d 501015f 519bc7d 501015f 519bc7d 501015f 519bc7d 501015f 519bc7d 501015f 519bc7d 501015f 519bc7d 501015f 0733fd6 501015f 0733fd6 501015f 0733fd6 501015f 0733fd6 519bc7d 501015f 519bc7d 501015f 0733fd6 501015f 0733fd6 519bc7d 0733fd6 501015f 519bc7d 501015f 0733fd6 501015f 0733fd6 519bc7d 0733fd6 501015f 519bc7d 501015f 519bc7d 501015f 519bc7d 501015f 519bc7d 501015f 506884b 501015f 506884b 0733fd6 519bc7d 501015f 519bc7d 501015f 519bc7d 0733fd6 501015f 0733fd6 501015f 0733fd6 519bc7d 0733fd6 501015f 0733fd6 506884b 0733fd6 506884b 0733fd6 f869a71 0733fd6 506884b 0733fd6 506884b 0733fd6 506884b 0733fd6 506884b 0733fd6 506884b 0733fd6 506884b 0733fd6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 |
import os
import gradio as gr
import asyncio
from typing import Optional, List, Dict
import subprocess
import time
import signal
import sys
# Add these imports at the top of your Gradio file
from database_module.mcp_tools import (
get_drift_history_handler,
calculate_drift_handler
)
import threading
import concurrent.futures
# Add these imports at the top of your Gradio file
from ourllm import llm # Import the actual LLM instance
from dotenv import load_dotenv
# Add error handling for imports
try:
from database_module.db import SessionLocal
from database_module.models import ModelEntry
from langchain.chat_models import init_chat_model
from database_module import (
init_db,
get_all_models_handler,
search_models_handler,
)
DATABASE_AVAILABLE = True
except ImportError as e:
print(f"β οΈ Database modules not available: {e}")
print("β οΈ Running in demo mode without database functionality")
DATABASE_AVAILABLE = False
import json
from datetime import datetime
import plotly.graph_objects as go
try:
from ourllm import llm
print("β
Successfully imported LLM from ourllm.py")
LLM_AVAILABLE = True
except ImportError as e:
print(f"β Failed to import LLM: {e}")
LLM_AVAILABLE = False
# Mock database functions for when database is not available
def mock_init_db():
print("π Mock database initialized")
return True
def mock_get_all_models():
return [
{"name": "demo-model-1", "description": "Demo model for testing", "created": "2024-01-01"},
{"name": "demo-model-2", "description": "Another demo model", "created": "2024-01-02"}
]
def mock_search_models(search_term):
all_models = mock_get_all_models()
return [m for m in all_models if search_term.lower() in m["name"].lower()]
def mock_register_model(model_name, capabilities):
print(f"π Mock: Registered model {model_name}")
return True
# Use mock functions if database is not available
if not DATABASE_AVAILABLE:
init_db = mock_init_db
get_all_models_handler = lambda x: mock_get_all_models()
search_models_handler = lambda x: mock_search_models(x.get("search_term", ""))
# Initialize database (or mock)
try:
init_db()
print("β
Database initialization successful")
except Exception as e:
print(f"β οΈ Database initialization failed: {e}")
DATABASE_AVAILABLE = False
# Global variables
scapegoat_client = None
server_manager = None
current_model_mapping = {}
# --- Simplified Database Functions ---
def ensure_database_setup():
"""Ensure database is properly set up"""
if not DATABASE_AVAILABLE:
print("β
Running in demo mode - no database required")
return True
try:
# Test database connection
with SessionLocal() as session:
session.execute("SELECT 1")
session.commit()
print("β
Database connection successful")
return True
except Exception as e:
print(f"β Database setup failed: {e}")
return False
def register_model_with_capabilities(model_name: str, capabilities: str):
"""Register a new model with its capabilities"""
if not DATABASE_AVAILABLE:
return mock_register_model(model_name, capabilities)
try:
with SessionLocal() as session:
existing = session.query(ModelEntry).filter_by(name=model_name).first()
if existing:
existing.capabilities = capabilities
existing.updated = datetime.now()
session.commit()
print(f"β
Updated existing model: {model_name}")
else:
model_entry = ModelEntry(
name=model_name,
capabilities=capabilities,
created=datetime.now()
)
session.add(model_entry)
session.commit()
print(f"β
Registered new model: {model_name}")
return True
except Exception as e:
print(f"β Error registering model: {e}")
return False
# --- Simplified Model Management Functions ---
def get_models_from_db():
"""Get all models from database"""
if not DATABASE_AVAILABLE:
return mock_get_all_models()
try:
result = get_all_models_handler({})
if result:
return [
{
"name": model["name"],
"description": model.get("description", ""),
"created": model.get("created", datetime.now().strftime("%Y-%m-%d"))
}
for model in result
]
return []
except Exception as e:
print(f"β Error getting models: {e}")
return mock_get_all_models()
load_dotenv()
# Replace your current chatbot_response function with this:
def chatbot_response(message, history, dropdown_value):
"""Generate chatbot response using actual LLM with debug info"""
print(f"π DEBUG: Function called with message: '{message}'")
print(f"π DEBUG: LLM_AVAILABLE: {LLM_AVAILABLE}")
print(f"π DEBUG: GROQ_API_KEY exists: {'GROQ_API_KEY' in os.environ}")
if not message or not message.strip() or not dropdown_value:
print("π DEBUG: Empty message or dropdown")
return history, ""
try:
model_name = extract_model_name_from_dropdown(dropdown_value, current_model_mapping)
print(f"π DEBUG: Model name: {model_name}")
# Initialize history if needed
if history is None:
history = []
# Check if LLM is available and API key is set
if not LLM_AVAILABLE:
response_text = "β LLM not available - check ourllm.py import"
elif not os.getenv("GROQ_API_KEY"):
response_text = "β GROQ_API_KEY not found in environment variables"
else:
try:
print("π DEBUG: Attempting to call LLM...")
# Simple direct call to LLM
response = llm.invoke(message)
response_text = str(response.content).strip()
print(f"π DEBUG: LLM response received: {response_text[:100]}...")
if not response_text:
response_text = "β LLM returned empty response"
except Exception as e:
print(f"π DEBUG: LLM call failed: {e}")
response_text = f"β LLM Error: {str(e)}"
# Add to history
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": response_text})
print(f"π DEBUG: Final response: {response_text}")
return history, ""
except Exception as e:
print(f"π DEBUG: General error in chatbot_response: {e}")
if history is None:
history = []
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": f"β Error: {str(e)}"})
return history, ""
def search_models_in_db(search_term: str):
"""Search models in database"""
if not DATABASE_AVAILABLE:
return mock_search_models(search_term)
try:
result = search_models_handler({"search_term": search_term})
if result:
return [
{
"name": model["name"],
"description": model.get("description", ""),
"created": model.get("created", datetime.now().strftime("%Y-%m-%d"))
}
for model in result
]
return []
except Exception as e:
print(f"β Error searching models: {e}")
return [m for m in get_models_from_db() if search_term.lower() in m["name"].lower()]
def format_dropdown_items(models):
"""Format dropdown items"""
if not models:
return [], {}
formatted_items = []
model_mapping = {}
for model in models:
desc_preview = model["description"][:40] + ("..." if len(model["description"]) > 40 else "")
item_label = f"{model['name']} (Created: {model['created']}) - {desc_preview}"
formatted_items.append(item_label)
model_mapping[item_label] = model["name"]
return formatted_items, model_mapping
def extract_model_name_from_dropdown(dropdown_value, model_mapping):
"""Extract model name from dropdown"""
if not dropdown_value:
return ""
return model_mapping.get(dropdown_value, dropdown_value.split(" (")[0] if dropdown_value else "")
def get_model_details(model_name: str):
"""Get model details from database"""
try:
if DATABASE_AVAILABLE:
with SessionLocal() as session:
model_entry = session.query(ModelEntry).filter_by(name=model_name).first()
if model_entry:
return {
"name": model_entry.name,
"description": model_entry.description or "",
"system_prompt": model_entry.capabilities.split("System Prompt: ")[
1] if model_entry.capabilities and "System Prompt: " in model_entry.capabilities else "You are a helpful AI assistant.",
"created": model_entry.created.strftime("%Y-%m-%d %H:%M:%S") if model_entry.created else ""
}
return {"name": model_name, "system_prompt": "You are a helpful AI assistant.", "description": "Demo model"}
except Exception as e:
print(f"β Error getting model details: {e}")
return {"name": model_name, "system_prompt": "You are a helpful AI assistant.", "description": "Demo model"}
# --- Gradio Interface Functions ---
def update_model_dropdown(search_term):
"""Update dropdown based on search"""
global current_model_mapping
try:
if search_term and search_term.strip():
models = search_models_in_db(search_term.strip())
else:
models = get_models_from_db()
formatted_items, model_mapping = format_dropdown_items(models)
current_model_mapping = model_mapping
# Return dropdown with proper value handling
if formatted_items:
return gr.update(choices=formatted_items, value=formatted_items[0])
else:
return gr.update(choices=[], value=None)
except Exception as e:
print(f"β Error updating dropdown: {e}")
return gr.update(choices=[], value=None)
def on_model_select(dropdown_value):
"""Handle model selection"""
if not dropdown_value or not current_model_mapping:
return "", ""
try:
actual_model_name = extract_model_name_from_dropdown(dropdown_value, current_model_mapping)
return actual_model_name, actual_model_name
except Exception as e:
print(f"β Error in model selection: {e}")
return "", ""
def show_create_new():
"""Show create new model section"""
return gr.update(visible=True), gr.update(value="")
def cancel_create_new():
"""Cancel create new model"""
return [
gr.update(visible=False), # create_new_section
"", # new_model_name
"", # new_system_prompt
gr.update(visible=False), # enhanced_prompt_display
gr.update(visible=False), # prompt_choice
gr.update(visible=False), # save_model_button
gr.update(visible=False) # save_status
]
def enhance_prompt(original_prompt):
"""Enhance prompt locally"""
if not original_prompt or not original_prompt.strip():
return [
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False)
]
enhanced = f"{original_prompt}\n\nAdditional context: Be specific, helpful, and provide detailed responses while maintaining a professional tone."
return [
gr.update(value=enhanced, visible=True),
gr.update(visible=True),
gr.update(visible=True)
]
def save_new_model(model_name, selected_llm, original_prompt, enhanced_prompt, choice):
"""Save new model"""
global current_model_mapping
if not model_name or not original_prompt or not original_prompt.strip() or not selected_llm:
return [
"β Please provide model name, LLM selection, and system prompt",
gr.update(visible=True),
gr.update()
]
try:
final_prompt = enhanced_prompt if choice == "Keep Enhanced" else original_prompt
capabilities = f"{selected_llm}\nSystem Prompt: {final_prompt}"
if register_model_with_capabilities(model_name, capabilities):
status = f"β
Model '{model_name}' saved successfully!"
# Update dropdown with new models
updated_models = get_models_from_db()
formatted_items, model_mapping = format_dropdown_items(updated_models)
current_model_mapping = model_mapping
dropdown_update = gr.update(choices=formatted_items, value=formatted_items[0] if formatted_items else None)
else:
status = "β Error saving model to database"
dropdown_update = gr.update()
except Exception as e:
status = f"β Error saving model: {e}"
dropdown_update = gr.update()
return [
status,
gr.update(visible=True),
dropdown_update
]
# Also add this function to help debug database connection:
def test_database_connection():
"""Test if database connection is working and has data"""
try:
if not DATABASE_AVAILABLE:
return "β οΈ Database not available - running in demo mode"
# Test getting models
models = get_all_models_handler({})
model_count = len(models) if models else 0
# Test getting drift history for first model if available
drift_info = ""
if models and len(models) > 0:
first_model = models[0]["name"]
drift_history = get_drift_history_handler({"model_name": first_model})
drift_count = len(drift_history) if drift_history else 0
drift_info = f"\nπ Drift records for '{first_model}': {drift_count}"
return f"β
Database connected\nπ Total models: {model_count}{drift_info}"
except Exception as e:
return f"β Database test failed: {e}"
# Replace the chatbot_response function in your Gradio file with this:
def chatbot_response(message, history, dropdown_value):
"""Generate chatbot response using actual LLM"""
print(f"π DEBUG: Function called with message: '{message}'")
print(f"π DEBUG: LLM_AVAILABLE: {LLM_AVAILABLE}")
print(f"π DEBUG: GROQ_API_KEY exists: {'GROQ_API_KEY' in os.environ}")
if not message or not message.strip() or not dropdown_value:
print("π DEBUG: Empty message or dropdown")
return history, ""
try:
model_name = extract_model_name_from_dropdown(dropdown_value, current_model_mapping)
print(f"π DEBUG: Model name: {model_name}")
# Initialize history if needed
if history is None:
history = []
# Check if LLM is available and API key is set
if not LLM_AVAILABLE:
response_text = "β LLM not available - check ourllm.py import"
elif not os.getenv("GROQ_API_KEY"):
response_text = "β GROQ_API_KEY not found in environment variables"
else:
try:
print("π DEBUG: Attempting to call LLM...")
# Get model details to use system prompt if available
model_details = get_model_details(model_name)
system_prompt = model_details.get("system_prompt", "You are a helpful AI assistant.")
# Create a message with system context
full_message = f"System: {system_prompt}\n\nUser: {message}"
# Call the LLM
response = llm.invoke(full_message)
response_text = str(response.content).strip()
print(f"π DEBUG: LLM response received: {response_text[:100]}...")
if not response_text:
response_text = "β LLM returned empty response"
except Exception as e:
print(f"π DEBUG: LLM call failed: {e}")
response_text = f"β LLM Error: {str(e)}"
# Add to history
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": response_text})
print(f"π DEBUG: Final response: {response_text}")
return history, ""
except Exception as e:
print(f"π DEBUG: General error in chatbot_response: {e}")
if history is None:
history = []
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": f"β Error: {str(e)}"})
return history, ""
# Also add this helper function to test LLM connectivity:
def test_llm_connection():
"""Test if LLM is working properly"""
try:
if not LLM_AVAILABLE:
return "β LLM not imported"
if not os.getenv("GROQ_API_KEY"):
return "β GROQ_API_KEY not found"
# Test with a simple message
response = llm.invoke("Hello, please respond with 'LLM is working'")
return f"β
LLM working: {response.content}"
except Exception as e:
return f"β LLM test failed: {e}"
# Add this to your interface initialization to test LLM on startup:
# Add this to your interface initialization to show database status
def initialize_interface_with_debug():
"""Initialize interface with database debug info"""
global current_model_mapping
# Test database connection
db_status = test_database_connection()
print(f"π Database Status: {db_status}")
try:
models = get_models_from_db()
formatted_items, model_mapping = format_dropdown_items(models)
current_model_mapping = model_mapping
if formatted_items:
dropdown_value = formatted_items[0]
first_model_name = extract_model_name_from_dropdown(dropdown_value, model_mapping)
dropdown_update = gr.update(choices=formatted_items, value=dropdown_value)
else:
dropdown_value = None
first_model_name = ""
dropdown_update = gr.update(choices=[], value=None)
return (
dropdown_update,
"",
first_model_name,
first_model_name
)
except Exception as e:
print(f"β Error initializing interface: {e}")
return (
gr.update(choices=[], value=None),
"",
"",
""
)
# Replace your existing functions with these corrected versions:
def calculate_drift(dropdown_value):
"""Calculate drift for model - using actual database"""
if not dropdown_value:
return "β Please select a model first"
try:
model_name = extract_model_name_from_dropdown(dropdown_value, current_model_mapping)
if not DATABASE_AVAILABLE:
# Fallback for demo mode
import random
drift_score = random.randint(10, 80)
alert = "π¨ Significant drift detected!" if drift_score > 50 else "β
Drift within acceptable range"
return f"Drift analysis for {model_name}:\nDrift Score: {drift_score}/100\n{alert}"
# Use actual database function
result = calculate_drift_handler({"model_name": model_name})
if "drift_score" in result:
drift_score = result["drift_score"]
# Convert to percentage if it's a decimal
if isinstance(drift_score, float) and drift_score <= 1.0:
drift_score = int(drift_score * 100)
alert = "π¨ Significant drift detected!" if drift_score > 50 else "β
Drift within acceptable range"
return f"Drift analysis for {model_name}:\nDrift Score: {drift_score}/100\n{alert}\n\n{result.get('message', '')}"
else:
return f"β Error calculating drift: {result.get('message', 'Unknown error')}"
except Exception as e:
print(f"β Error calculating drift: {e}")
return f"β Error calculating drift: {str(e)}"
def create_drift_chart(drift_history):
"""Create drift chart from actual data with improved data handling"""
try:
if not drift_history or len(drift_history) == 0:
# Empty chart if no data
fig = go.Figure()
fig.add_annotation(
text="No drift data available",
xref="paper", yref="paper",
x=0.5, y=0.5,
showarrow=False,
font=dict(size=16)
)
fig.update_layout(
title='Model Drift Over Time - No Data',
template='plotly_white',
height=400,
xaxis_title='Date',
yaxis_title='Drift Score (%)'
)
return fig
print(f"π DEBUG: Processing {len(drift_history)} drift records")
# Extract dates and scores from actual data
dates = []
scores = []
for i, entry in enumerate(drift_history):
print(f"π DEBUG: Processing entry {i}: {entry}")
# Handle different date formats
date_value = entry.get("date", entry.get("created_at", entry.get("timestamp", "")))
if date_value:
if isinstance(date_value, str):
try:
from datetime import datetime
# Try different date formats
if "T" in date_value:
# ISO format with time
date_obj = datetime.fromisoformat(date_value.replace("Z", "+00:00"))
formatted_date = date_obj.strftime("%Y-%m-%d")
elif "-" in date_value and len(date_value) >= 10:
# YYYY-MM-DD format
date_obj = datetime.strptime(date_value[:10], "%Y-%m-%d")
formatted_date = date_obj.strftime("%Y-%m-%d")
else:
# Use as-is if can't parse
formatted_date = str(date_value)[:10]
except Exception as date_error:
print(f"β οΈ Date parsing error for '{date_value}': {date_error}")
formatted_date = f"Entry {i + 1}"
else:
# Handle datetime objects
try:
formatted_date = date_value.strftime("%Y-%m-%d")
except:
formatted_date = str(date_value)
else:
formatted_date = f"Entry {i + 1}"
dates.append(formatted_date)
# Handle drift score - try multiple possible field names
score = entry.get("drift_score", entry.get("score", entry.get("drift", 0)))
if isinstance(score, str):
try:
score = float(score)
except ValueError:
print(f"β οΈ Could not convert score '{score}' to float, using 0")
score = 0
elif score is None:
score = 0
# Convert decimal to percentage if needed
if isinstance(score, (int, float)):
if 0 <= score <= 1:
score = score * 100 # Convert decimal to percentage
score = max(0, min(100, score)) # Clamp between 0-100
else:
score = 0
scores.append(score)
print(f"π DEBUG: Added point - Date: {formatted_date}, Score: {score}")
print(f"π DEBUG: Final data - Dates: {dates}, Scores: {scores}")
if len(dates) == 0 or len(scores) == 0:
raise ValueError("No valid data points found")
# Create the plot
fig = go.Figure()
# Add the main drift line
fig.add_trace(go.Scatter(
x=dates,
y=scores,
mode='lines+markers',
name='Drift Score',
line=dict(color='#ff6b6b', width=3),
marker=dict(
size=10,
color='#ff6b6b',
line=dict(width=2, color='white')
),
hovertemplate='<b>Date:</b> %{x}<br><b>Drift Score:</b> %{y:.1f}%<extra></extra>',
connectgaps=True # Connect points even if there are gaps
))
# Add threshold line at 50%
fig.add_hline(
y=50,
line_dash="dash",
line_color="orange",
line_width=2,
annotation_text="Alert Threshold (50%)",
annotation_position="bottom right"
)
# Add another threshold at 75% for critical level
fig.add_hline(
y=75,
line_dash="dot",
line_color="red",
line_width=2,
annotation_text="Critical Threshold (75%)",
annotation_position="top right"
)
# Update layout with better formatting
fig.update_layout(
title=f'Model Drift Over Time ({len(drift_history)} data points)',
xaxis_title='Date',
yaxis_title='Drift Score (%)',
template='plotly_white',
height=450,
showlegend=True,
yaxis=dict(
range=[0, 100], # Set Y-axis range from 0 to 100%
ticksuffix='%'
),
xaxis=dict(
tickangle=45 if len(dates) > 5 else 0, # Angle labels for many dates
type='category' # Treat dates as categories for better spacing
),
hovermode='x unified', # Better hover experience
margin=dict(b=100) # More bottom margin for angled labels
)
# Add grid for better readability
fig.update_xaxes(showgrid=True, gridwidth=1, gridcolor='lightgray')
fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='lightgray')
return fig
except Exception as e:
print(f"β Error creating drift chart: {e}")
print(f"β Drift history data: {drift_history}")
# Return error chart
fig = go.Figure()
fig.add_annotation(
text=f"Error creating chart:\n{str(e)}\n\nCheck console for details",
xref="paper", yref="paper",
x=0.5, y=0.5,
showarrow=False,
font=dict(size=14, color="red"),
align="center"
)
fig.update_layout(
title='Error Creating Drift Chart',
template='plotly_white',
height=400,
xaxis_title='Date',
yaxis_title='Drift Score (%)'
)
return fig
def debug_drift_data(drift_history):
"""Helper function to debug drift history data structure"""
print("π DEBUG: Drift History Analysis")
print(f"Type: {type(drift_history)}")
print(f"Length: {len(drift_history) if drift_history else 0}")
if drift_history:
for i, entry in enumerate(drift_history[:3]): # Show first 3 entries
print(f"Entry {i}: {entry}")
print(f" Keys: {list(entry.keys()) if isinstance(entry, dict) else 'Not a dict'}")
return drift_history
def refresh_drift_history(dropdown_value):
"""Refresh drift history with improved debugging"""
if not dropdown_value:
return [], gr.update(value=None)
try:
model_name = extract_model_name_from_dropdown(dropdown_value, current_model_mapping)
print(f"π DEBUG: Getting drift history for model: {model_name}")
if not DATABASE_AVAILABLE:
# Enhanced mock data for demo mode
from datetime import datetime, timedelta
base_date = datetime.now() - timedelta(days=10)
history = []
for i in range(6): # Create 6 data points
date_obj = base_date + timedelta(days=i * 2)
score = 20 + (i * 15) + (i % 2 * 10) # Varied scores: 20, 45, 50, 75, 70, 95
history.append({
"date": date_obj.strftime("%Y-%m-%d"),
"drift_score": min(95, score), # Cap at 95
"model_name": model_name
})
print(f"π DEBUG: Generated {len(history)} mock drift records")
else:
# Get actual drift history from database
history_result = get_drift_history_handler({"model_name": model_name})
if isinstance(history_result, list) and history_result:
history = history_result
print(f"β
Retrieved {len(history)} drift records for {model_name}")
else:
history = []
print(f"β οΈ No drift history found for {model_name}")
# Debug the data structure
history = debug_drift_data(history)
# Create chart
chart = create_drift_chart(history)
return history, chart
except Exception as e:
print(f"β Error refreshing drift history: {e}")
import traceback
traceback.print_exc()
return [], gr.update(value=None)
def initialize_interface():
"""Initialize interface"""
global current_model_mapping
try:
models = get_models_from_db()
formatted_items, model_mapping = format_dropdown_items(models)
current_model_mapping = model_mapping
# Safe initialization
if formatted_items:
dropdown_value = formatted_items[0]
first_model_name = extract_model_name_from_dropdown(dropdown_value, model_mapping)
dropdown_update = gr.update(choices=formatted_items, value=dropdown_value)
else:
dropdown_value = None
first_model_name = ""
dropdown_update = gr.update(choices=[], value=None)
return (
dropdown_update, # dropdown update
"", # new_model_name
first_model_name, # selected_model_display
first_model_name # drift_model_display
)
except Exception as e:
print(f"β Error initializing interface: {e}")
return (
gr.update(choices=[], value=None),
"",
"",
""
)
# --- Gradio Interface ---
def create_interface():
"""Create the Gradio interface"""
with gr.Blocks(title="AI Model Management & Interaction Platform", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π€ AI Model Management & Interaction Platform")
if not DATABASE_AVAILABLE:
gr.Markdown("β οΈ **Demo Mode**: Running without database connectivity. Some features are simulated.")
with gr.Row():
# Left Column - Model Selection
with gr.Column(scale=1):
gr.Markdown("### π Model Selection")
model_dropdown = gr.Dropdown(
choices=[],
label="Select Model",
interactive=True,
allow_custom_value=False,
value=None
)
search_box = gr.Textbox(
placeholder="Search by model name or description...",
label="π Search Models"
)
create_new_button = gr.Button("β Create New Model", variant="secondary")
# Create New Model Section
with gr.Group(visible=False) as create_new_section:
gr.Markdown("#### π Create New Model")
new_model_name = gr.Textbox(
label="Model Name",
placeholder="Enter model name"
)
new_llm = gr.Dropdown(
choices=[
"gemini-1.0-pro",
"gemini-1.5-pro",
"groq-llama-3.1-8b-instant",
"groq-mixtral-8x7b-32768",
"claude-3-sonnet-20240229"
],
label="Select LLM",
interactive=True
)
new_system_prompt = gr.Textbox(
label="System Prompt",
placeholder="Enter system prompt",
lines=3
)
with gr.Row():
enhance_button = gr.Button("β¨ Enhance Prompt", variant="primary")
cancel_button = gr.Button("β Cancel", variant="secondary")
enhanced_prompt_display = gr.Textbox(
label="Enhanced Prompt",
interactive=False,
lines=4,
visible=False
)
prompt_choice = gr.Radio(
choices=["Keep Enhanced", "Keep Original"],
label="Choose Prompt",
visible=False
)
save_model_button = gr.Button("πΎ Save Model", variant="primary", visible=False)
save_status = gr.Textbox(label="Status", interactive=False, visible=False)
# Right Column - Model Operations
with gr.Column(scale=2):
gr.Markdown("### π οΈ Model Operations")
with gr.Tabs():
# Chatbot Tab
with gr.TabItem("π¬ Chatbot"):
selected_model_display = gr.Textbox(
label="Currently Selected Model",
interactive=False
)
chatbot_interface = gr.Chatbot(
type="messages",
height=400,
show_label=False
)
with gr.Row():
msg_input = gr.Textbox(
placeholder="Enter your message...",
label="Message",
scale=4
)
send_button = gr.Button("π€ Send", variant="primary", scale=1)
clear_chat = gr.Button("ποΈ Clear Chat", variant="secondary")
# Drift Analysis Tab
with gr.TabItem("π Drift Analysis"):
drift_model_display = gr.Textbox(
label="Model for Drift Analysis",
interactive=False
)
with gr.Row():
calculate_drift_button = gr.Button("π Calculate New Drift", variant="primary")
refresh_history_button = gr.Button("π Refresh History", variant="secondary")
drift_result = gr.Textbox(label="Latest Drift Calculation", interactive=False)
gr.Markdown("#### π Drift History")
drift_history_display = gr.JSON(label="Drift History Data")
gr.Markdown("#### π Drift Chart")
drift_chart = gr.Plot(label="Drift Over Time")
# Event Handlers with better error handling
search_box.change(update_model_dropdown, inputs=[search_box], outputs=[model_dropdown])
model_dropdown.change(on_model_select, inputs=[model_dropdown],
outputs=[selected_model_display, drift_model_display])
create_new_button.click(show_create_new, outputs=[create_new_section, new_model_name])
cancel_button.click(cancel_create_new,
outputs=[create_new_section, new_model_name, new_system_prompt, enhanced_prompt_display,
prompt_choice, save_model_button, save_status])
enhance_button.click(enhance_prompt, inputs=[new_system_prompt],
outputs=[enhanced_prompt_display, prompt_choice, save_model_button])
save_model_button.click(save_new_model,
inputs=[new_model_name, new_llm, new_system_prompt, enhanced_prompt_display,
prompt_choice],
outputs=[save_status, save_status, model_dropdown])
send_button.click(chatbot_response, inputs=[msg_input, chatbot_interface, model_dropdown],
outputs=[chatbot_interface, msg_input])
msg_input.submit(chatbot_response, inputs=[msg_input, chatbot_interface, model_dropdown],
outputs=[chatbot_interface, msg_input])
clear_chat.click(lambda: [], outputs=[chatbot_interface])
calculate_drift_button.click(calculate_drift, inputs=[model_dropdown], outputs=[drift_result])
refresh_history_button.click(refresh_drift_history, inputs=[model_dropdown],
outputs=[drift_history_display, drift_chart])
demo.load(initialize_interface,
outputs=[model_dropdown, new_model_name, selected_model_display, drift_model_display])
return demo
def main():
"""Main function to launch the application"""
print("π Starting AI Model Management Platform...")
# Create the interface
demo = create_interface()
# Launch configuration
launch_config = {
"server_name": "0.0.0.0", # Listen on all interfaces
"server_port": 7860, # Default Gradio port
"share": False, # Set to True if you want a public link
"show_error": True, # Show detailed errors
"quiet": False, # Set to True to reduce output
"show_api": True, # Show API docs
}
print("π‘ Launching Gradio interface...")
print(f"π Server will be available at:")
print(f" - Local: http://localhost:{launch_config['server_port']}")
print(f" - Network: http://0.0.0.0:{launch_config['server_port']}")
try:
demo.launch(**launch_config)
except Exception as e:
print(f"β Failed to launch Gradio interface: {e}")
print("π§ Troubleshooting suggestions:")
print(" 1. Check if port 7860 is already in use")
print(" 2. Try a different port: demo.launch(server_port=7861)")
print(" 3. Check firewall settings")
print(" 4. Ensure Gradio is properly installed: pip install gradio")
return False
return True
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
print("\nπ Shutting down gracefully...")
except Exception as e:
print(f"β Application error: {e}")
sys.exit(1) |