Spaces:
Running
Running
File size: 26,330 Bytes
8c665a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
# memory_logic.py
import os
import json
import time
from datetime import datetime
import logging
import re
import threading
# Conditionally import heavy dependencies
try:
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
except ImportError:
SentenceTransformer, faiss, np = None, None, None
logging.warning("SentenceTransformers, FAISS, or NumPy not installed. Semantic search will be unavailable.")
try:
import sqlite3
except ImportError:
sqlite3 = None
logging.warning("sqlite3 module not available. SQLite backend will be unavailable.")
try:
from datasets import load_dataset, Dataset
except ImportError:
load_dataset, Dataset = None, None
logging.warning("datasets library not installed. Hugging Face Dataset backend will be unavailable.")
logger = logging.getLogger(__name__)
# Suppress verbose logs from dependencies
for lib_name in ["sentence_transformers", "faiss", "datasets", "huggingface_hub"]:
if logging.getLogger(lib_name): # Check if logger exists
logging.getLogger(lib_name).setLevel(logging.WARNING)
# --- Configuration (Read directly from environment variables) ---
STORAGE_BACKEND = os.getenv("STORAGE_BACKEND", "HF_DATASET").upper() #HF_DATASET, RAM, SQLITE
SQLITE_DB_PATH = os.getenv("SQLITE_DB_PATH", "app_data/ai_memory.db") # Changed default path
HF_TOKEN = os.getenv("HF_TOKEN")
HF_MEMORY_DATASET_REPO = os.getenv("HF_MEMORY_DATASET_REPO", "broadfield-dev/ai-brain") # Example
HF_RULES_DATASET_REPO = os.getenv("HF_RULES_DATASET_REPO", "broadfield-dev/ai-rules") # Example
# --- Globals for RAG within this module ---
_embedder = None
_dimension = 384 # Default, will be set by embedder
_faiss_memory_index = None
_memory_items_list = [] # Stores JSON strings of memory objects for RAM, or loaded from DB/HF
_faiss_rules_index = None
_rules_items_list = [] # Stores rule text strings
_initialized = False
_init_lock = threading.Lock()
# --- Helper: SQLite Connection ---
def _get_sqlite_connection():
if not sqlite3:
raise ImportError("sqlite3 module is required for SQLite backend but not found.")
db_dir = os.path.dirname(SQLITE_DB_PATH)
if db_dir and not os.path.exists(db_dir):
os.makedirs(db_dir, exist_ok=True)
return sqlite3.connect(SQLITE_DB_PATH, timeout=10) # Added timeout
def _init_sqlite_tables():
if STORAGE_BACKEND != "SQLITE" or not sqlite3:
return
try:
with _get_sqlite_connection() as conn:
cursor = conn.cursor()
# Stores JSON string of the memory object
cursor.execute("""
CREATE TABLE IF NOT EXISTS memories (
id INTEGER PRIMARY KEY AUTOINCREMENT,
memory_json TEXT NOT NULL,
# Optionally add embedding here if not using separate FAISS index
# embedding BLOB,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
# Stores the rule text directly
cursor.execute("""
CREATE TABLE IF NOT EXISTS rules (
id INTEGER PRIMARY KEY AUTOINCREMENT,
rule_text TEXT NOT NULL UNIQUE,
# embedding BLOB,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
conn.commit()
logger.info("SQLite tables for memories and rules checked/created.")
except Exception as e:
logger.error(f"SQLite table initialization error: {e}", exc_info=True)
# --- Initialization ---
def initialize_memory_system():
global _initialized, _embedder, _dimension, _faiss_memory_index, _memory_items_list, _faiss_rules_index, _rules_items_list
with _init_lock:
if _initialized:
logger.info("Memory system already initialized.")
return
logger.info(f"Initializing memory system with backend: {STORAGE_BACKEND}")
init_start_time = time.time()
# 1. Load Sentence Transformer Model (always needed for semantic operations)
if not SentenceTransformer or not faiss or not np:
logger.error("Core RAG libraries (SentenceTransformers, FAISS, NumPy) not available. Cannot initialize semantic memory.")
_initialized = False # Mark as not properly initialized
return
if not _embedder:
try:
logger.info("Loading SentenceTransformer model (all-MiniLM-L6-v2)...")
_embedder = SentenceTransformer('all-MiniLM-L6-v2', cache_folder="./sentence_transformer_cache")
_dimension = _embedder.get_sentence_embedding_dimension() or 384
logger.info(f"SentenceTransformer loaded. Dimension: {_dimension}")
except Exception as e:
logger.critical(f"FATAL: Error loading SentenceTransformer: {e}", exc_info=True)
_initialized = False
return # Cannot proceed without embedder
# 2. Initialize SQLite if used
if STORAGE_BACKEND == "SQLITE":
_init_sqlite_tables()
# 3. Load Memories
logger.info("Loading memories...")
temp_memories_json = []
if STORAGE_BACKEND == "RAM":
_memory_items_list = [] # Start fresh for RAM backend
elif STORAGE_BACKEND == "SQLITE" and sqlite3:
try:
with _get_sqlite_connection() as conn:
temp_memories_json = [row[0] for row in conn.execute("SELECT memory_json FROM memories ORDER BY created_at ASC")]
except Exception as e: logger.error(f"Error loading memories from SQLite: {e}")
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset and load_dataset:
try:
logger.info(f"Attempting to load memories from HF Dataset: {HF_MEMORY_DATASET_REPO}")
dataset = load_dataset(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True) # Add download_mode if needed
if "train" in dataset and "memory_json" in dataset["train"].column_names: # Assuming 'memory_json' column
temp_memories_json = [m_json for m_json in dataset["train"]["memory_json"] if isinstance(m_json, str)]
else: logger.warning(f"HF Dataset {HF_MEMORY_DATASET_REPO} for memories not found or 'memory_json' column missing.")
except Exception as e: logger.error(f"Error loading memories from HF Dataset ({HF_MEMORY_DATASET_REPO}): {e}")
_memory_items_list = temp_memories_json
logger.info(f"Loaded {len(_memory_items_list)} memory items from {STORAGE_BACKEND}.")
# 4. Build/Load FAISS Memory Index
_faiss_memory_index = faiss.IndexFlatL2(_dimension)
if _memory_items_list:
logger.info(f"Building FAISS index for {len(_memory_items_list)} memories...")
# Extract text to embed from memory JSON objects
texts_to_embed_mem = []
for mem_json_str in _memory_items_list:
try:
mem_obj = json.loads(mem_json_str)
# Consistent embedding strategy: user input + bot response + takeaway
text = f"User: {mem_obj.get('user_input','')}\nAI: {mem_obj.get('bot_response','')}\nTakeaway: {mem_obj.get('metrics',{}).get('takeaway','N/A')}"
texts_to_embed_mem.append(text)
except json.JSONDecodeError:
logger.warning(f"Skipping malformed memory JSON for FAISS indexing: {mem_json_str[:100]}")
if texts_to_embed_mem:
try:
embeddings = _embedder.encode(texts_to_embed_mem, convert_to_tensor=False, show_progress_bar=False) # convert_to_numpy=True
embeddings_np = np.array(embeddings, dtype=np.float32)
if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(texts_to_embed_mem) and embeddings_np.shape[1] == _dimension:
_faiss_memory_index.add(embeddings_np)
else: logger.error(f"Memory embeddings shape error. Expected ({len(texts_to_embed_mem)}, {_dimension}), Got {embeddings_np.shape if hasattr(embeddings_np, 'shape') else 'N/A'}")
except Exception as e_faiss_mem: logger.error(f"Error building FAISS memory index: {e_faiss_mem}")
logger.info(f"FAISS memory index built. Total items: {_faiss_memory_index.ntotal if _faiss_memory_index else 'N/A'}")
# 5. Load Rules
logger.info("Loading rules...")
temp_rules_text = []
if STORAGE_BACKEND == "RAM":
_rules_items_list = []
elif STORAGE_BACKEND == "SQLITE" and sqlite3:
try:
with _get_sqlite_connection() as conn:
temp_rules_text = [row[0] for row in conn.execute("SELECT rule_text FROM rules ORDER BY created_at ASC")]
except Exception as e: logger.error(f"Error loading rules from SQLite: {e}")
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset and load_dataset:
try:
logger.info(f"Attempting to load rules from HF Dataset: {HF_RULES_DATASET_REPO}")
dataset = load_dataset(HF_RULES_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
if "train" in dataset and "rule_text" in dataset["train"].column_names:
temp_rules_text = [r_text for r_text in dataset["train"]["rule_text"] if isinstance(r_text, str) and r_text.strip()]
else: logger.warning(f"HF Dataset {HF_RULES_DATASET_REPO} for rules not found or 'rule_text' column missing.")
except Exception as e: logger.error(f"Error loading rules from HF Dataset ({HF_RULES_DATASET_REPO}): {e}")
_rules_items_list = sorted(list(set(temp_rules_text))) # Ensure unique and sorted
logger.info(f"Loaded {len(_rules_items_list)} rule items from {STORAGE_BACKEND}.")
# 6. Build/Load FAISS Rules Index
_faiss_rules_index = faiss.IndexFlatL2(_dimension)
if _rules_items_list:
logger.info(f"Building FAISS index for {len(_rules_items_list)} rules...")
if _rules_items_list: # Check again in case it became empty after filtering
try:
embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False, show_progress_bar=False)
embeddings_np = np.array(embeddings, dtype=np.float32)
if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(_rules_items_list) and embeddings_np.shape[1] == _dimension:
_faiss_rules_index.add(embeddings_np)
else: logger.error(f"Rule embeddings shape error. Expected ({len(_rules_items_list)}, {_dimension}), Got {embeddings_np.shape if hasattr(embeddings_np, 'shape') else 'N/A'}")
except Exception as e_faiss_rule: logger.error(f"Error building FAISS rule index: {e_faiss_rule}")
logger.info(f"FAISS rules index built. Total items: {_faiss_rules_index.ntotal if _faiss_rules_index else 'N/A'}")
_initialized = True
logger.info(f"Memory system initialization complete in {time.time() - init_start_time:.2f}s")
# --- Memory Operations (Semantic) ---
def add_memory_entry(user_input: str, metrics: dict, bot_response: str) -> tuple[bool, str]:
"""Adds a memory entry to the configured backend and FAISS index."""
global _memory_items_list, _faiss_memory_index
if not _initialized: initialize_memory_system()
if not _embedder or not _faiss_memory_index:
return False, "Memory system or embedder not initialized for adding memory."
memory_obj = {
"user_input": user_input,
"metrics": metrics,
"bot_response": bot_response,
"timestamp": datetime.utcnow().isoformat()
}
memory_json_str = json.dumps(memory_obj)
text_to_embed = f"User: {user_input}\nAI: {bot_response}\nTakeaway: {metrics.get('takeaway', 'N/A')}"
try:
embedding = _embedder.encode([text_to_embed], convert_to_tensor=False)
embedding_np = np.array(embedding, dtype=np.float32).reshape(1, -1)
if embedding_np.shape != (1, _dimension):
logger.error(f"Memory embedding shape error: {embedding_np.shape}. Expected (1, {_dimension})")
return False, "Embedding shape error."
# Add to FAISS
_faiss_memory_index.add(embedding_np)
# Add to in-memory list
_memory_items_list.append(memory_json_str)
# Add to persistent storage
if STORAGE_BACKEND == "SQLITE" and sqlite3:
with _get_sqlite_connection() as conn:
conn.execute("INSERT INTO memories (memory_json) VALUES (?)", (memory_json_str,))
conn.commit()
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
# This can be slow, consider batching or async push
logger.info(f"Pushing {len(_memory_items_list)} memories to HF Hub: {HF_MEMORY_DATASET_REPO}")
Dataset.from_dict({"memory_json": list(_memory_items_list)}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True) # Ensure 'private' as needed
logger.info(f"Added memory. RAM: {len(_memory_items_list)}, FAISS: {_faiss_memory_index.ntotal}")
return True, "Memory added successfully."
except Exception as e:
logger.error(f"Error adding memory entry: {e}", exc_info=True)
# TODO: Potential rollback logic if FAISS add succeeded but backend failed (complex)
return False, f"Error adding memory: {e}"
def retrieve_memories_semantic(query: str, k: int = 3) -> list[dict]:
"""Retrieves k most relevant memories using semantic search."""
if not _initialized: initialize_memory_system()
if not _embedder or not _faiss_memory_index or _faiss_memory_index.ntotal == 0:
logger.debug("Cannot retrieve memories: Embedder, FAISS index not ready, or index is empty.")
return []
try:
query_embedding = _embedder.encode([query], convert_to_tensor=False)
query_embedding_np = np.array(query_embedding, dtype=np.float32).reshape(1, -1)
if query_embedding_np.shape[1] != _dimension:
logger.error(f"Query embedding dimension mismatch. Expected {_dimension}, got {query_embedding_np.shape[1]}")
return []
distances, indices = _faiss_memory_index.search(query_embedding_np, min(k, _faiss_memory_index.ntotal))
results = []
for i in indices[0]:
if 0 <= i < len(_memory_items_list):
try:
results.append(json.loads(_memory_items_list[i]))
except json.JSONDecodeError:
logger.warning(f"Could not parse memory JSON from list at index {i}")
else:
logger.warning(f"FAISS index {i} out of bounds for memory_items_list (len: {len(_memory_items_list)})")
logger.debug(f"Retrieved {len(results)} memories semantically for query: '{query[:50]}...'")
return results
except Exception as e:
logger.error(f"Error retrieving memories semantically: {e}", exc_info=True)
return []
# --- Rule (Insight) Operations (Semantic) ---
def add_rule_entry(rule_text: str) -> tuple[bool, str]:
"""Adds a rule if valid and not a duplicate. Updates backend and FAISS."""
global _rules_items_list, _faiss_rules_index
if not _initialized: initialize_memory_system()
if not _embedder or not _faiss_rules_index:
return False, "Rule system or embedder not initialized."
rule_text = rule_text.strip()
if not rule_text: return False, "Rule text cannot be empty."
if not re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\](.*)", rule_text, re.I|re.DOTALL):
return False, "Invalid rule format."
if rule_text in _rules_items_list:
return False, "duplicate"
try:
embedding = _embedder.encode([rule_text], convert_to_tensor=False)
embedding_np = np.array(embedding, dtype=np.float32).reshape(1, -1)
if embedding_np.shape != (1, _dimension):
return False, "Rule embedding shape error."
_faiss_rules_index.add(embedding_np)
_rules_items_list.append(rule_text)
_rules_items_list.sort()
if STORAGE_BACKEND == "SQLITE" and sqlite3:
with _get_sqlite_connection() as conn:
conn.execute("INSERT OR IGNORE INTO rules (rule_text) VALUES (?)", (rule_text,))
conn.commit()
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
logger.info(f"Pushing {len(_rules_items_list)} rules to HF Hub: {HF_RULES_DATASET_REPO}")
Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
logger.info(f"Added rule. RAM: {len(_rules_items_list)}, FAISS: {_faiss_rules_index.ntotal}")
return True, "Rule added successfully."
except Exception as e:
logger.error(f"Error adding rule entry: {e}", exc_info=True)
# Basic rollback if FAISS add succeeded
if rule_text in _rules_items_list and _faiss_rules_index.ntotal > 0: # Crude check
# A full rollback would involve rebuilding FAISS index from _rules_items_list before append.
# For simplicity, this is omitted here. State could be inconsistent on error.
pass
return False, f"Error adding rule: {e}"
def retrieve_rules_semantic(query: str, k: int = 5) -> list[str]:
"""Retrieves k most relevant rules using semantic search."""
if not _initialized: initialize_memory_system()
if not _embedder or not _faiss_rules_index or _faiss_rules_index.ntotal == 0:
return []
try:
query_embedding = _embedder.encode([query], convert_to_tensor=False)
query_embedding_np = np.array(query_embedding, dtype=np.float32).reshape(1, -1)
if query_embedding_np.shape[1] != _dimension: return []
distances, indices = _faiss_rules_index.search(query_embedding_np, min(k, _faiss_rules_index.ntotal))
results = [_rules_items_list[i] for i in indices[0] if 0 <= i < len(_rules_items_list)]
logger.debug(f"Retrieved {len(results)} rules semantically for query: '{query[:50]}...'")
return results
except Exception as e:
logger.error(f"Error retrieving rules semantically: {e}", exc_info=True)
return []
def remove_rule_entry(rule_text_to_delete: str) -> bool:
"""Removes a rule from backend and rebuilds FAISS for rules."""
global _rules_items_list, _faiss_rules_index
if not _initialized: initialize_memory_system()
if not _embedder or not _faiss_rules_index: return False
rule_text_to_delete = rule_text_to_delete.strip()
if rule_text_to_delete not in _rules_items_list:
return False # Not found
try:
_rules_items_list.remove(rule_text_to_delete)
_rules_items_list.sort() # Maintain sorted order
# Rebuild FAISS index for rules (simplest way to ensure consistency after removal)
new_faiss_rules_index = faiss.IndexFlatL2(_dimension)
if _rules_items_list:
embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False)
embeddings_np = np.array(embeddings, dtype=np.float32)
if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(_rules_items_list) and embeddings_np.shape[1] == _dimension:
new_faiss_rules_index.add(embeddings_np)
else: # Should not happen if list is consistent
logger.error("Error rebuilding FAISS for rules after removal: Embedding shape error. State might be inconsistent.")
# Attempt to revert _rules_items_list (add back the rule)
_rules_items_list.append(rule_text_to_delete)
_rules_items_list.sort()
return False # Indicate failure
_faiss_rules_index = new_faiss_rules_index
# Remove from persistent storage
if STORAGE_BACKEND == "SQLITE" and sqlite3:
with _get_sqlite_connection() as conn:
conn.execute("DELETE FROM rules WHERE rule_text = ?", (rule_text_to_delete,))
conn.commit()
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
logger.info(f"Removed rule. RAM: {len(_rules_items_list)}, FAISS: {_faiss_rules_index.ntotal}")
return True
except Exception as e:
logger.error(f"Error removing rule entry: {e}", exc_info=True)
# Potential partial failure, state might be inconsistent.
return False
# --- Utility functions to get all data (for UI display, etc.) ---
def get_all_rules_cached() -> list[str]:
if not _initialized: initialize_memory_system()
return list(_rules_items_list)
def get_all_memories_cached() -> list[dict]:
if not _initialized: initialize_memory_system()
# Convert JSON strings to dicts for easier use by UI
mem_dicts = []
for mem_json_str in _memory_items_list:
try: mem_dicts.append(json.loads(mem_json_str))
except: pass # Ignore parse errors for display
return mem_dicts
def clear_all_memory_data_backend() -> bool:
"""Clears all memories from backend and resets in-memory FAISS/list."""
global _memory_items_list, _faiss_memory_index
if not _initialized: initialize_memory_system()
success = True
try:
if STORAGE_BACKEND == "SQLITE" and sqlite3:
with _get_sqlite_connection() as conn: conn.execute("DELETE FROM memories"); conn.commit()
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
# Deleting from HF usually means pushing an empty dataset
Dataset.from_dict({"memory_json": []}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
_memory_items_list = []
if _faiss_memory_index: _faiss_memory_index.reset() # Clear FAISS index
logger.info("All memories cleared from backend and in-memory stores.")
except Exception as e:
logger.error(f"Error clearing all memory data: {e}")
success = False
return success
def clear_all_rules_data_backend() -> bool:
"""Clears all rules from backend and resets in-memory FAISS/list."""
global _rules_items_list, _faiss_rules_index
if not _initialized: initialize_memory_system()
success = True
try:
if STORAGE_BACKEND == "SQLITE" and sqlite3:
with _get_sqlite_connection() as conn: conn.execute("DELETE FROM rules"); conn.commit()
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
Dataset.from_dict({"rule_text": []}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
_rules_items_list = []
if _faiss_rules_index: _faiss_rules_index.reset()
logger.info("All rules cleared from backend and in-memory stores.")
except Exception as e:
logger.error(f"Error clearing all rules data: {e}")
success = False
return success
# Optional: Function to save FAISS indices to disk (from ai-learn, if needed for persistence between app runs with RAM backend)
FAISS_MEMORY_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "memory_index.faiss")
FAISS_RULES_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "rules_index.faiss")
def save_faiss_indices_to_disk():
if not _initialized or not faiss: return
faiss_dir = os.path.dirname(FAISS_MEMORY_PATH)
if not os.path.exists(faiss_dir): os.makedirs(faiss_dir, exist_ok=True)
if _faiss_memory_index and _faiss_memory_index.ntotal > 0:
try:
faiss.write_index(_faiss_memory_index, FAISS_MEMORY_PATH)
logger.info(f"Memory FAISS index saved to disk ({_faiss_memory_index.ntotal} items).")
except Exception as e: logger.error(f"Error saving memory FAISS index: {e}")
if _faiss_rules_index and _faiss_rules_index.ntotal > 0:
try:
faiss.write_index(_faiss_rules_index, FAISS_RULES_PATH)
logger.info(f"Rules FAISS index saved to disk ({_faiss_rules_index.ntotal} items).")
except Exception as e: logger.error(f"Error saving rules FAISS index: {e}")
def load_faiss_indices_from_disk():
global _faiss_memory_index, _faiss_rules_index
if not _initialized or not faiss: return
if os.path.exists(FAISS_MEMORY_PATH) and _faiss_memory_index: # Check if index object exists
try:
logger.info(f"Loading memory FAISS index from {FAISS_MEMORY_PATH}...")
_faiss_memory_index = faiss.read_index(FAISS_MEMORY_PATH)
logger.info(f"Memory FAISS index loaded ({_faiss_memory_index.ntotal} items).")
# Consistency check: FAISS ntotal vs len(_memory_items_list)
if _faiss_memory_index.ntotal != len(_memory_items_list) and len(_memory_items_list) > 0:
logger.warning(f"Memory FAISS index count ({_faiss_memory_index.ntotal}) differs from loaded texts ({len(_memory_items_list)}). Consider rebuilding FAISS.")
except Exception as e: logger.error(f"Error loading memory FAISS index: {e}. Will use fresh index.")
if os.path.exists(FAISS_RULES_PATH) and _faiss_rules_index:
try:
logger.info(f"Loading rules FAISS index from {FAISS_RULES_PATH}...")
_faiss_rules_index = faiss.read_index(FAISS_RULES_PATH)
logger.info(f"Rules FAISS index loaded ({_faiss_rules_index.ntotal} items).")
if _faiss_rules_index.ntotal != len(_rules_items_list) and len(_rules_items_list) > 0:
logger.warning(f"Rules FAISS index count ({_faiss_rules_index.ntotal}) differs from loaded texts ({len(_rules_items_list)}). Consider rebuilding FAISS.")
except Exception as e: logger.error(f"Error loading rules FAISS index: {e}. Will use fresh index.")
|