iLearn / model_logic.py
broadfield-dev's picture
Update model_logic.py
b2fc09f verified
# model_handler.py
import os
import requests
import json
import logging
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
# Maps provider name (uppercase) to environment variable name for API key
API_KEYS_ENV_VARS = {
"HUGGINGFACE": 'HF_TOKEN', # Note: HF_TOKEN is often used for general HF auth
"GROQ": 'GROQ_API_KEY',
"OPENROUTER": 'OPENROUTER_API_KEY',
"TOGETHERAI": 'TOGETHERAI_API_KEY',
"COHERE": 'COHERE_API_KEY',
"XAI": 'XAI_API_KEY',
"OPENAI": 'OPENAI_API_KEY',
"GOOGLE": 'GOOGLE_API_KEY', # Or GOOGLE_GEMINI_API_KEY etc.
}
API_URLS = {
"HUGGINGFACE": 'https://api-inference.huggingface.co/models/',
"GROQ": 'https://api.groq.com/openai/v1/chat/completions',
"OPENROUTER": 'https://openrouter.ai/api/v1/chat/completions',
"TOGETHERAI": 'https://api.together.ai/v1/chat/completions',
"COHERE": 'https://api.cohere.ai/v1/chat', # v1 is common for chat, was v2 in ai-learn
"XAI": 'https://api.x.ai/v1/chat/completions',
"OPENAI": 'https://api.openai.com/v1/chat/completions',
"GOOGLE": 'https://generativelanguage.googleapis.com/v1beta/models/',
}
MODELS_BY_PROVIDER = json.load(open("./models.json"))
def _get_api_key(provider: str, ui_api_key_override: str = None) -> str | None:
"""
Retrieves API key for a given provider.
Priority: UI Override > Environment Variable from API_KEYS_ENV_VARS > Specific (e.g. HF_TOKEN for HuggingFace).
"""
provider_upper = provider.upper()
if ui_api_key_override and ui_api_key_override.strip():
logger.debug(f"Using UI-provided API key for {provider_upper}.")
return ui_api_key_override.strip()
env_var_name = API_KEYS_ENV_VARS.get(provider_upper)
if env_var_name:
env_key = os.getenv(env_var_name)
if env_key and env_key.strip():
logger.debug(f"Using API key from env var '{env_var_name}' for {provider_upper}.")
return env_key.strip()
# Specific fallback for HuggingFace if HF_TOKEN is set and API_KEYS_ENV_VARS['HUGGINGFACE'] wasn't specific enough
if provider_upper == 'HUGGINGFACE':
hf_token_fallback = os.getenv("HF_TOKEN")
if hf_token_fallback and hf_token_fallback.strip():
logger.debug("Using HF_TOKEN as fallback for HuggingFace provider.")
return hf_token_fallback.strip()
logger.warning(f"API Key not found for provider '{provider_upper}'. Checked UI override and environment variable '{env_var_name or 'N/A'}'.")
return None
def get_available_providers() -> list[str]:
"""Returns a sorted list of available provider names (e.g., 'groq', 'openai')."""
return sorted(list(MODELS_BY_PROVIDER.keys()))
def get_model_display_names_for_provider(provider: str) -> list[str]:
"""Returns a sorted list of model display names for a given provider."""
return sorted(list(MODELS_BY_PROVIDER.get(provider.lower(), {}).get("models", {}).keys()))
def get_default_model_display_name_for_provider(provider: str) -> str | None:
"""Gets the default model's display name for a provider."""
provider_data = MODELS_BY_PROVIDER.get(provider.lower(), {})
models_dict = provider_data.get("models", {})
default_model_id = provider_data.get("default")
if default_model_id and models_dict:
for display_name, model_id_val in models_dict.items():
if model_id_val == default_model_id:
return display_name
# Fallback to the first model in the sorted list if default not found or not set
if models_dict:
#sorted_display_names = sorted(list(models_dict.keys()))
sorted_display_names = list(models_dict.keys())
if sorted_display_names:
return sorted_display_names[0]
return None
def get_model_id_from_display_name(provider: str, display_name: str) -> str | None:
"""Gets the actual model ID from its display name for a given provider."""
models = MODELS_BY_PROVIDER.get(provider.lower(), {}).get("models", {})
return models.get(display_name)
def call_model_stream(provider: str, model_display_name: str, messages: list[dict], api_key_override: str = None, temperature: float = 0.7, max_tokens: int = None) -> iter:
"""
Calls the specified model via its provider and streams the response.
Handles provider-specific request formatting and error handling.
Yields chunks of the response text or an error string.
"""
provider_lower = provider.lower()
api_key = _get_api_key(provider_lower, api_key_override)
base_url = API_URLS.get(provider.upper())
model_id = get_model_id_from_display_name(provider_lower, model_display_name)
if not api_key:
env_var_name = API_KEYS_ENV_VARS.get(provider.upper(), 'N/A')
yield f"Error: API Key not found for {provider}. Please set it in the UI or env var '{env_var_name}'."
return
if not base_url:
yield f"Error: Unknown provider '{provider}' or missing API URL configuration."
return
if not model_id:
yield f"Error: Model ID not found for '{model_display_name}' under provider '{provider}'. Check configuration."
return
headers = {}
payload = {}
request_url = base_url
logger.info(f"Streaming from {provider}/{model_display_name} (ID: {model_id})...")
# --- Standard OpenAI-compatible providers ---
if provider_lower in ["groq", "openrouter", "togetherai", "openai", "xai"]:
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
payload = {"model": model_id, "messages": messages, "stream": True, "temperature": temperature}
if max_tokens: payload["max_tokens"] = max_tokens
if provider_lower == "openrouter":
headers["HTTP-Referer"] = os.getenv("OPENROUTER_REFERRER") or "http://localhost/gradio" # Example Referer
headers["X-Title"] = os.getenv("OPENROUTER_X_TITLE") or "Gradio AI Researcher" # Example Title
try:
response = requests.post(request_url, headers=headers, json=payload, stream=True, timeout=180)
response.raise_for_status()
# More robust SSE parsing
buffer = ""
for chunk in response.iter_content(chunk_size=None): # Process raw bytes
buffer += chunk.decode('utf-8', errors='replace')
while '\n\n' in buffer:
event_str, buffer = buffer.split('\n\n', 1)
if not event_str.strip(): continue
content_chunk = ""
for line in event_str.splitlines():
if line.startswith('data: '):
data_json = line[len('data: '):].strip()
if data_json == '[DONE]':
return # Stream finished
try:
data = json.loads(data_json)
if data.get("choices") and len(data["choices"]) > 0:
delta = data["choices"][0].get("delta", {})
if delta and delta.get("content"):
content_chunk += delta["content"]
except json.JSONDecodeError:
logger.warning(f"Failed to decode JSON from stream line: {data_json}")
if content_chunk:
yield content_chunk
# Process any remaining buffer content (less common with '\n\n' delimiter)
if buffer.strip():
logger.debug(f"Remaining buffer after OpenAI-like stream: {buffer}")
except requests.exceptions.HTTPError as e:
err_msg = f"API HTTP Error ({e.response.status_code}): {e.response.text[:500]}"
logger.error(f"{err_msg} for {provider}/{model_id}", exc_info=False)
yield f"Error: {err_msg}"
except requests.exceptions.RequestException as e:
logger.error(f"API Request Error for {provider}/{model_id}: {e}", exc_info=False)
yield f"Error: Could not connect to {provider} ({e})"
except Exception as e:
logger.exception(f"Unexpected error during {provider} stream:")
yield f"Error: An unexpected error occurred: {e}"
return
# --- Google Gemini ---
elif provider_lower == "google":
system_instruction = None
filtered_messages = []
for msg in messages:
if msg["role"] == "system": system_instruction = {"parts": [{"text": msg["content"]}]}
else:
role = "model" if msg["role"] == "assistant" else msg["role"]
filtered_messages.append({"role": role, "parts": [{"text": msg["content"]}]})
payload = {
"contents": filtered_messages,
"safetySettings": [ # Example: more permissive settings
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"},
],
"generationConfig": {"temperature": temperature}
}
if max_tokens: payload["generationConfig"]["maxOutputTokens"] = max_tokens
if system_instruction: payload["system_instruction"] = system_instruction
request_url = f"{base_url}{model_id}:streamGenerateContent?key={api_key}" # API key in query param
headers = {"Content-Type": "application/json"}
try:
response = requests.post(request_url, headers=headers, json=payload, stream=True, timeout=180)
response.raise_for_status()
# Google's stream is a bit different, often newline-delimited JSON arrays/objects
buffer = ""
for chunk in response.iter_content(chunk_size=None):
buffer += chunk.decode('utf-8', errors='replace')
# Google might send chunks that are not complete JSON objects, or multiple objects
# A common pattern is [ {obj1} , {obj2} ] where chunks split mid-array or mid-object.
# This parsing needs to be robust. A simple split by '\n' might not always work if JSON is pretty-printed.
# The previous code's `json.loads(f"[{decoded_line}]")` was an attempt to handle this.
# For now, let's assume newline delimited for simplicity, but this is a known tricky part.
while '\n' in buffer:
line, buffer = buffer.split('\n', 1)
line = line.strip()
if not line: continue
if line.startswith(','): line = line[1:] # Handle leading commas if splitting an array
try:
# Remove "data: " prefix if present (less common for Gemini direct API but good practice)
if line.startswith('data: '): line = line[len('data: '):]
# Gemini often streams an array of objects, or just one object.
# Try to parse as a single object first. If fails, try as array.
parsed_data = None
try:
parsed_data = json.loads(line)
except json.JSONDecodeError:
# If it's part of an array, it might be missing brackets.
# This heuristic is fragile. A proper SSE parser or stateful JSON parser is better.
if line.startswith('{') and line.endswith('}'): # Looks like a complete object
pass # already tried json.loads
# Try to wrap with [] if it seems like a list content without brackets
elif line.startswith('{') or line.endswith('}'):
try:
temp_parsed_list = json.loads(f"[{line}]")
if temp_parsed_list and isinstance(temp_parsed_list, list):
parsed_data = temp_parsed_list[0] # take first if it becomes a list
except json.JSONDecodeError:
logger.warning(f"Google: Still can't parse line even with array wrap: {line}")
if parsed_data:
data_to_process = [parsed_data] if isinstance(parsed_data, dict) else parsed_data # Ensure list
for event_data in data_to_process:
if not isinstance(event_data, dict): continue
if event_data.get("candidates"):
for candidate in event_data["candidates"]:
if candidate.get("content", {}).get("parts"):
for part in candidate["content"]["parts"]:
if part.get("text"):
yield part["text"]
except json.JSONDecodeError:
logger.warning(f"Google: JSONDecodeError for line: {line}")
except Exception as e_google_proc:
logger.error(f"Google: Error processing stream data: {e_google_proc}, Line: {line}")
except requests.exceptions.HTTPError as e:
err_msg = f"Google API HTTP Error ({e.response.status_code}): {e.response.text[:500]}"
logger.error(err_msg, exc_info=False)
yield f"Error: {err_msg}"
except Exception as e:
logger.exception(f"Unexpected error during Google stream:")
yield f"Error: An unexpected error occurred with Google API: {e}"
return
# --- Cohere ---
elif provider_lower == "cohere":
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json", "Accept": "application/json"}
# Cohere message format
chat_history_cohere = []
preamble_cohere = None
user_message_cohere = ""
temp_messages = list(messages) # Work with a copy
if temp_messages and temp_messages[0]["role"] == "system":
preamble_cohere = temp_messages.pop(0)["content"]
if temp_messages:
user_message_cohere = temp_messages.pop()["content"] # Last message is the current user query
for msg in temp_messages: # Remaining are history
role = "USER" if msg["role"] == "user" else "CHATBOT"
chat_history_cohere.append({"role": role, "message": msg["content"]})
if not user_message_cohere:
yield "Error: User message is empty for Cohere."
return
payload = {
"model": model_id,
"message": user_message_cohere,
"stream": True,
"temperature": temperature
}
if max_tokens: payload["max_tokens"] = max_tokens # Cohere uses max_tokens
if chat_history_cohere: payload["chat_history"] = chat_history_cohere
if preamble_cohere: payload["preamble"] = preamble_cohere
try:
response = requests.post(base_url, headers=headers, json=payload, stream=True, timeout=180)
response.raise_for_status()
# Cohere SSE format is event: type\ndata: {json}\n\n
buffer = ""
for chunk_bytes in response.iter_content(chunk_size=None):
buffer += chunk_bytes.decode('utf-8', errors='replace')
while '\n\n' in buffer:
event_str, buffer = buffer.split('\n\n', 1)
if not event_str.strip(): continue
event_type = None
data_json_str = None
for line in event_str.splitlines():
if line.startswith("event:"): event_type = line[len("event:"):].strip()
elif line.startswith("data:"): data_json_str = line[len("data:"):].strip()
if data_json_str:
try:
data = json.loads(data_json_str)
if event_type == "text-generation" and "text" in data:
yield data["text"]
elif event_type == "stream-end":
logger.debug(f"Cohere stream ended. Finish reason: {data.get('finish_reason')}")
return
except json.JSONDecodeError:
logger.warning(f"Cohere: Failed to decode JSON: {data_json_str}")
if buffer.strip():
logger.debug(f"Cohere: Remaining buffer: {buffer.strip()}")
except requests.exceptions.HTTPError as e:
err_msg = f"Cohere API HTTP Error ({e.response.status_code}): {e.response.text[:500]}"
logger.error(err_msg, exc_info=False)
yield f"Error: {err_msg}"
except Exception as e:
logger.exception(f"Unexpected error during Cohere stream:")
yield f"Error: An unexpected error occurred with Cohere API: {e}"
return
# --- HuggingFace Inference API (Basic TGI support) ---
# This is very basic and might not work for all models or complex scenarios.
# Assumes model is deployed with Text Generation Inference (TGI) and supports streaming.
elif provider_lower == "huggingface":
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
# Construct prompt string for TGI (often needs specific formatting)
# This is a generic attempt, specific models might need <|user|>, <|assistant|> etc.
prompt_parts = []
for msg in messages:
role_prefix = ""
if msg['role'] == 'system': role_prefix = "System: " # Or might be ignored/handled differently
elif msg['role'] == 'user': role_prefix = "User: "
elif msg['role'] == 'assistant': role_prefix = "Assistant: "
prompt_parts.append(f"{role_prefix}{msg['content']}")
# TGI typically expects a final "Assistant: " to start generating from
tgi_prompt = "\n".join(prompt_parts) + "\nAssistant: "
payload = {
"inputs": tgi_prompt,
"parameters": {
"temperature": temperature if temperature > 0 else 0.01, # TGI needs temp > 0 for sampling
"max_new_tokens": max_tokens or 1024, # Default TGI max_new_tokens
"return_full_text": False, # We only want generated part
"do_sample": True if temperature > 0 else False,
},
"stream": True
}
request_url = f"{base_url}{model_id}" # Model ID is part of URL path for HF
try:
response = requests.post(request_url, headers=headers, json=payload, stream=True, timeout=180)
response.raise_for_status()
# TGI SSE stream: data: {"token": {"id": ..., "text": "...", "logprob": ..., "special": ...}}
# Or sometimes just data: "text_chunk" for simpler models/configs
buffer = ""
for chunk_bytes in response.iter_content(chunk_size=None):
buffer += chunk_bytes.decode('utf-8', errors='replace')
while '\n' in buffer: # TGI often uses single newline
line, buffer = buffer.split('\n', 1)
line = line.strip()
if not line: continue
if line.startswith('data:'):
data_json_str = line[len('data:'):].strip()
try:
data = json.loads(data_json_str)
if "token" in data and "text" in data["token"]:
yield data["token"]["text"]
elif "generated_text" in data and data.get("details") is None: # Sometimes a final non-streaming like object might appear
# This case is tricky, if it's the *only* thing then it's not really streaming
pass # For now, ignore if it's not a token object
# Some TGI might send raw text if not fully SSE compliant for stream
# elif isinstance(data, str): yield data
except json.JSONDecodeError:
# If it's not JSON, it might be a raw string (less common for TGI stream=True)
# For safety, only yield if it's a clear text string
if not data_json_str.startswith('{') and not data_json_str.startswith('['):
yield data_json_str
else:
logger.warning(f"HF: Failed to decode JSON and not raw string: {data_json_str}")
if buffer.strip():
logger.debug(f"HF: Remaining buffer: {buffer.strip()}")
except requests.exceptions.HTTPError as e:
err_msg = f"HF API HTTP Error ({e.response.status_code}): {e.response.text[:500]}"
logger.error(err_msg, exc_info=False)
yield f"Error: {err_msg}"
except Exception as e:
logger.exception(f"Unexpected error during HF stream:")
yield f"Error: An unexpected error occurred with HF API: {e}"
return
else:
yield f"Error: Provider '{provider}' is not configured for streaming in this handler."
return