import os import json import time from datetime import datetime import logging import re import threading try: from sentence_transformers import SentenceTransformer import faiss import numpy as np except ImportError: SentenceTransformer, faiss, np = None, None, None logging.warning("SentenceTransformers, FAISS, or NumPy not installed. Semantic search will be unavailable.") try: import sqlite3 except ImportError: sqlite3 = None logging.warning("sqlite3 module not available. SQLite backend will be unavailable.") try: from datasets import load_dataset, Dataset except ImportError: load_dataset, Dataset = None, None logging.warning("datasets library not installed. Hugging Face Dataset backend will be unavailable.") logger = logging.getLogger(__name__) for lib_name in ["sentence_transformers", "faiss", "datasets", "huggingface_hub"]: if logging.getLogger(lib_name): logging.getLogger(lib_name).setLevel(logging.WARNING) STORAGE_BACKEND = os.getenv("STORAGE_BACKEND", "HF_DATASET").upper() SQLITE_DB_PATH = os.getenv("SQLITE_DB_PATH", "app_data/ai_memory.db") HF_TOKEN = os.getenv("HF_TOKEN") HF_MEMORY_DATASET_REPO = os.getenv("HF_MEMORY_DATASET_REPO", "broadfield-dev/ai-brain") HF_RULES_DATASET_REPO = os.getenv("HF_RULES_DATASET_REPO", "broadfield-dev/ai-rules") _embedder = None _dimension = 384 _faiss_memory_index = None _memory_items_list = [] _faiss_rules_index = None _rules_items_list = [] _initialized = False _init_lock = threading.Lock() def _get_sqlite_connection(): if not sqlite3: raise ImportError("sqlite3 module is required for SQLite backend but not found.") db_dir = os.path.dirname(SQLITE_DB_PATH) if db_dir and not os.path.exists(db_dir): os.makedirs(db_dir, exist_ok=True) return sqlite3.connect(SQLITE_DB_PATH, timeout=10) def _init_sqlite_tables(): if STORAGE_BACKEND != "SQLITE" or not sqlite3: return try: with _get_sqlite_connection() as conn: cursor = conn.cursor() cursor.execute(""" CREATE TABLE IF NOT EXISTS memories ( id INTEGER PRIMARY KEY AUTOINCREMENT, memory_json TEXT NOT NULL, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ) """) cursor.execute(""" CREATE TABLE IF NOT EXISTS rules ( id INTEGER PRIMARY KEY AUTOINCREMENT, rule_text TEXT NOT NULL UNIQUE, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ) """) conn.commit() logger.info("SQLite tables for memories and rules checked/created.") except Exception as e: logger.error(f"SQLite table initialization error: {e}", exc_info=True) def initialize_memory_system(): global _initialized, _embedder, _dimension, _faiss_memory_index, _memory_items_list, _faiss_rules_index, _rules_items_list with _init_lock: if _initialized: logger.info("Memory system already initialized.") return logger.info(f"Initializing memory system with backend: {STORAGE_BACKEND}") init_start_time = time.time() if not SentenceTransformer or not faiss or not np: logger.error("Core RAG libraries (SentenceTransformers, FAISS, NumPy) not available. Cannot initialize semantic memory.") _initialized = False return if not _embedder: try: logger.info("Loading SentenceTransformer model (all-MiniLM-L6-v2)...") _embedder = SentenceTransformer('all-MiniLM-L6-v2', cache_folder="./sentence_transformer_cache") _dimension = _embedder.get_sentence_embedding_dimension() or 384 logger.info(f"SentenceTransformer loaded. Dimension: {_dimension}") except Exception as e: logger.critical(f"FATAL: Error loading SentenceTransformer: {e}", exc_info=True) _initialized = False return if STORAGE_BACKEND == "SQLITE": _init_sqlite_tables() logger.info("Loading memories...") temp_memories_json = [] if STORAGE_BACKEND == "RAM": _memory_items_list = [] elif STORAGE_BACKEND == "SQLITE" and sqlite3: try: with _get_sqlite_connection() as conn: temp_memories_json = [row[0] for row in conn.execute("SELECT memory_json FROM memories ORDER BY created_at ASC")] except Exception as e: logger.error(f"Error loading memories from SQLite: {e}") elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset and load_dataset: try: logger.info(f"Attempting to load memories from HF Dataset: {HF_MEMORY_DATASET_REPO}") dataset = load_dataset(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True) if "train" in dataset and "memory_json" in dataset["train"].column_names: temp_memories_json = [m_json for m_json in dataset["train"]["memory_json"] if isinstance(m_json, str)] else: logger.warning(f"HF Dataset {HF_MEMORY_DATASET_REPO} for memories not found or 'memory_json' column missing.") except Exception as e: logger.error(f"Error loading memories from HF Dataset ({HF_MEMORY_DATASET_REPO}): {e}") _memory_items_list = temp_memories_json logger.info(f"Loaded {len(_memory_items_list)} memory items from {STORAGE_BACKEND}.") _faiss_memory_index = faiss.IndexFlatL2(_dimension) if _memory_items_list: logger.info(f"Building FAISS index for {len(_memory_items_list)} memories...") texts_to_embed_mem = [] for mem_json_str in _memory_items_list: try: mem_obj = json.loads(mem_json_str) text = f"User: {mem_obj.get('user_input','')}\nAI: {mem_obj.get('bot_response','')}\nTakeaway: {mem_obj.get('metrics',{}).get('takeaway','N/A')}" texts_to_embed_mem.append(text) except json.JSONDecodeError: logger.warning(f"Skipping malformed memory JSON for FAISS indexing: {mem_json_str[:100]}") if texts_to_embed_mem: try: embeddings = _embedder.encode(texts_to_embed_mem, convert_to_tensor=False, show_progress_bar=False) embeddings_np = np.array(embeddings, dtype=np.float32) if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(texts_to_embed_mem) and embeddings_np.shape[1] == _dimension: _faiss_memory_index.add(embeddings_np) else: logger.error(f"Memory embeddings shape error. Expected ({len(texts_to_embed_mem)}, {_dimension}), Got {embeddings_np.shape if hasattr(embeddings_np, 'shape') else 'N/A'}") except Exception as e_faiss_mem: logger.error(f"Error building FAISS memory index: {e_faiss_mem}") logger.info(f"FAISS memory index built. Total items: {_faiss_memory_index.ntotal if _faiss_memory_index else 'N/A'}") logger.info("Loading rules...") temp_rules_text = [] if STORAGE_BACKEND == "RAM": _rules_items_list = [] elif STORAGE_BACKEND == "SQLITE" and sqlite3: try: with _get_sqlite_connection() as conn: temp_rules_text = [row[0] for row in conn.execute("SELECT rule_text FROM rules ORDER BY created_at ASC")] except Exception as e: logger.error(f"Error loading rules from SQLite: {e}") elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset and load_dataset: try: logger.info(f"Attempting to load rules from HF Dataset: {HF_RULES_DATASET_REPO}") dataset = load_dataset(HF_RULES_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True) if "train" in dataset and "rule_text" in dataset["train"].column_names: temp_rules_text = [r_text for r_text in dataset["train"]["rule_text"] if isinstance(r_text, str) and r_text.strip()] else: logger.warning(f"HF Dataset {HF_RULES_DATASET_REPO} for rules not found or 'rule_text' column missing.") except Exception as e: logger.error(f"Error loading rules from HF Dataset ({HF_RULES_DATASET_REPO}): {e}") _rules_items_list = sorted(list(set(temp_rules_text))) logger.info(f"Loaded {len(_rules_items_list)} rule items from {STORAGE_BACKEND}.") _faiss_rules_index = faiss.IndexFlatL2(_dimension) if _rules_items_list: logger.info(f"Building FAISS index for {len(_rules_items_list)} rules...") if _rules_items_list: try: embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False, show_progress_bar=False) embeddings_np = np.array(embeddings, dtype=np.float32) if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(_rules_items_list) and embeddings_np.shape[1] == _dimension: _faiss_rules_index.add(embeddings_np) else: logger.error(f"Rule embeddings shape error. Expected ({len(_rules_items_list)}, {_dimension}), Got {embeddings_np.shape if hasattr(embeddings_np, 'shape') else 'N/A'}") except Exception as e_faiss_rule: logger.error(f"Error building FAISS rule index: {e_faiss_rule}") logger.info(f"FAISS rules index built. Total items: {_faiss_rules_index.ntotal if _faiss_rules_index else 'N/A'}") _initialized = True logger.info(f"Memory system initialization complete in {time.time() - init_start_time:.2f}s") def add_memory_entry(user_input: str, metrics: dict, bot_response: str) -> tuple[bool, str]: global _memory_items_list, _faiss_memory_index if not _initialized: initialize_memory_system() if not _embedder or not _faiss_memory_index: return False, "Memory system or embedder not initialized for adding memory." memory_obj = { "user_input": user_input, "metrics": metrics, "bot_response": bot_response, "timestamp": datetime.utcnow().isoformat() } memory_json_str = json.dumps(memory_obj) text_to_embed = f"User: {user_input}\nAI: {bot_response}\nTakeaway: {metrics.get('takeaway', 'N/A')}" try: embedding = _embedder.encode([text_to_embed], convert_to_tensor=False) embedding_np = np.array(embedding, dtype=np.float32).reshape(1, -1) if embedding_np.shape != (1, _dimension): logger.error(f"Memory embedding shape error: {embedding_np.shape}. Expected (1, {_dimension})") return False, "Embedding shape error." _faiss_memory_index.add(embedding_np) _memory_items_list.append(memory_json_str) if STORAGE_BACKEND == "SQLITE" and sqlite3: with _get_sqlite_connection() as conn: conn.execute("INSERT INTO memories (memory_json) VALUES (?)", (memory_json_str,)) conn.commit() elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset: logger.info(f"Pushing {len(_memory_items_list)} memories to HF Hub: {HF_MEMORY_DATASET_REPO}") Dataset.from_dict({"memory_json": list(_memory_items_list)}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True) logger.info(f"Added memory. RAM: {len(_memory_items_list)}, FAISS: {_faiss_memory_index.ntotal}") return True, "Memory added successfully." except Exception as e: logger.error(f"Error adding memory entry: {e}", exc_info=True) return False, f"Error adding memory: {e}" def retrieve_memories_semantic(query: str, k: int = 3) -> list[dict]: if not _initialized: initialize_memory_system() if not _embedder or not _faiss_memory_index or _faiss_memory_index.ntotal == 0: logger.debug("Cannot retrieve memories: Embedder, FAISS index not ready, or index is empty.") return [] try: query_embedding = _embedder.encode([query], convert_to_tensor=False) query_embedding_np = np.array(query_embedding, dtype=np.float32).reshape(1, -1) if query_embedding_np.shape[1] != _dimension: logger.error(f"Query embedding dimension mismatch. Expected {_dimension}, got {query_embedding_np.shape[1]}") return [] distances, indices = _faiss_memory_index.search(query_embedding_np, min(k, _faiss_memory_index.ntotal)) results = [] for i in indices[0]: if 0 <= i < len(_memory_items_list): try: results.append(json.loads(_memory_items_list[i])) except json.JSONDecodeError: logger.warning(f"Could not parse memory JSON from list at index {i}") else: logger.warning(f"FAISS index {i} out of bounds for memory_items_list (len: {len(_memory_items_list)})") logger.debug(f"Retrieved {len(results)} memories semantically for query: '{query[:50]}...'") return results except Exception as e: logger.error(f"Error retrieving memories semantically: {e}", exc_info=True) return [] def add_rule_entry(rule_text: str) -> tuple[bool, str]: global _rules_items_list, _faiss_rules_index if not _initialized: initialize_memory_system() if not _embedder or not _faiss_rules_index: return False, "Rule system or embedder not initialized." rule_text = rule_text.strip() if not rule_text: return False, "Rule text cannot be empty." if not re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\](.*)", rule_text, re.I|re.DOTALL): return False, "Invalid rule format." if rule_text in _rules_items_list: return False, "duplicate" try: embedding = _embedder.encode([rule_text], convert_to_tensor=False) embedding_np = np.array(embedding, dtype=np.float32).reshape(1, -1) if embedding_np.shape != (1, _dimension): return False, "Rule embedding shape error." _faiss_rules_index.add(embedding_np) _rules_items_list.append(rule_text) _rules_items_list.sort() if STORAGE_BACKEND == "SQLITE" and sqlite3: with _get_sqlite_connection() as conn: conn.execute("INSERT OR IGNORE INTO rules (rule_text) VALUES (?)", (rule_text,)) conn.commit() elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset: logger.info(f"Pushing {len(_rules_items_list)} rules to HF Hub: {HF_RULES_DATASET_REPO}") Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True) logger.info(f"Added rule. RAM: {len(_rules_items_list)}, FAISS: {_faiss_rules_index.ntotal}") return True, "Rule added successfully." except Exception as e: logger.error(f"Error adding rule entry: {e}", exc_info=True) return False, f"Error adding rule: {e}" def retrieve_rules_semantic(query: str, k: int = 5) -> list[str]: if not _initialized: initialize_memory_system() if not _embedder or not _faiss_rules_index or _faiss_rules_index.ntotal == 0: return [] try: query_embedding = _embedder.encode([query], convert_to_tensor=False) query_embedding_np = np.array(query_embedding, dtype=np.float32).reshape(1, -1) if query_embedding_np.shape[1] != _dimension: return [] distances, indices = _faiss_rules_index.search(query_embedding_np, min(k, _faiss_rules_index.ntotal)) results = [_rules_items_list[i] for i in indices[0] if 0 <= i < len(_rules_items_list)] logger.debug(f"Retrieved {len(results)} rules semantically for query: '{query[:50]}...'") return results except Exception as e: logger.error(f"Error retrieving rules semantically: {e}", exc_info=True) return [] def remove_rule_entry(rule_text_to_delete: str) -> bool: global _rules_items_list, _faiss_rules_index if not _initialized: initialize_memory_system() if not _embedder or not _faiss_rules_index: return False rule_text_to_delete = rule_text_to_delete.strip() if rule_text_to_delete not in _rules_items_list: return False try: _rules_items_list.remove(rule_text_to_delete) _rules_items_list.sort() new_faiss_rules_index = faiss.IndexFlatL2(_dimension) if _rules_items_list: embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False) embeddings_np = np.array(embeddings, dtype=np.float32) if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(_rules_items_list) and embeddings_np.shape[1] == _dimension: new_faiss_rules_index.add(embeddings_np) else: logger.error("Error rebuilding FAISS for rules after removal: Embedding shape error. State might be inconsistent.") _rules_items_list.append(rule_text_to_delete) _rules_items_list.sort() return False _faiss_rules_index = new_faiss_rules_index if STORAGE_BACKEND == "SQLITE" and sqlite3: with _get_sqlite_connection() as conn: conn.execute("DELETE FROM rules WHERE rule_text = ?", (rule_text_to_delete,)) conn.commit() elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset: Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True) logger.info(f"Removed rule. RAM: {len(_rules_items_list)}, FAISS: {_faiss_rules_index.ntotal}") return True except Exception as e: logger.error(f"Error removing rule entry: {e}", exc_info=True) return False def get_all_rules_cached() -> list[str]: if not _initialized: initialize_memory_system() return list(_rules_items_list) def get_all_memories_cached() -> list[dict]: if not _initialized: initialize_memory_system() mem_dicts = [] for mem_json_str in _memory_items_list: try: mem_dicts.append(json.loads(mem_json_str)) except: pass return mem_dicts def clear_all_memory_data_backend() -> bool: global _memory_items_list, _faiss_memory_index if not _initialized: initialize_memory_system() success = True try: if STORAGE_BACKEND == "SQLITE" and sqlite3: with _get_sqlite_connection() as conn: conn.execute("DELETE FROM memories"); conn.commit() elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset: Dataset.from_dict({"memory_json": []}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True) _memory_items_list = [] if _faiss_memory_index: _faiss_memory_index.reset() logger.info("All memories cleared from backend and in-memory stores.") except Exception as e: logger.error(f"Error clearing all memory data: {e}") success = False return success def clear_all_rules_data_backend() -> bool: global _rules_items_list, _faiss_rules_index if not _initialized: initialize_memory_system() success = True try: if STORAGE_BACKEND == "SQLITE" and sqlite3: with _get_sqlite_connection() as conn: conn.execute("DELETE FROM rules"); conn.commit() elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset: Dataset.from_dict({"rule_text": []}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True) _rules_items_list = [] if _faiss_rules_index: _faiss_rules_index.reset() logger.info("All rules cleared from backend and in-memory stores.") except Exception as e: logger.error(f"Error clearing all rules data: {e}") success = False return success def load_rules_from_file(filepath: str | None): if not filepath: logger.info("LOAD_RULES_FILE environment variable not set. Skipping rules loading from file.") return 0, 0, 0 if not os.path.exists(filepath): logger.warning(f"LOAD_RULES: Specified rules file not found: {filepath}. Skipping loading.") return 0, 0, 0 added_count, skipped_count, error_count = 0, 0, 0 potential_rules = [] try: with open(filepath, 'r', encoding='utf-8') as f: content = f.read() except Exception as e: logger.error(f"LOAD_RULES: Error reading file {filepath}: {e}", exc_info=False) return 0, 0, 1 if not content.strip(): logger.info(f"LOAD_RULES: File {filepath} is empty. Skipping loading.") return 0, 0, 0 file_name_lower = filepath.lower() if file_name_lower.endswith(".txt"): potential_rules = content.split("\n\n---\n\n") if len(potential_rules) == 1 and "\n" in content: potential_rules = [r.strip() for r in content.splitlines() if r.strip()] elif file_name_lower.endswith(".jsonl"): for line_num, line in enumerate(content.splitlines()): line = line.strip() if line: try: rule_text_in_json_string = json.loads(line) if isinstance(rule_text_in_json_string, str): potential_rules.append(rule_text_in_json_string) else: logger.warning(f"LOAD_RULES (JSONL): Line {line_num+1} in {filepath} did not contain a string value. Got: {type(rule_text_in_json_string)}") error_count +=1 except json.JSONDecodeError: logger.warning(f"LOAD_RULES (JSONL): Line {line_num+1} in {filepath} failed to parse as JSON: {line[:100]}") error_count +=1 else: logger.error(f"LOAD_RULES: Unsupported file type for rules: {filepath}. Must be .txt or .jsonl") return 0, 0, 1 valid_potential_rules = [r.strip() for r in potential_rules if r.strip()] total_to_process = len(valid_potential_rules) if total_to_process == 0 and error_count == 0: logger.info(f"LOAD_RULES: No valid rule segments found in {filepath} to process.") return 0, 0, 0 elif total_to_process == 0 and error_count > 0: logger.warning(f"LOAD_RULES: No valid rule segments found to process. Encountered {error_count} parsing/format errors in {filepath}.") return 0, 0, error_count logger.info(f"LOAD_RULES: Attempting to add {total_to_process} potential rules from {filepath}...") for idx, rule_text in enumerate(valid_potential_rules): success, status_msg = add_rule_entry(rule_text) if success: added_count += 1 elif status_msg == "duplicate": skipped_count += 1 else: logger.warning(f"LOAD_RULES: Failed to add rule from {filepath} (segment {idx+1}): '{rule_text[:50]}...'. Status: {status_msg}") error_count += 1 logger.info(f"LOAD_RULES: Finished processing {filepath}. Added: {added_count}, Skipped (duplicates): {skipped_count}, Errors: {error_count}.") return added_count, skipped_count, error_count def load_memories_from_file(filepath: str | None): if not filepath: logger.info("LOAD_MEMORIES_FILE environment variable not set. Skipping memories loading from file.") return 0, 0, 0 if not os.path.exists(filepath): logger.warning(f"LOAD_MEMORIES: Specified memories file not found: {filepath}. Skipping loading.") return 0, 0, 0 added_count, format_error_count, save_error_count = 0, 0, 0 memory_objects_to_process = [] try: with open(filepath, 'r', encoding='utf-8') as f: content = f.read() except Exception as e: logger.error(f"LOAD_MEMORIES: Error reading file {filepath}: {e}", exc_info=False) return 0, 1, 0 if not content.strip(): logger.info(f"LOAD_MEMORIES: File {filepath} is empty. Skipping loading.") return 0, 0, 0 file_ext = os.path.splitext(filepath.lower())[1] if file_ext == ".json": try: parsed_json = json.loads(content) if isinstance(parsed_json, list): memory_objects_to_process = parsed_json elif isinstance(parsed_json, dict): memory_objects_to_process = [parsed_json] else: logger.warning(f"LOAD_MEMORIES (.json): File content is not a JSON list or object in {filepath}. Type: {type(parsed_json)}") format_error_count = 1 except json.JSONDecodeError as e: logger.warning(f"LOAD_MEMORIES (.json): Invalid JSON file {filepath}. Error: {e}") format_error_count = 1 elif file_ext == ".jsonl": for line_num, line in enumerate(content.splitlines()): line = line.strip() if line: try: memory_objects_to_process.append(json.loads(line)) except json.JSONDecodeError: logger.warning(f"LOAD_MEMORIES (.jsonl): Line {line_num+1} in {filepath} parse error: {line[:100]}") format_error_count += 1 else: logger.error(f"LOAD_MEMORIES: Unsupported file type for memories: {filepath}. Must be .json or .jsonl") return 0, 1, 0 total_to_process = len(memory_objects_to_process) if total_to_process == 0 and format_error_count > 0 : logger.warning(f"LOAD_MEMORIES: File parsing failed for {filepath}. Found {format_error_count} format errors and no processable objects.") return 0, format_error_count, 0 elif total_to_process == 0: logger.info(f"LOAD_MEMORIES: No memory objects found in {filepath} after parsing.") return 0, 0, 0 logger.info(f"LOAD_MEMORIES: Attempting to add {total_to_process} memory objects from {filepath}...") for idx, mem_data in enumerate(memory_objects_to_process): if isinstance(mem_data, dict) and all(k in mem_data for k in ["user_input", "bot_response", "metrics"]): success, _ = add_memory_entry(mem_data["user_input"], mem_data["metrics"], mem_data["bot_response"]) if success: added_count += 1 else: logger.warning(f"LOAD_MEMORIES: Failed to save memory object from {filepath} (segment {idx+1}). Data: {str(mem_data)[:100]}") save_error_count += 1 else: logger.warning(f"LOAD_MEMORIES: Skipped invalid memory object structure in {filepath} (segment {idx+1}): {str(mem_data)[:100]}") format_error_count += 1 logger.info(f"LOAD_MEMORIES: Finished processing {filepath}. Added: {added_count}, Format/Structure Errors: {format_error_count}, Save Errors: {save_error_count}.") return added_count, format_error_count, save_error_count def process_rules_from_text_blob(rules_text: str, progress_callback=None) -> dict: if not rules_text.strip(): return {"added": 0, "skipped": 0, "errors": 0, "total": 0} potential_rules = rules_text.split("\n\n---\n\n") if len(potential_rules) == 1 and "\n" in rules_text: potential_rules = [r.strip() for r in rules_text.splitlines() if r.strip()] unique_rules = sorted(list(set(filter(None, [r.strip() for r in potential_rules])))) total_unique = len(unique_rules) if total_unique == 0: return {"added": 0, "skipped": 0, "errors": 0, "total": 0} stats = {"added": 0, "skipped": 0, "errors": 0, "total": total_unique} for idx, rule_text in enumerate(unique_rules): success, status_msg = add_rule_entry(rule_text) if success: stats["added"] += 1 elif status_msg == "duplicate": stats["skipped"] += 1 else: stats["errors"] += 1 if progress_callback is not None: progress_callback((idx + 1) / total_unique, desc=f"Processed {idx+1}/{total_unique} rules...") return stats def import_kb_from_kv_dict(kv_dict: dict, progress_callback=None) -> dict: rules_to_add, memories_to_add = [], [] for key, value in kv_dict.items(): if key.startswith("rule_"): try: rules_to_add.append(json.loads(value)) except: logger.warning(f"KB Dict Import: Bad rule format for key {key}") elif key.startswith("memory_"): try: mem_dict = json.loads(value) if isinstance(mem_dict, dict) and all(k in mem_dict for k in ['user_input', 'bot_response', 'metrics']): memories_to_add.append(mem_dict) except: logger.warning(f"KB Dict Import: Bad memory format for key {key}") stats = {"rules_added": 0, "rules_skipped": 0, "rules_errors": 0, "mems_added": 0, "mems_errors": 0} total_items = len(rules_to_add) + len(memories_to_add) processed_items = 0 if progress_callback is not None: progress_callback(0, desc=f"Importing {total_items} items...") for rule in rules_to_add: s, m = add_rule_entry(rule) if s: stats["rules_added"] += 1 elif m == "duplicate": stats["rules_skipped"] += 1 else: stats["rules_errors"] += 1 processed_items += 1 if progress_callback is not None and total_items > 0: progress_callback(processed_items / total_items, desc=f"Processing item {processed_items}/{total_items}...") for mem in memories_to_add: s, _ = add_memory_entry(mem['user_input'], mem['metrics'], mem['bot_response']) if s: stats["mems_added"] += 1 else: stats["mems_errors"] += 1 processed_items += 1 if progress_callback is not None and total_items > 0: progress_callback(processed_items / total_items, desc=f"Processing item {processed_items}/{total_items}...") return stats FAISS_MEMORY_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "memory_index.faiss") FAISS_RULES_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "rules_index.faiss") def save_faiss_indices_to_disk(): if not _initialized or not faiss: return faiss_dir = os.path.dirname(FAISS_MEMORY_PATH) if not os.path.exists(faiss_dir): os.makedirs(faiss_dir, exist_ok=True) if _faiss_memory_index and _faiss_memory_index.ntotal > 0: try: faiss.write_index(_faiss_memory_index, FAISS_MEMORY_PATH) logger.info(f"Memory FAISS index saved to disk ({_faiss_memory_index.ntotal} items).") except Exception as e: logger.error(f"Error saving memory FAISS index: {e}") if _faiss_rules_index and _faiss_rules_index.ntotal > 0: try: faiss.write_index(_faiss_rules_index, FAISS_RULES_PATH) logger.info(f"Rules FAISS index saved to disk ({_faiss_rules_index.ntotal} items).") except Exception as e: logger.error(f"Error saving rules FAISS index: {e}") def load_faiss_indices_from_disk(): global _faiss_memory_index, _faiss_rules_index if not _initialized or not faiss: return if os.path.exists(FAISS_MEMORY_PATH) and _faiss_memory_index: try: logger.info(f"Loading memory FAISS index from {FAISS_MEMORY_PATH}...") _faiss_memory_index = faiss.read_index(FAISS_MEMORY_PATH) logger.info(f"Memory FAISS index loaded ({_faiss_memory_index.ntotal} items).") if _faiss_memory_index.ntotal != len(_memory_items_list) and len(_memory_items_list) > 0: logger.warning(f"Memory FAISS index count ({_faiss_memory_index.ntotal}) differs from loaded texts ({len(_memory_items_list)}). Consider rebuilding FAISS.") except Exception as e: logger.error(f"Error loading memory FAISS index: {e}. Will use fresh index.") if os.path.exists(FAISS_RULES_PATH) and _faiss_rules_index: try: logger.info(f"Loading rules FAISS index from {FAISS_RULES_PATH}...") _faiss_rules_index = faiss.read_index(FAISS_RULES_PATH) logger.info(f"Rules FAISS index loaded ({_faiss_rules_index.ntotal} items).") if _faiss_rules_index.ntotal != len(_rules_items_list) and len(_rules_items_list) > 0: logger.warning(f"Rules FAISS index count ({_faiss_rules_index.ntotal}) differs from loaded texts ({len(_rules_items_list)}). Consider rebuilding FAISS.") except Exception as e: logger.error(f"Error loading rules FAISS index: {e}. Will use fresh index.")