Spaces:
Running
Running
File size: 10,347 Bytes
8f362a9 d36574f 8f362a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
import os
import re
import httpx
import json
from typing import List, Tuple, Dict
from dataclasses import dataclass
import gradio as gr
import base64
from mistralai import Mistral
from scrapling.fetchers import Fetcher
from newspaper import Article
from trafilatura import extract
import wave
import time
import asyncio
import uuid
api_key = os.environ["MISTRAL_API_KEY"]
client = Mistral(api_key=api_key)
def get_text_from_document(document_url: str) -> str:
ocr_response = client.ocr.process(
model="mistral-ocr-latest",
document={"type": "document_url", "document_url": document_url},
include_image_base64=False,
)
pages_text = []
for page_number, page in enumerate(ocr_response.pages, start=1):
page_content = f"--- Page {page_number} ---\n{page.markdown}\n\n"
pages_text.append(page_content)
final_text = "".join(pages_text)
return final_text
def get_text_from_link(link: str) -> str:
try:
page = Fetcher.get(link, stealthy_headers=True, follow_redirects=True)
content = extract(page.html_content, with_metadata=True)
if content:
return content
except Exception as e:
print(f"Trafilatura extraction failed for {link}: {str(e)}")
try:
article = Article(link)
article.download()
article.parse()
metadata_text = f"#Title: {article.title}\n"
if article.authors:
metadata_text += f"Authors: {', '.join(article.authors)}\n"
if article.publish_date:
metadata_text += f"Published: {article.publish_date}\n"
if article.keywords:
metadata_text += f"Keywords: {', '.join(article.keywords)}\n"
if article.summary:
metadata_text += f"Summary: {article.summary}\n\n"
return metadata_text + article.text
except Exception as e:
print(f"Newspaper extraction failed for {link}: {str(e)}")
return None
def just_text(text: str) -> str:
if not text:
raise ValueError("Input text cannot be empty")
return text
def build_prompt(text: str) -> str:
template = """{
"conversation": [
{"speaker": "Olivia", "text": ""},
{"speaker": "Brian", "text": ""}
]
}"""
prompt = """
Turn the text above into a casual podcast conversation between two hosts.
- Use a relaxed, informal tone like you're chatting with a friend
- Include natural conversation fillers like 'you know', 'I mean', 'like'
- Feel free to go off on brief relevant tangents or share quick personal takes
- Keep the back-and-forth flowing naturally
- Cover the key points but maintain a conversational style
- Aim for about 1 minute of casual discussion.
Output in this JSON format:"""
return f"{text}\n{prompt}\n{template}"
def extract_conversation(text: str) -> Dict:
prompt = build_prompt(text)
max_retries = 3
attempt = 0
while attempt < max_retries:
try:
chat_completion = client.chat.complete(
model="codestral-latest",
messages=[
{
"role": "system",
"content": "You are a helpful assistant.",
},
{
"role": "user",
"content": prompt,
},
],
response_format={
"type": "json_object",
},
)
pattern = r"\{(?:[^{}]|(?:\{[^{}]*\}))*\}"
json_match = re.search(pattern, chat_completion.choices[0].message.content)
if not json_match:
raise ValueError("No valid JSON found in response")
result = json.loads(json_match.group())
if "conversation" not in result:
if attempt == max_retries - 1:
raise ValueError(
"Response JSON missing 'conversation' key after all retries"
)
attempt += 1
continue
return result
except Exception as e:
if attempt == max_retries - 1:
raise RuntimeError(
f"Failed to extract conversation after {max_retries} attempts: {e}"
)
attempt += 1
async def generate_audio(text: str, voice: str, file_out_path: str) -> str:
url = "https://eswardivi--kokoro-api-kokoro-generate.modal.run/"
querystring = {"text": text, "voice": voice}
payload = ""
headers = {
"Accept": "*/*",
"Accept-Encoding": "gzip, deflate, br",
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/124.0.0.0 Safari/537.36",
"Connection": "keep-alive",
}
async with httpx.AsyncClient() as client:
response = await client.post(
url, headers=headers, params=querystring, data=payload, timeout=90.0
)
audio_data = response.content
with open(file_out_path, "wb") as f:
f.write(audio_data)
return file_out_path
def merge_audio_files(audio_files: List[str]) -> str:
random_name = str(uuid.uuid4())
merged_file = f"{random_name}.wav"
with wave.open(audio_files[0], "rb") as first_wav:
params = first_wav.getparams()
merged_audio = wave.open(merged_file, "wb")
merged_audio.setparams(params)
for audio_file in audio_files:
with wave.open(audio_file, "rb") as wav_file:
merged_audio.writeframes(wav_file.readframes(wav_file.getnframes()))
os.remove(audio_file)
merged_audio.close()
return merged_file
async def wake_up_api():
url = "https://eswardivi--kokoro-api-kokoro-wake-up.modal.run/"
async with httpx.AsyncClient() as client:
response = await client.get(url, timeout=90.0)
if response.status_code == 200:
print("API is awake")
else:
print("API is not awake Yet")
def generate_podcast(input_type: str, input: str):
"""
Generate a podcast-style conversation from various input types.
This function takes content from a document URL, webpage link, or raw text and
converts it into a natural-sounding podcast dialogue between two hosts. The conversation
is then synthesized into audio using text-to-speech.
Args:
input_type (str): The type of input to process. Must be one of:
- "Document": URL to a document (PDF, etc.) to extract text from
- "Link": URL to a webpage to scrape content from
- "Text": Raw text input to convert directly
input (str): The actual input content matching the specified input_type:
- For "Document": Document or arxiv URL (e.g. "https://example.com/doc.pdf")
- For "Link": Webpage URL (e.g. "https://example.com/article")
- For "Text": Plain text content
Returns:
str: Path to the generated audio file (.wav format) containing the synthesized
podcast conversation.
Raises:
ValueError: If the input text cannot be extracted or is empty
RuntimeError: If conversation extraction fails after maximum retries
"""
async def async_process():
await wake_up_api()
start_time = time.time()
if input_type == "Document":
text = get_text_from_document(input)
elif input_type == "Link":
text = get_text_from_link(input)
elif input_type == "Text":
text = input
if not text:
raise ValueError("Input text cannot be empty")
text_time = time.time()
print(f"Text Extracted ({text_time - start_time:.2f}s)")
conversation = extract_conversation(text)
conversation_time = time.time()
print(f"Conversation Extracted ({conversation_time - text_time:.2f}s)")
batch_size = 8
tasks = []
for i in range(0, len(conversation["conversation"]), batch_size):
batch = conversation["conversation"][i : i + batch_size]
batch_tasks = []
for j, message in enumerate(batch, start=i):
if message["speaker"] == "Olivia":
voice = "af_heart"
elif message["speaker"] == "Brian":
voice = "am_fenrir"
else:
voice = "am_fenrir"
batch_tasks.append(
generate_audio(message["text"], voice, f"output_{j}.mp3")
)
tasks.extend(await asyncio.gather(*batch_tasks))
audio_time = time.time()
print(f"Audio Generated ({audio_time - conversation_time:.2f}s)")
audio_files = [
f"output_{index}.mp3" for index in range(len(conversation["conversation"]))
]
files_time = time.time()
print(f"Audio Files Listed ({files_time - audio_time:.2f}s)")
merged_audio = merge_audio_files(audio_files)
merge_time = time.time()
print(f"Merged Audio Generated ({merge_time - files_time:.2f}s)")
print(f"Total Time: {merge_time - start_time:.2f}s")
return merged_audio
return asyncio.run(async_process())
with gr.Blocks(title="Podcast Generator") as demo:
gr.Markdown(
"""
# ποΈ Podcast Generator
Generate engaging podcast conversations from documents, links, or text input.
"""
)
with gr.Row():
with gr.Column(scale=1):
input_type = gr.Dropdown(
choices=["Document", "Link", "Text"],
label="Input Type",
value="Document",
interactive=True,
)
input_text = gr.Textbox(
label="Input", placeholder="Enter Document URL, Link or Text", lines=5
)
generate_btn = gr.Button("Generate Podcast π§", variant="primary")
with gr.Column(scale=1):
output_audio = gr.Audio(label="Generated Podcast")
generate_btn.click(
fn=generate_podcast,
inputs=[input_type, input_text],
outputs=output_audio,
api_name="generate",
)
demo.launch(mcp_server=True)
|