File size: 730 Bytes
5fa1a76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
For sigopt, see sigopt object_parameter, it's like following:

def sigopt_hp_space(trial):
     return [
         {"bounds": {"min": 1e-6, "max": 1e-4}, "name": "learning_rate", "type": "double"},
         {
             "categorical_values": ["16", "32", "64", "128"],
             "name": "per_device_train_batch_size",
             "type": "categorical",
         },
     ]

For optuna, see optuna object_parameter, it's like following:

def optuna_hp_space(trial):
     return {
         "learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True),
         "per_device_train_batch_size": trial.suggest_categorical("per_device_train_batch_size", [16, 32, 64, 128]),
     }

Optuna provides multi-objective HPO.