Spaces:
Configuration error
Configuration error
import torch | |
from PIL import Image | |
from transformers import AutoModel, AutoTokenizer | |
from .base import BaseModel | |
from ..smp import * | |
from ..utils import DATASET_TYPE | |
class MiniCPM_V(BaseModel): | |
INSTALL_REQ = False | |
INTERLEAVE = False | |
def __init__(self, model_path='openbmb/MiniCPM-V', **kwargs): | |
assert model_path is not None | |
self.model_path = model_path | |
print(f'load from {self.model_path}') | |
self.model = AutoModel.from_pretrained(self.model_path, trust_remote_code=True) | |
self.model = self.model.to(dtype=torch.bfloat16) | |
self.model.eval().cuda() | |
self.kwargs = kwargs | |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True) | |
torch.cuda.empty_cache() | |
self.num_beams = 1 if self.model_path == 'openbmb/MiniCPM-V' else 3 | |
def use_custom_prompt(self, dataset): | |
assert dataset is not None | |
if listinstr(['MMMU'], dataset): | |
return True | |
return False | |
def build_prompt(self, line, dataset=None): | |
assert dataset is None or isinstance(dataset, str) | |
assert self.use_custom_prompt(dataset) | |
tgt_path = self.dump_image(line, dataset) | |
question = line['question'] | |
options = { | |
cand: line[cand] | |
for cand in string.ascii_uppercase | |
if cand in line and not pd.isna(line[cand]) | |
} | |
options_prompt = 'Options:\n' | |
for key, item in options.items(): | |
options_prompt += f'{key}. {item}\n' | |
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None | |
prompt = '' | |
if hint is not None: | |
prompt += f'Hint: {hint}\n' | |
prompt += f'{question}\n' | |
if len(options): | |
prompt += options_prompt | |
prompt = 'Study the image carefully and pick the option associated with the correct answer. \ | |
Focus solely on selecting the option and avoid including any other content.\n' + prompt | |
message = [dict(type='text', value=prompt)] | |
message.extend([dict(type='image', value=p) for p in tgt_path]) | |
return message | |
def generate_inner(self, message, dataset=None): | |
prompt, image_path = self.message_to_promptimg(message) | |
image = Image.open(image_path).convert('RGB') | |
msgs = [{'role': 'user', 'content': prompt}] | |
if DATASET_TYPE(dataset) == 'multi-choice': | |
max_new_tokens = 20 | |
elif DATASET_TYPE(dataset) == 'Y/N': | |
max_new_tokens = 100 | |
else: | |
max_new_tokens = 1024 | |
default_kwargs = dict( | |
max_new_tokens=max_new_tokens, | |
sampling=False, | |
num_beams=self.num_beams | |
) | |
default_kwargs.update(self.kwargs) | |
res, _, _ = self.model.chat( | |
image=image, | |
msgs=msgs, | |
context=None, | |
tokenizer=self.tokenizer, | |
**default_kwargs | |
) | |
return res | |