Hisab Cloud
Upload folder using huggingface_hub
45e92bd verified
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer
from .base import BaseModel
from ..smp import *
from ..utils import DATASET_TYPE
class MiniCPM_V(BaseModel):
INSTALL_REQ = False
INTERLEAVE = False
def __init__(self, model_path='openbmb/MiniCPM-V', **kwargs):
assert model_path is not None
self.model_path = model_path
print(f'load from {self.model_path}')
self.model = AutoModel.from_pretrained(self.model_path, trust_remote_code=True)
self.model = self.model.to(dtype=torch.bfloat16)
self.model.eval().cuda()
self.kwargs = kwargs
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True)
torch.cuda.empty_cache()
self.num_beams = 1 if self.model_path == 'openbmb/MiniCPM-V' else 3
def use_custom_prompt(self, dataset):
assert dataset is not None
if listinstr(['MMMU'], dataset):
return True
return False
def build_prompt(self, line, dataset=None):
assert dataset is None or isinstance(dataset, str)
assert self.use_custom_prompt(dataset)
tgt_path = self.dump_image(line, dataset)
question = line['question']
options = {
cand: line[cand]
for cand in string.ascii_uppercase
if cand in line and not pd.isna(line[cand])
}
options_prompt = 'Options:\n'
for key, item in options.items():
options_prompt += f'{key}. {item}\n'
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
prompt = ''
if hint is not None:
prompt += f'Hint: {hint}\n'
prompt += f'{question}\n'
if len(options):
prompt += options_prompt
prompt = 'Study the image carefully and pick the option associated with the correct answer. \
Focus solely on selecting the option and avoid including any other content.\n' + prompt
message = [dict(type='text', value=prompt)]
message.extend([dict(type='image', value=p) for p in tgt_path])
return message
def generate_inner(self, message, dataset=None):
prompt, image_path = self.message_to_promptimg(message)
image = Image.open(image_path).convert('RGB')
msgs = [{'role': 'user', 'content': prompt}]
if DATASET_TYPE(dataset) == 'multi-choice':
max_new_tokens = 20
elif DATASET_TYPE(dataset) == 'Y/N':
max_new_tokens = 100
else:
max_new_tokens = 1024
default_kwargs = dict(
max_new_tokens=max_new_tokens,
sampling=False,
num_beams=self.num_beams
)
default_kwargs.update(self.kwargs)
res, _, _ = self.model.chat(
image=image,
msgs=msgs,
context=None,
tokenizer=self.tokenizer,
**default_kwargs
)
return res