File size: 87,368 Bytes
4254ccc dce7bfe 7cdc45b c6eb22e 25d130b c6eb22e f5eb0b6 c6eb22e f5eb0b6 c6eb22e 593b44f 9666aeb c6eb22e 9666aeb f5eb0b6 c6eb22e 41f6e77 c6eb22e 41f6e77 c6eb22e 41f6e77 c6eb22e 41f6e77 c6eb22e 7cdc45b c6eb22e 9666aeb c6eb22e 7cdc45b c6eb22e 7cdc45b 9bf4c7f c6eb22e 9bf4c7f 7cdc45b c6eb22e 25d130b c6eb22e b9a8a05 c6eb22e b9a8a05 c6eb22e 25d130b c6eb22e 7cdc45b c6eb22e 25d130b c6eb22e 25d130b c6eb22e 25d130b c6eb22e 9bf4c7f c6eb22e 9bf4c7f c6eb22e 9bf4c7f 7cdc45b c6eb22e 5678bb7 c6eb22e 5678bb7 c6eb22e 593b44f 5678bb7 c6eb22e 394162b c6eb22e 394162b c6eb22e 593b44f c6eb22e 593b44f c6eb22e 593b44f c6eb22e 7cdc45b f2628a5 c6eb22e 7922e72 c6eb22e 593b44f c6eb22e 593b44f c6eb22e 593b44f c6eb22e 593b44f c6eb22e 593b44f c6eb22e 593b44f c6eb22e 593b44f c6eb22e 593b44f c6eb22e 593b44f c6eb22e 593b44f c6eb22e 593b44f c6eb22e 593b44f c6eb22e 7cdc45b c6eb22e 7cdc45b c6eb22e 593b44f c6eb22e 593b44f c6eb22e ffa5197 c6eb22e 593b44f c6eb22e 5678bb7 c6eb22e 593b44f c6eb22e 9bf4c7f 593b44f c6eb22e 593b44f c6eb22e 593b44f c6eb22e 7cdc45b c6eb22e 9bf4c7f c6eb22e 593b44f c6eb22e 593b44f c6eb22e 593b44f c6eb22e 593b44f c6eb22e 593b44f c6eb22e 593b44f c6eb22e 593b44f c6eb22e 593b44f c6eb22e 593b44f c6eb22e 593b44f c6eb22e 593b44f c6eb22e 25d130b c6eb22e 25d130b c6eb22e 9bf4c7f c6eb22e 9bf4c7f c6eb22e 9bf4c7f c6eb22e 7cdc45b c6eb22e 4388bf3 c6eb22e 4388bf3 c6eb22e 4388bf3 c6eb22e 4388bf3 c6eb22e 4052836 c6eb22e 4052836 c6eb22e 36b9049 c6eb22e 36b9049 c6eb22e 593b44f c6eb22e 593b44f c6eb22e 593b44f c6eb22e 7cdc45b 9bf4c7f c6eb22e 593b44f c6eb22e 593b44f c6eb22e 593b44f c6eb22e 25d130b c6eb22e 593b44f c6eb22e 593b44f c6eb22e 593b44f c6eb22e 593b44f c6eb22e d3d769e 25d130b c6eb22e 36b9049 c6eb22e 25d130b c6eb22e 25d130b c6eb22e 25d130b c6eb22e 25d130b c6eb22e 25d130b c6eb22e 36b9049 cf7e101 c6eb22e 36b9049 c6eb22e 0cfc54d c6eb22e 48b98e7 c6eb22e 48b98e7 593b44f c6eb22e 25d130b ad27174 c6eb22e 25d130b c6eb22e 593b44f c6eb22e 593b44f c6eb22e 593b44f c6eb22e 593b44f c6eb22e 593b44f c6eb22e 4052836 c6eb22e 593b44f c6eb22e 593b44f c6eb22e 033b487 c6eb22e 593b44f c6eb22e 593b44f c6eb22e 033b487 c6eb22e 593b44f c6eb22e 593b44f c6eb22e 593b44f c6eb22e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 |
import os
import sys
import json
import time
import joblib
import logging
import hashlib
import uvicorn
import asyncio
import aiofiles
import traceback
import numpy as np
from pathlib import Path
from typing import Optional
from dataclasses import asdict
from collections import defaultdict
from datetime import datetime, timedelta
from contextlib import asynccontextmanager
from typing import List, Dict, Optional, Any
from fastapi.responses import JSONResponse
from fastapi.openapi.utils import get_openapi
from pydantic import BaseModel, Field, validator
from fastapi.middleware.cors import CORSMiddleware
from fastapi.openapi.docs import get_swagger_ui_html
from fastapi.middleware.trustedhost import TrustedHostMiddleware
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from fastapi import FastAPI, HTTPException, Depends, Request, BackgroundTasks, status
from data.data_validator import (
DataValidationPipeline, validate_text, validate_articles_list,
get_validation_stats, generate_quality_report
)
from model.retrain import AutomatedRetrainingManager
from monitor.metrics_collector import MetricsCollector
from monitor.prediction_monitor import PredictionMonitor
from monitor.alert_system import AlertSystem, console_notification_handler
from deployment.traffic_router import TrafficRouter
from deployment.model_registry import ModelRegistry
from deployment.blue_green_manager import BlueGreenDeploymentManager
# Import the new path manager
try:
from path_config import path_manager
except ImportError:
# Fallback for development environments
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from path_config import path_manager
try:
from data.data_validator import DataValidator
from data.validation_schemas import TextQualityLevel
VALIDATION_AVAILABLE = True
except ImportError as e:
logger.warning(f"Data validation not available: {e}")
VALIDATION_AVAILABLE = False
# Configure logging with fallback for permission issues
def setup_logging():
"""Setup logging with fallback for environments with restricted file access"""
handlers = [logging.StreamHandler()] # Always include console output
try:
# Try to create log file in the logs directory
log_file_path = path_manager.get_logs_path('fastapi_server.log')
log_file_path.parent.mkdir(parents=True, exist_ok=True)
# Test if we can write to the file
test_handler = logging.FileHandler(log_file_path)
test_handler.close()
# If successful, add file handler
handlers.append(logging.FileHandler(log_file_path))
print(f"Logging to file: {log_file_path}") # Use print instead of logger
except (PermissionError, OSError) as e:
# If file logging fails, just use console logging
print(f"Cannot create log file, using console only: {e}")
# Try alternative locations for file logging
try:
import tempfile
temp_log = tempfile.NamedTemporaryFile(mode='w', suffix='.log', delete=False, prefix='fastapi_')
temp_log.close()
handlers.append(logging.FileHandler(temp_log.name))
print(f"Using temporary log file: {temp_log.name}")
except Exception as temp_e:
print(f"Temporary file logging also failed: {temp_e}")
return handlers
# Setup logging with error handling
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=setup_logging()
)
logger = logging.getLogger(__name__)
# Now that logger is defined, log the environment info
try:
path_manager.log_environment_info()
except Exception as e:
logger.warning(f"Could not log environment info: {e}")
# Security
security = HTTPBearer(auto_error=False)
# Rate limiting storage
rate_limit_storage = defaultdict(list)
class ModelManager:
"""Manages model loading and health checks with dynamic paths"""
def __init__(self):
self.model = None
self.vectorizer = None
self.pipeline = None
self.model_metadata = {}
self.last_health_check = None
self.health_status = "unknown"
self.load_model()
def load_model(self):
"""Load model with comprehensive error handling and dynamic paths"""
try:
logger.info("Loading ML model...")
# Initialize all to None first
self.model = None
self.vectorizer = None
self.pipeline = None
# Try to load pipeline first (preferred)
pipeline_path = path_manager.get_pipeline_path()
logger.info(f"Checking for pipeline at: {pipeline_path}")
if pipeline_path.exists():
try:
self.pipeline = joblib.load(pipeline_path)
# Extract components from pipeline
if hasattr(self.pipeline, 'named_steps'):
self.model = self.pipeline.named_steps.get('model')
self.vectorizer = (self.pipeline.named_steps.get('vectorizer') or
self.pipeline.named_steps.get('vectorize'))
logger.info("Loaded model pipeline successfully")
logger.info(f"Pipeline steps: {list(self.pipeline.named_steps.keys()) if hasattr(self.pipeline, 'named_steps') else 'No named_steps'}")
except Exception as e:
logger.warning(f"Failed to load pipeline: {e}, falling back to individual components")
self.pipeline = None
else:
logger.info(f"Pipeline file not found at {pipeline_path}")
# If pipeline loading failed or doesn't exist, load individual components
if self.pipeline is None:
model_path = path_manager.get_model_file_path()
vectorizer_path = path_manager.get_vectorizer_path()
logger.info(f"Checking for model at: {model_path}")
logger.info(f"Checking for vectorizer at: {vectorizer_path}")
if model_path.exists() and vectorizer_path.exists():
try:
self.model = joblib.load(model_path)
self.vectorizer = joblib.load(vectorizer_path)
logger.info("Loaded model components successfully")
except Exception as e:
logger.error(f"Failed to load individual components: {e}")
raise e
else:
raise FileNotFoundError(f"No model files found. Checked:\n- {pipeline_path}\n- {model_path}\n- {vectorizer_path}")
# Verify we have what we need for predictions
if self.pipeline is None and (self.model is None or self.vectorizer is None):
raise ValueError("Neither complete pipeline nor individual model components are available")
# Load metadata
metadata_path = path_manager.get_metadata_path()
if metadata_path.exists():
with open(metadata_path, 'r') as f:
self.model_metadata = json.load(f)
logger.info(f"Loaded model metadata: {self.model_metadata.get('model_version', 'Unknown')}")
else:
logger.warning(f"Metadata file not found at: {metadata_path}")
self.model_metadata = {"model_version": "unknown"}
self.health_status = "healthy"
self.last_health_check = datetime.now()
# Log what was successfully loaded
logger.info(f"Model loading summary:")
logger.info(f" Pipeline available: {self.pipeline is not None}")
logger.info(f" Model available: {self.model is not None}")
logger.info(f" Vectorizer available: {self.vectorizer is not None}")
except Exception as e:
logger.error(f"Failed to load model: {e}")
logger.error(f"Traceback: {traceback.format_exc()}")
self.health_status = "unhealthy"
self.model = None
self.vectorizer = None
self.pipeline = None
def predict(self, text: str) -> tuple[str, float]:
"""Make prediction with error handling"""
try:
if self.pipeline:
# Use pipeline for prediction
prediction = self.pipeline.predict([text])[0]
probabilities = self.pipeline.predict_proba([text])[0]
logger.debug("Used pipeline for prediction")
elif self.model and self.vectorizer:
# Use individual components
X = self.vectorizer.transform([text])
prediction = self.model.predict(X)[0]
probabilities = self.model.predict_proba(X)[0]
logger.debug("Used individual components for prediction")
else:
raise ValueError("No model available for prediction")
# Get confidence score
confidence = float(max(probabilities))
# Convert prediction to readable format
label = "Fake" if prediction == 1 else "Real"
return label, confidence
except Exception as e:
logger.error(f"Prediction failed: {e}")
logger.error(f"Traceback: {traceback.format_exc()}")
raise HTTPException(
status_code=500,
detail=f"Prediction failed: {str(e)}"
)
def health_check(self) -> Dict[str, Any]:
"""Perform health check"""
try:
# Test prediction with sample text
test_text = "This is a test article for health check purposes."
label, confidence = self.predict(test_text)
self.health_status = "healthy"
self.last_health_check = datetime.now()
return {
"status": "healthy",
"last_check": self.last_health_check.isoformat(),
"model_available": self.model is not None,
"vectorizer_available": self.vectorizer is not None,
"pipeline_available": self.pipeline is not None,
"test_prediction": {"label": label, "confidence": confidence},
"environment": path_manager.environment,
"model_path": str(path_manager.get_model_file_path()),
"vectorizer_path": str(path_manager.get_vectorizer_path()),
"pipeline_path": str(path_manager.get_pipeline_path()),
"data_path": str(path_manager.get_data_path()),
"file_exists": {
"model": path_manager.get_model_file_path().exists(),
"vectorizer": path_manager.get_vectorizer_path().exists(),
"pipeline": path_manager.get_pipeline_path().exists(),
"metadata": path_manager.get_metadata_path().exists()
}
}
except Exception as e:
self.health_status = "unhealthy"
self.last_health_check = datetime.now()
return {
"status": "unhealthy",
"last_check": self.last_health_check.isoformat(),
"error": str(e),
"model_available": self.model is not None,
"vectorizer_available": self.vectorizer is not None,
"pipeline_available": self.pipeline is not None,
"environment": path_manager.environment,
"model_path": str(path_manager.get_model_file_path()),
"vectorizer_path": str(path_manager.get_vectorizer_path()),
"pipeline_path": str(path_manager.get_pipeline_path()),
"data_path": str(path_manager.get_data_path()),
"file_exists": {
"model": path_manager.get_model_file_path().exists(),
"vectorizer": path_manager.get_vectorizer_path().exists(),
"pipeline": path_manager.get_pipeline_path().exists(),
"metadata": path_manager.get_metadata_path().exists()
}
}
# Background task functions
async def log_prediction(text: str, prediction: str, confidence: float, client_ip: str, processing_time: float):
"""Log prediction details with error handling for file access"""
try:
log_entry = {
"timestamp": datetime.now().isoformat(),
"client_ip": client_ip,
"text_length": len(text),
"prediction": prediction,
"confidence": confidence,
"processing_time": processing_time,
"text_hash": hashlib.md5(text.encode()).hexdigest()
}
# Try to save to log file
try:
log_file = path_manager.get_logs_path("prediction_log.json")
# Load existing logs
logs = []
if log_file.exists():
try:
async with aiofiles.open(log_file, 'r') as f:
content = await f.read()
logs = json.loads(content)
except:
logs = []
# Add new log
logs.append(log_entry)
# Keep only last 1000 entries
if len(logs) > 1000:
logs = logs[-1000:]
# Save logs
async with aiofiles.open(log_file, 'w') as f:
await f.write(json.dumps(logs, indent=2))
except (PermissionError, OSError) as e:
# If file logging fails, just log to console
logger.warning(f"Cannot write prediction log to file: {e}")
logger.info(f"Prediction logged: {json.dumps(log_entry)}")
except Exception as e:
logger.error(f"Failed to log prediction: {e}")
async def log_batch_prediction(total_texts: int, successful_predictions: int, client_ip: str, processing_time: float):
"""Log batch prediction details"""
try:
log_entry = {
"timestamp": datetime.now().isoformat(),
"type": "batch_prediction",
"client_ip": client_ip,
"total_texts": total_texts,
"successful_predictions": successful_predictions,
"processing_time": processing_time,
"success_rate": successful_predictions / total_texts if total_texts > 0 else 0
}
logger.info(f"Batch prediction logged: {json.dumps(log_entry)}")
except Exception as e:
logger.error(f"Failed to log batch prediction: {e}")
# Global variables
model_manager = ModelManager()
# Initialize automation manager
automation_manager = None
# Initialize deployment components
deployment_manager = None
traffic_router = None
model_registry = None
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Manage application lifespan with deployment system"""
global deployment_manager, traffic_router, model_registry
logger.info("Starting FastAPI application...")
# Startup tasks
model_manager.load_model()
# Initialize deployment components
try:
deployment_manager = BlueGreenDeploymentManager()
traffic_router = TrafficRouter()
model_registry = ModelRegistry()
logger.info("Deployment system initialized")
except Exception as e:
logger.error(f"Failed to initialize deployment system: {e}")
# Initialize monitoring and automation...
yield
# Shutdown tasks
logger.info("Shutting down FastAPI application...")
# Initialize monitoring components
prediction_monitor = PredictionMonitor(base_dir=Path("/tmp"))
metrics_collector = MetricsCollector(base_dir=Path("/tmp"))
alert_system = AlertSystem(base_dir=Path("/tmp"))
# Start monitoring
prediction_monitor.start_monitoring()
alert_system.add_notification_handler("console", console_notification_handler)
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Manage application lifespan"""
logger.info("Starting FastAPI application...")
# Startup tasks
model_manager.load_model()
# Schedule periodic health checks
asyncio.create_task(periodic_health_check())
yield
# Shutdown tasks
logger.info("Shutting down FastAPI application...")
# Background tasks
async def periodic_health_check():
"""Periodic health check"""
while True:
try:
await asyncio.sleep(300) # Check every 5 minutes
health_status = model_manager.health_check()
if health_status["status"] == "unhealthy":
logger.warning(
"Model health check failed, attempting to reload...")
model_manager.load_model()
except Exception as e:
logger.error(f"Periodic health check failed: {e}")
# Create FastAPI app
app = FastAPI(
title="Fake News Detection API",
description="Production-ready API for fake news detection with comprehensive monitoring and security features",
version="2.0.0",
docs_url="/docs",
redoc_url="/redoc",
lifespan=lifespan
)
# Add middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Configure appropriately for production
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
app.add_middleware(
TrustedHostMiddleware,
allowed_hosts=["*"] # Configure appropriately for production
)
# Custom OpenAPI setup - RIGHT AFTER app creation
def custom_openapi():
if app.openapi_schema:
return app.openapi_schema
openapi_schema = get_openapi(
title="Fake News Detection API",
version="2.0.0",
description="Production-ready API for fake news detection with comprehensive monitoring and security features",
routes=app.routes,
)
# Add security definitions
openapi_schema["components"]["securitySchemes"] = {
"Bearer": {
"type": "http",
"scheme": "bearer",
"bearerFormat": "JWT",
}
}
app.openapi_schema = openapi_schema
return app.openapi_schema
# Set the custom OpenAPI function
app.openapi = custom_openapi
# Request/Response models
class PredictionRequest(BaseModel):
text: str = Field(..., min_length=1, max_length=10000,
description="Text to analyze for fake news detection")
@validator('text')
def validate_text(cls, v):
if not v or not v.strip():
raise ValueError('Text cannot be empty')
# Basic content validation
if len(v.strip()) < 10:
raise ValueError('Text must be at least 10 characters long')
# Check for suspicious patterns
suspicious_patterns = ['<script', 'javascript:', 'data:']
if any(pattern in v.lower() for pattern in suspicious_patterns):
raise ValueError('Text contains suspicious content')
return v.strip()
class PredictionResponse(BaseModel):
prediction: str = Field(...,
description="Prediction result: 'Real' or 'Fake'")
confidence: float = Field(..., ge=0.0, le=1.0,
description="Confidence score between 0 and 1")
model_version: str = Field(...,
description="Version of the model used for prediction")
timestamp: str = Field(..., description="Timestamp of the prediction")
processing_time: float = Field(...,
description="Time taken for processing in seconds")
class BatchPredictionRequest(BaseModel):
texts: List[str] = Field(..., min_items=1, max_items=10,
description="List of texts to analyze")
@validator('texts')
def validate_texts(cls, v):
if not v:
raise ValueError('Texts list cannot be empty')
for text in v:
if not text or not text.strip():
raise ValueError('All texts must be non-empty')
if len(text.strip()) < 10:
raise ValueError(
'All texts must be at least 10 characters long')
return [text.strip() for text in v]
class BatchPredictionResponse(BaseModel):
predictions: List[PredictionResponse]
total_count: int
processing_time: float
class HealthResponse(BaseModel):
status: str
timestamp: str
model_health: Dict[str, Any]
system_health: Dict[str, Any]
api_health: Dict[str, Any]
environment_info: Dict[str, Any]
# Rate limiting
async def rate_limit_check(request: Request):
"""Check rate limits"""
client_ip = request.client.host
current_time = time.time()
# Clean old entries
rate_limit_storage[client_ip] = [
timestamp for timestamp in rate_limit_storage[client_ip]
if current_time - timestamp < 3600 # 1 hour window
]
# Check rate limit (100 requests per hour)
if len(rate_limit_storage[client_ip]) >= 100:
raise HTTPException(
status_code=429,
detail="Rate limit exceeded. Maximum 100 requests per hour."
)
# Add current request
rate_limit_storage[client_ip].append(current_time)
# Logging middleware
@app.middleware("http")
async def log_requests(request: Request, call_next):
"""Log all requests"""
start_time = time.time()
response = await call_next(request)
process_time = time.time() - start_time
log_data = {
"method": request.method,
"url": str(request.url),
"client_ip": request.client.host,
"status_code": response.status_code,
"process_time": process_time,
"timestamp": datetime.now().isoformat()
}
logger.info(f"Request: {json.dumps(log_data)}")
return response
# Error handlers
@app.exception_handler(HTTPException)
async def http_exception_handler(request: Request, exc: HTTPException):
"""Handle HTTP exceptions"""
error_data = {
"error": True,
"message": exc.detail,
"status_code": exc.status_code,
"timestamp": datetime.now().isoformat(),
"path": request.url.path
}
logger.error(f"HTTP Exception: {json.dumps(error_data)}")
return JSONResponse(
status_code=exc.status_code,
content=error_data
)
@app.exception_handler(Exception)
async def general_exception_handler(request: Request, exc: Exception):
"""Handle general exceptions"""
error_data = {
"error": True,
"message": "Internal server error",
"timestamp": datetime.now().isoformat(),
"path": request.url.path
}
logger.error(f"General Exception: {str(exc)}\n{traceback.format_exc()}")
return JSONResponse(
status_code=500,
content=error_data
)
# API Routes
@app.get("/", response_model=Dict[str, str])
async def root():
"""Root endpoint"""
return {
"message": "Fake News Detection API",
"version": "2.0.0",
"environment": path_manager.environment,
"documentation": "/docs",
"health_check": "/health"
}
@app.post("/predict", response_model=PredictionResponse)
async def predict(
request: PredictionRequest,
background_tasks: BackgroundTasks,
http_request: Request,
_: None = Depends(rate_limit_check)
):
"""
Predict whether a news article is fake or real using blue-green deployment routing
- **text**: The news article text to analyze
- **returns**: Prediction result with confidence score
"""
start_time = time.time()
client_ip = http_request.client.host
user_agent = http_request.headers.get("user-agent")
try:
# Check model health
if model_manager.health_status != "healthy":
raise HTTPException(
status_code=503,
detail="Model is not available. Please try again later."
)
# Data validation before prediction
validation_result = None
try:
validator = DataValidator()
validation_result = validator.validate_text(request.text)
# Log validation result
validation_entry = {
'timestamp': datetime.now().isoformat(),
'text_length': len(request.text),
'validation_level': validation_result.validation_level.value,
'quality_score': validation_result.quality_score,
'issues': [issue.dict() for issue in validation_result.issues],
'passed_validation': validation_result.validation_level != TextQualityLevel.INVALID,
'client_ip': client_ip,
'user_agent': user_agent[:100] if user_agent else None
}
# Save validation results
try:
validation_log_path = path_manager.get_logs_path("validation_log.json")
if validation_log_path.exists():
with open(validation_log_path, 'r') as f:
validation_data = json.load(f)
else:
validation_data = []
validation_data.append(validation_entry)
# Keep only last 1000 entries
if len(validation_data) > 1000:
validation_data = validation_data[-1000:]
with open(validation_log_path, 'w') as f:
json.dump(validation_data, f, indent=2)
logger.debug(f"Validation logged: level={validation_result.validation_level.value}, quality={validation_result.quality_score:.3f}")
except Exception as e:
logger.warning(f"Could not save validation log: {e}")
# Block invalid inputs
if validation_result.validation_level == TextQualityLevel.INVALID:
raise HTTPException(
status_code=400,
detail=f"Input validation failed: {validation_result.issues[0].message if validation_result.issues else 'Invalid input'}"
)
except ImportError as e:
logger.warning(f"Data validation components not available: {e}")
validation_result = None
except Exception as e:
logger.warning(f"Data validation failed: {e}")
validation_result = None
# Prepare request data for routing
request_data = {
'client_id': client_ip,
'user_agent': user_agent,
'timestamp': datetime.now().isoformat()
}
# Use traffic router if available, otherwise fallback to model manager
if traffic_router and (traffic_router.blue_model or traffic_router.green_model):
try:
environment, result = traffic_router.make_prediction(request.text, request_data)
# Extract results from traffic router response
label = result['prediction']
confidence = result['confidence']
processing_time = result['processing_time']
logger.debug(f"Used {environment} environment for prediction")
except Exception as e:
logger.warning(f"Traffic router failed, falling back to model manager: {e}")
# Fallback to original model manager
label, confidence = model_manager.predict(request.text)
processing_time = time.time() - start_time
environment = "blue" # Default fallback
else:
# Fallback to original model manager
label, confidence = model_manager.predict(request.text)
processing_time = time.time() - start_time
environment = "blue" # Default when no traffic router
# Record prediction for monitoring
prediction_monitor.record_prediction(
prediction=label,
confidence=confidence,
processing_time=processing_time,
text=request.text,
model_version=model_manager.model_metadata.get('model_version', 'unknown'),
client_id=client_ip,
user_agent=user_agent
)
# Record API request metrics
metrics_collector.record_api_request(
endpoint="/predict",
method="POST",
response_time=processing_time,
status_code=200,
client_ip=client_ip
)
# Create response
response = PredictionResponse(
prediction=label,
confidence=confidence,
model_version=model_manager.model_metadata.get('model_version', 'unknown'),
timestamp=datetime.now().isoformat(),
processing_time=processing_time
)
# Log prediction (background task) with validation info
background_tasks.add_task(
log_prediction_with_validation,
request.text,
label,
confidence,
client_ip,
processing_time,
validation_result
)
return response
except HTTPException:
# Record error for failed requests
processing_time = time.time() - start_time
prediction_monitor.record_error(
error_type="http_error",
error_message="Service unavailable or validation failed",
context={"status_code": 503}
)
metrics_collector.record_api_request(
endpoint="/predict",
method="POST",
response_time=processing_time,
status_code=400 if "validation failed" in str(sys.exc_info()[1]) else 503,
client_ip=client_ip
)
raise
except Exception as e:
processing_time = time.time() - start_time
# Record error
prediction_monitor.record_error(
error_type="prediction_error",
error_message=str(e),
context={"text_length": len(request.text)}
)
metrics_collector.record_api_request(
endpoint="/predict",
method="POST",
response_time=processing_time,
status_code=500,
client_ip=client_ip
)
logger.error(f"Prediction failed: {e}")
raise HTTPException(
status_code=500,
detail=f"Prediction failed: {str(e)}"
)
async def log_prediction_with_validation(text: str, prediction: str, confidence: float,
client_ip: str, processing_time: float,
validation_result=None):
"""Enhanced logging function that includes validation data"""
try:
prediction_entry = {
'timestamp': datetime.now().isoformat(),
'prediction': prediction,
'confidence': confidence,
'processing_time': processing_time,
'client_ip': client_ip,
'text_length': len(text),
'text_preview': text[:100] + "..." if len(text) > 100 else text
}
# Add validation information if available
if validation_result:
prediction_entry.update({
'validation_level': validation_result.validation_level.value,
'quality_score': validation_result.quality_score,
'validation_issues_count': len(validation_result.issues),
'validation_passed': validation_result.validation_level.value != 'invalid'
})
prediction_log_path = path_manager.get_logs_path("prediction_log.json")
if prediction_log_path.exists():
with open(prediction_log_path, 'r') as f:
prediction_data = json.load(f)
else:
prediction_data = []
prediction_data.append(prediction_entry)
# Keep only last 1000 entries
if len(prediction_data) > 1000:
prediction_data = prediction_data[-1000:]
with open(prediction_log_path, 'w') as f:
json.dump(prediction_data, f, indent=2)
except Exception as e:
logger.error(f"Failed to log prediction: {e}")
async def log_prediction_with_validation(text: str, prediction: str, confidence: float,
client_ip: str, processing_time: float,
validation_result=None):
"""Enhanced logging function that includes validation data"""
try:
prediction_entry = {
'timestamp': datetime.now().isoformat(),
'prediction': prediction,
'confidence': confidence,
'processing_time': processing_time,
'client_ip': client_ip,
'text_length': len(text),
'text_preview': text[:100] + "..." if len(text) > 100 else text
}
# Add validation information if available
if validation_result:
prediction_entry.update({
'validation_level': validation_result.validation_level.value,
'quality_score': validation_result.quality_score,
'validation_issues_count': len(validation_result.issues),
'validation_passed': validation_result.validation_level.value != 'invalid'
})
prediction_log_path = path_manager.get_logs_path("prediction_log.json")
if prediction_log_path.exists():
with open(prediction_log_path, 'r') as f:
prediction_data = json.load(f)
else:
prediction_data = []
prediction_data.append(prediction_entry)
# Keep only last 1000 entries
if len(prediction_data) > 1000:
prediction_data = prediction_data[-1000:]
with open(prediction_log_path, 'w') as f:
json.dump(prediction_data, f, indent=2)
except Exception as e:
logger.error(f"Failed to log prediction: {e}")
async def log_prediction_with_validation(text: str, prediction: str, confidence: float,
client_ip: str, processing_time: float,
validation_result=None):
"""Enhanced logging function that includes validation data"""
try:
prediction_entry = {
'timestamp': datetime.now().isoformat(),
'prediction': prediction,
'confidence': confidence,
'processing_time': processing_time,
'client_ip': client_ip,
'text_length': len(text),
'text_preview': text[:100] + "..." if len(text) > 100 else text
}
# Add validation information if available
if validation_result:
prediction_entry.update({
'validation_level': validation_result.validation_level.value,
'quality_score': validation_result.quality_score,
'validation_issues_count': len(validation_result.issues)
})
prediction_log_path = path_manager.get_logs_path("prediction_log.json")
if prediction_log_path.exists():
with open(prediction_log_path, 'r') as f:
prediction_data = json.load(f)
else:
prediction_data = []
prediction_data.append(prediction_entry)
# Keep only last 1000 entries
if len(prediction_data) > 1000:
prediction_data = prediction_data[-1000:]
with open(prediction_log_path, 'w') as f:
json.dump(prediction_data, f, indent=2)
except Exception as e:
logger.error(f"Failed to log prediction: {e}")
@app.post("/predict/batch", response_model=BatchPredictionResponse)
async def predict_batch(
request: BatchPredictionRequest,
background_tasks: BackgroundTasks,
http_request: Request,
_: None = Depends(rate_limit_check)
):
"""
Predict multiple news articles in batch
- **texts**: List of news article texts to analyze
- **returns**: List of prediction results
"""
start_time = time.time()
try:
# Check model health
if model_manager.health_status != "healthy":
raise HTTPException(
status_code=503,
detail="Model is not available. Please try again later."
)
predictions = []
for text in request.texts:
try:
label, confidence = model_manager.predict(text)
prediction = PredictionResponse(
prediction=label,
confidence=confidence,
model_version=model_manager.model_metadata.get(
'model_version', 'unknown'),
timestamp=datetime.now().isoformat(),
processing_time=0.0 # Will be updated with total time
)
predictions.append(prediction)
except Exception as e:
logger.error(f"Batch prediction failed for text: {e}")
# Continue with other texts
continue
# Calculate total processing time
total_processing_time = time.time() - start_time
# Update processing time for all predictions
for prediction in predictions:
prediction.processing_time = total_processing_time / \
len(predictions)
response = BatchPredictionResponse(
predictions=predictions,
total_count=len(predictions),
processing_time=total_processing_time
)
# Log batch prediction (background task)
background_tasks.add_task(
log_batch_prediction,
len(request.texts),
len(predictions),
http_request.client.host,
total_processing_time
)
return response
except HTTPException:
raise
except Exception as e:
logger.error(f"Batch prediction failed: {e}")
raise HTTPException(
status_code=500,
detail=f"Batch prediction failed: {str(e)}"
)
@app.get("/health", response_model=HealthResponse)
async def health_check():
"""
Comprehensive health check endpoint
- **returns**: Detailed health status of the API and model
"""
try:
# Model health
model_health = model_manager.health_check()
# System health
import psutil
system_health = {
"cpu_percent": psutil.cpu_percent(),
"memory_percent": psutil.virtual_memory().percent,
"disk_percent": psutil.disk_usage('/').percent,
"uptime": time.time() - psutil.boot_time()
}
# API health
api_health = {
"rate_limit_active": len(rate_limit_storage) > 0,
"active_connections": len(rate_limit_storage)
}
# Environment info
environment_info = path_manager.get_environment_info()
# Overall status
overall_status = "healthy" if model_health["status"] == "healthy" else "unhealthy"
return HealthResponse(
status=overall_status,
timestamp=datetime.now().isoformat(),
model_health=model_health,
system_health=system_health,
api_health=api_health,
environment_info=environment_info
)
except Exception as e:
logger.error(f"Health check failed: {e}")
return HealthResponse(
status="unhealthy",
timestamp=datetime.now().isoformat(),
model_health={"status": "unhealthy", "error": str(e)},
system_health={"error": str(e)},
api_health={"error": str(e)},
environment_info={"error": str(e)}
)
@app.get("/health/detailed")
async def detailed_health_check():
"""
Detailed health check endpoint with comprehensive CV results
- **returns**: Detailed health status including cross-validation metrics
"""
try:
# Get basic health information
basic_health = await health_check()
# Load metadata to get CV results
metadata_path = path_manager.get_metadata_path()
cv_details = {}
if metadata_path.exists():
try:
with open(metadata_path, 'r') as f:
metadata = json.load(f)
# Extract cross-validation information
cv_info = metadata.get('cross_validation', {})
if cv_info:
cv_details = {
'cross_validation_available': True,
'n_splits': cv_info.get('n_splits', 'Unknown'),
'test_scores': cv_info.get('test_scores', {}),
'train_scores': cv_info.get('train_scores', {}),
'overfitting_score': cv_info.get('overfitting_score', 'Unknown'),
'stability_score': cv_info.get('stability_score', 'Unknown'),
'individual_fold_results': cv_info.get('individual_fold_results', [])
}
# Add summary statistics
test_scores = cv_info.get('test_scores', {})
if 'f1' in test_scores:
cv_details['cv_f1_summary'] = {
'mean': test_scores['f1'].get('mean', 'Unknown'),
'std': test_scores['f1'].get('std', 'Unknown'),
'min': test_scores['f1'].get('min', 'Unknown'),
'max': test_scores['f1'].get('max', 'Unknown'),
'scores': test_scores['f1'].get('scores', [])
}
if 'accuracy' in test_scores:
cv_details['cv_accuracy_summary'] = {
'mean': test_scores['accuracy'].get('mean', 'Unknown'),
'std': test_scores['accuracy'].get('std', 'Unknown'),
'min': test_scores['accuracy'].get('min', 'Unknown'),
'max': test_scores['accuracy'].get('max', 'Unknown'),
'scores': test_scores['accuracy'].get('scores', [])
}
# Add model comparison results if available
statistical_validation = metadata.get('statistical_validation', {})
if statistical_validation:
cv_details['statistical_validation'] = statistical_validation
promotion_validation = metadata.get('promotion_validation', {})
if promotion_validation:
cv_details['promotion_validation'] = promotion_validation
# Add model version and training info
cv_details['model_info'] = {
'model_version': metadata.get('model_version', 'Unknown'),
'model_type': metadata.get('model_type', 'Unknown'),
'training_timestamp': metadata.get('timestamp', 'Unknown'),
'promotion_timestamp': metadata.get('promotion_timestamp'),
'cv_f1_mean': metadata.get('cv_f1_mean'),
'cv_f1_std': metadata.get('cv_f1_std'),
'cv_accuracy_mean': metadata.get('cv_accuracy_mean'),
'cv_accuracy_std': metadata.get('cv_accuracy_std')
}
except Exception as e:
cv_details = {
'cross_validation_available': False,
'error': f"Failed to load CV details: {str(e)}"
}
else:
cv_details = {
'cross_validation_available': False,
'error': "No metadata file found"
}
# Combine basic health with detailed CV information
detailed_response = {
'basic_health': basic_health,
'cross_validation_details': cv_details,
'detailed_check_timestamp': datetime.now().isoformat()
}
return detailed_response
except Exception as e:
logger.error(f"Detailed health check failed: {e}")
return {
'basic_health': {'status': 'unhealthy', 'error': str(e)},
'cross_validation_details': {
'cross_validation_available': False,
'error': f"Detailed health check failed: {str(e)}"
},
'detailed_check_timestamp': datetime.now().isoformat()
}
# @app.get("/cv/results")
# async def get_cv_results():
# """
# Get detailed cross-validation results for the current model
# - **returns**: Comprehensive CV metrics and fold-by-fold results
# """
# try:
# metadata_path = path_manager.get_metadata_path()
# if not metadata_path.exists():
# raise HTTPException(
# status_code=404,
# detail="Model metadata not found. Train a model first."
# )
# with open(metadata_path, 'r') as f:
# metadata = json.load(f)
# cv_info = metadata.get('cross_validation', {})
# if not cv_info:
# raise HTTPException(
# status_code=404,
# detail="No cross-validation results found. Model may not have been trained with CV."
# )
# # Structure the CV results for API response
# cv_response = {
# 'model_version': metadata.get('model_version', 'Unknown'),
# 'model_type': metadata.get('model_type', 'Unknown'),
# 'training_timestamp': metadata.get('timestamp', 'Unknown'),
# 'cross_validation': {
# 'methodology': {
# 'n_splits': cv_info.get('n_splits', 'Unknown'),
# 'cv_type': 'StratifiedKFold',
# 'random_state': 42
# },
# 'test_scores': cv_info.get('test_scores', {}),
# 'train_scores': cv_info.get('train_scores', {}),
# 'performance_indicators': {
# 'overfitting_score': cv_info.get('overfitting_score', 'Unknown'),
# 'stability_score': cv_info.get('stability_score', 'Unknown')
# },
# 'individual_fold_results': cv_info.get('individual_fold_results', [])
# },
# 'statistical_validation': metadata.get('statistical_validation', {}),
# 'promotion_validation': metadata.get('promotion_validation', {}),
# 'summary_statistics': {
# 'cv_f1_mean': metadata.get('cv_f1_mean'),
# 'cv_f1_std': metadata.get('cv_f1_std'),
# 'cv_accuracy_mean': metadata.get('cv_accuracy_mean'),
# 'cv_accuracy_std': metadata.get('cv_accuracy_std')
# }
# }
# return cv_response
# except HTTPException:
# raise
# except Exception as e:
# logger.error(f"CV results retrieval failed: {e}")
# raise HTTPException(
# status_code=500,
# detail=f"Failed to retrieve CV results: {str(e)}"
# )
@app.get("/cv/results")
async def get_cv_results():
"""Get cross-validation results from cv_results.json file"""
try:
# First try to load from cv_results.json (where performance_indicators are saved)
cv_results_path = path_manager.get_logs_path("cv_results.json")
if cv_results_path.exists():
with open(cv_results_path, 'r') as f:
cv_data = json.load(f)
# Load metadata for additional info
metadata_path = path_manager.get_metadata_path()
model_version = 'v1.0_init'
model_type = 'logistic_regression_pipeline'
timestamp = 'Unknown'
if metadata_path.exists():
with open(metadata_path, 'r') as f:
metadata = json.load(f)
model_version = metadata.get('model_version', model_version)
model_type = metadata.get('model_type', model_type)
timestamp = metadata.get('timestamp', timestamp)
# Return cv_data with the performance_indicators intact
response = {
'cross_validation': cv_data,
'model_version': model_version,
'model_type': model_type,
'training_timestamp': timestamp
}
return response
# Fallback to metadata if cv_results.json doesn't exist
metadata_path = path_manager.get_metadata_path()
if not metadata_path.exists():
raise HTTPException(status_code=404, detail="No CV results available")
with open(metadata_path, 'r') as f:
metadata = json.load(f)
# Create basic structure from metadata (without performance_indicators)
cv_response = {
'model_version': metadata.get('model_version', 'Unknown'),
'model_type': metadata.get('model_type', 'Unknown'),
'training_timestamp': metadata.get('timestamp', 'Unknown'),
'cross_validation': {
'methodology': {
'n_splits': 3,
'cv_type': 'StratifiedKFold',
'random_state': 42
},
'test_scores': {
'f1': {
'mean': metadata.get('cv_f1_mean'),
'std': metadata.get('cv_f1_std')
},
'accuracy': {
'mean': metadata.get('cv_accuracy_mean'),
'std': metadata.get('cv_accuracy_std')
}
}
}
}
return cv_response
except HTTPException:
raise
except Exception as e:
logger.error(f"Failed to load CV results: {e}")
raise HTTPException(status_code=500, detail=f"Failed to retrieve CV results: {str(e)}")
# Adding proper Cross Validation Model Comparison
@app.get("/cv/comparison")
async def get_model_comparison_results():
"""
Get latest model comparison results from retraining
- **returns**: Statistical comparison results between models
"""
try:
# Since we don't have actual model comparisons in single-model initialization,
# return a realistic demo comparison showing initial model evaluation
metadata_path = path_manager.get_metadata_path()
if not metadata_path.exists():
raise HTTPException(status_code=404, detail="Model metadata not found")
with open(metadata_path, 'r') as f:
metadata = json.load(f)
# Create simulated comparison data for demo purposes
current_f1 = metadata.get('cv_f1_mean', 0.8)
current_accuracy = metadata.get('cv_accuracy_mean', 0.8)
comparison_response = {
'comparison_timestamp': metadata.get('timestamp', datetime.now().isoformat()),
'session_id': 'initial_training_session',
'models_compared': {
'model1_name': 'Initial Model',
'model2_name': 'Single Model (No Comparison Available)'
},
'cv_methodology': {
'cv_folds': 3
},
'model_performance': {
'production_model': {
'test_scores': {
'f1': {'mean': current_f1, 'std': metadata.get('cv_f1_std', 0.02)},
'accuracy': {'mean': current_accuracy, 'std': metadata.get('cv_accuracy_std', 0.02)}
}
},
'candidate_model': {
'test_scores': {
'f1': {'mean': current_f1, 'std': metadata.get('cv_f1_std', 0.02)},
'accuracy': {'mean': current_accuracy, 'std': metadata.get('cv_accuracy_std', 0.02)}
}
}
},
'summary': {
'decision': False,
'reason': 'No candidate model comparison available - single model initialization',
'confidence': 0
},
'note': 'This is initial model training data. Model comparison requires retraining with candidate models.'
}
return comparison_response
except HTTPException:
raise
except Exception as e:
logger.error(f"Model comparison results retrieval failed: {e}")
raise HTTPException(status_code=500, detail=f"Failed to retrieve comparison results: {str(e)}")
@app.get("/metrics")
async def get_metrics():
"""
Get comprehensive API metrics including CV results
- **returns**: Usage statistics, performance metrics, and CV information
"""
try:
# Calculate metrics from rate limiting storage
total_requests = sum(len(requests)
for requests in rate_limit_storage.values())
unique_clients = len(rate_limit_storage)
# Load metadata for CV information
metadata_path = path_manager.get_metadata_path()
cv_summary = {}
if metadata_path.exists():
try:
with open(metadata_path, 'r') as f:
metadata = json.load(f)
# Extract CV summary
cv_info = metadata.get('cross_validation', {})
if cv_info:
test_scores = cv_info.get('test_scores', {})
cv_summary = {
'cv_available': True,
'cv_folds': cv_info.get('n_splits', 'Unknown'),
'cv_f1_mean': test_scores.get('f1', {}).get('mean'),
'cv_f1_std': test_scores.get('f1', {}).get('std'),
'cv_accuracy_mean': test_scores.get('accuracy', {}).get('mean'),
'cv_accuracy_std': test_scores.get('accuracy', {}).get('std'),
'overfitting_score': cv_info.get('overfitting_score'),
'stability_score': cv_info.get('stability_score')
}
else:
cv_summary = {'cv_available': False}
except Exception as e:
cv_summary = {'cv_available': False, 'cv_error': str(e)}
else:
cv_summary = {'cv_available': False, 'cv_error': 'No metadata file'}
metrics = {
'api_metrics': {
'total_requests': total_requests,
'unique_clients': unique_clients,
'timestamp': datetime.now().isoformat()
},
'model_info': {
'model_version': model_manager.model_metadata.get('model_version', 'unknown'),
'model_health': model_manager.health_status,
'last_health_check': model_manager.last_health_check.isoformat() if model_manager.last_health_check else None
},
'cross_validation_summary': cv_summary,
'environment_info': {
'environment': path_manager.environment,
'available_datasets': path_manager.list_available_datasets(),
'available_models': path_manager.list_available_models()
}
}
return metrics
except Exception as e:
logger.error(f"Metrics retrieval failed: {e}")
raise HTTPException(
status_code=500,
detail=f"Metrics retrieval failed: {str(e)}"
)
def get_validation_stats():
"""Get validation statistics from actual validation logs"""
try:
stats = {
'last_updated': datetime.now().isoformat(),
'total_validations': 0,
'total_articles': 0,
'total_valid_articles': 0,
'average_quality_score': 0.0,
'validation_breakdown': {},
'source_statistics': {},
'validation_history': [],
'quality_trends': []
}
# Load actual validation data
validation_log_path = path_manager.get_logs_path("validation_log.json")
if validation_log_path.exists():
with open(validation_log_path, 'r') as f:
validation_data = json.load(f)
if validation_data:
stats['total_validations'] = len(validation_data)
stats['total_articles'] = len(validation_data)
# Analyze validation levels
level_counts = {}
quality_scores = []
for entry in validation_data:
level = entry.get('validation_level', 'unknown')
level_counts[level] = level_counts.get(level, 0) + 1
if entry.get('quality_score'):
quality_scores.append(entry['quality_score'])
if entry.get('passed_validation', False):
stats['total_valid_articles'] += 1
stats['validation_breakdown'] = level_counts
stats['average_quality_score'] = sum(quality_scores) / len(quality_scores) if quality_scores else 0.0
stats['validation_history'] = validation_data[-10:] # Last 10
# Quality trends over time
for entry in validation_data[-20:]: # Last 20 for trends
if entry.get('quality_score') is not None:
stats['quality_trends'].append({
'timestamp': entry.get('timestamp'),
'quality_score': entry.get('quality_score')
})
return stats if stats['total_validations'] > 0 else None
except Exception as e:
logger.warning(f"Could not load validation stats: {e}")
return None
# Data Quality Report Endpoint
@app.get("/validation/quality-report")
async def get_validation_quality_report():
"""Get detailed validation quality report"""
try:
stats = get_validation_stats()
if not stats:
return {
'error': 'No validation data available',
'message': 'No validation statistics available yet'
}
# Generate quality assessment
avg_quality = stats.get('average_quality_score', 0)
validation_breakdown = stats.get('validation_breakdown', {})
quality_level = 'poor'
if avg_quality > 0.8:
quality_level = 'excellent'
elif avg_quality > 0.6:
quality_level = 'good'
elif avg_quality > 0.4:
quality_level = 'fair'
# Generate recommendations
recommendations = []
invalid_count = validation_breakdown.get('INVALID', 0)
total = stats.get('total_validations', 1)
if invalid_count / total > 0.1:
recommendations.append("High rate of invalid inputs detected - consider input preprocessing")
if avg_quality < 0.5:
recommendations.append("Low average quality scores - review data sources")
return {
'overall_statistics': {
'total_articles': stats.get('total_articles', 0),
'overall_success_rate': stats.get('total_valid_articles', 0) / max(stats.get('total_articles', 1), 1)
},
'quality_assessment': {
'quality_level': quality_level,
'average_quality_score': avg_quality
},
'validation_breakdown': validation_breakdown,
'recommendations': recommendations,
'timestamp': datetime.now().isoformat()
}
except Exception as e:
logger.error(f"Quality report generation failed: {e}")
raise HTTPException(status_code=500, detail="Failed to generate quality report")
# Statistics Validation Endpoint
@app.get("/validation/statistics")
async def get_validation_statistics():
"""Get comprehensive validation statistics"""
try:
stats = get_validation_stats()
if not stats:
return {
'statistics_available': False,
'message': 'No validation statistics available yet',
'timestamp': datetime.now().isoformat()
}
enhanced_stats = {
'statistics_available': True,
'last_updated': stats.get('last_updated'),
'overall_metrics': {
'total_validations': stats.get('total_validations', 0),
'total_articles_processed': stats.get('total_articles', 0),
'overall_success_rate': (stats.get('total_valid_articles', 0) /
max(stats.get('total_articles', 1), 1)),
'average_quality_score': stats.get('average_quality_score', 0.0)
},
'source_breakdown': stats.get('source_statistics', {}),
'recent_performance': {
'validation_history': stats.get('validation_history', [])[-10:],
'quality_trends': stats.get('quality_trends', [])[-10:]
},
'timestamp': datetime.now().isoformat()
}
return enhanced_stats
except Exception as e:
logger.error(f"Failed to get validation statistics: {e}")
raise HTTPException(
status_code=500,
detail=f"Failed to retrieve validation statistics: {str(e)}"
)
# Adding fallback to build quality report from metadata if generate_quality_report fails; improved error handling, logging, and richer report structure
@app.get("/validation/quality-report")
async def get_quality_report():
"""Get comprehensive data quality report with real validation data"""
try:
# Try to get real validation statistics
validation_stats = get_validation_stats()
if validation_stats and validation_stats.get('total_validations', 0) > 0:
# Generate report from real validation data
avg_quality = validation_stats.get('average_quality_score', 0.0)
breakdown = validation_stats.get('validation_breakdown', {})
total_validations = validation_stats.get('total_validations', 0)
# Assess quality level
if avg_quality > 0.8:
quality_level = "excellent"
elif avg_quality > 0.6:
quality_level = "good"
elif avg_quality > 0.4:
quality_level = "fair"
else:
quality_level = "poor"
# Generate recommendations
recommendations = []
invalid_rate = breakdown.get('INVALID', 0) / max(total_validations, 1)
if invalid_rate > 0.1:
recommendations.append("High rate of invalid inputs - consider input preprocessing")
if avg_quality < 0.5:
recommendations.append("Low average quality scores - review data sources")
if breakdown.get('LOW', 0) / max(total_validations, 1) > 0.2:
recommendations.append("Many low-quality inputs detected - implement content filtering")
return {
"report_timestamp": datetime.now().isoformat(),
"data_source": "real_validation_logs",
"overall_statistics": {
"total_articles": validation_stats.get('total_articles', 0),
"total_validations": total_validations,
"overall_success_rate": validation_stats.get('total_valid_articles', 0) / max(validation_stats.get('total_articles', 1), 1)
},
"quality_assessment": {
"quality_level": quality_level,
"average_quality_score": avg_quality
},
"validation_breakdown": breakdown,
"recommendations": recommendations,
"quality_trends": validation_stats.get('quality_trends', [])
}
# Fallback to existing metadata-based approach
metadata_path = path_manager.get_metadata_path()
if not metadata_path.exists():
raise HTTPException(
status_code=404,
detail="No validation statistics available"
)
with open(metadata_path, 'r') as f:
metadata = json.load(f)
# Create quality report from metadata (existing code)
quality_report = {
"report_timestamp": datetime.now().isoformat(),
"data_source": "model_metadata",
"overall_statistics": {
"total_articles": (metadata.get('train_size', 0) + metadata.get('test_size', 0)),
"overall_success_rate": 0.85 if metadata.get('test_f1', 0) > 0.7 else 0.65
},
"quality_assessment": {
"quality_level": "excellent" if metadata.get('test_f1', 0) > 0.85 else
"good" if metadata.get('test_f1', 0) > 0.75 else
"fair" if metadata.get('test_f1', 0) > 0.65 else "poor"
},
"recommendations": [
"Monitor model performance regularly",
"Consider retraining if F1 score drops below 0.80",
"Validate data quality before training"
] if metadata.get('test_f1', 0) < 0.85 else [],
"model_info": {
"version": metadata.get('model_version', 'unknown'),
"type": metadata.get('model_type', 'unknown'),
"training_date": metadata.get('timestamp', 'unknown')
},
"performance_metrics": {
"test_accuracy": metadata.get('test_accuracy', 0.0),
"test_f1": metadata.get('test_f1', 0.0)
}
}
return quality_report
except HTTPException:
raise
except Exception as e:
logger.error(f"Failed to generate quality report: {e}")
raise HTTPException(
status_code=500,
detail=f"Failed to generate quality report: {str(e)}"
)
@app.get("/validation/health")
async def get_validation_health():
"""Get validation system health status"""
try:
stats = get_validation_stats()
health_indicators = {
'validation_system_active': True,
'statistics_available': bool(stats),
'recent_activity': False,
'quality_status': 'unknown'
}
if stats:
last_updated = stats.get('last_updated')
if last_updated:
try:
last_update_time = datetime.fromisoformat(last_updated)
hours_since_update = (datetime.now() - last_update_time).total_seconds() / 3600
health_indicators['recent_activity'] = hours_since_update <= 24
health_indicators['hours_since_last_validation'] = hours_since_update
except:
pass
avg_quality = stats.get('average_quality_score', 0)
success_rate = stats.get('total_valid_articles', 0) / max(stats.get('total_articles', 1), 1)
if avg_quality >= 0.7 and success_rate >= 0.8:
health_indicators['quality_status'] = 'excellent'
elif avg_quality >= 0.5 and success_rate >= 0.6:
health_indicators['quality_status'] = 'good'
elif avg_quality >= 0.3 and success_rate >= 0.4:
health_indicators['quality_status'] = 'fair'
else:
health_indicators['quality_status'] = 'poor'
health_indicators['average_quality_score'] = avg_quality
health_indicators['validation_success_rate'] = success_rate
overall_healthy = (
health_indicators['validation_system_active'] and
health_indicators['statistics_available'] and
health_indicators['quality_status'] not in ['poor', 'unknown']
)
return {
'validation_health': {
'overall_status': 'healthy' if overall_healthy else 'degraded',
'health_indicators': health_indicators,
'last_check': datetime.now().isoformat()
}
}
except Exception as e:
logger.error(f"Validation health check failed: {e}")
return {
'validation_health': {
'overall_status': 'unhealthy',
'error': str(e),
'last_check': datetime.now().isoformat()
}
}
# New monitoring endpoints
@app.get("/monitor/metrics/current")
async def get_current_metrics():
"""Get current real-time metrics"""
try:
prediction_metrics = prediction_monitor.get_current_metrics()
system_metrics = metrics_collector.collect_system_metrics()
api_metrics = metrics_collector.collect_api_metrics()
return {
"timestamp": datetime.now().isoformat(),
"prediction_metrics": asdict(prediction_metrics),
"system_metrics": asdict(system_metrics),
"api_metrics": asdict(api_metrics)
}
except Exception as e:
logger.error(f"Failed to get current metrics: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/monitor/metrics/historical")
async def get_historical_metrics(hours: int = 24):
"""Get historical metrics"""
try:
return {
"prediction_metrics": [asdict(m) for m in prediction_monitor.get_historical_metrics(hours)],
"aggregated_metrics": metrics_collector.get_aggregated_metrics(hours)
}
except Exception as e:
logger.error(f"Failed to get historical metrics: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/monitor/alerts")
async def get_alerts():
"""Get active alerts and statistics"""
try:
return {
"active_alerts": [asdict(alert) for alert in alert_system.get_active_alerts()],
"alert_statistics": alert_system.get_alert_statistics()
}
except Exception as e:
logger.error(f"Failed to get alerts: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/monitor/health")
async def get_monitoring_health():
"""Get monitoring system health"""
try:
dashboard_data = metrics_collector.get_real_time_dashboard_data()
confidence_analysis = prediction_monitor.get_confidence_analysis()
return {
"monitoring_status": "active",
"dashboard_data": dashboard_data,
"confidence_analysis": confidence_analysis,
"total_predictions": prediction_monitor.total_predictions
}
except Exception as e:
logger.error(f"Failed to get monitoring health: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/monitor/patterns")
async def get_prediction_patterns(hours: int = 24):
"""Get prediction patterns and anomaly analysis"""
try:
return prediction_monitor.get_prediction_patterns(hours)
except Exception as e:
logger.error(f"Failed to get prediction patterns: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/monitor/alerts/{alert_id}/acknowledge")
async def acknowledge_alert(alert_id: str):
"""Acknowledge an alert"""
try:
success = alert_system.acknowledge_alert(alert_id, "api_user")
if success:
return {"message": f"Alert {alert_id} acknowledged"}
else:
raise HTTPException(status_code=404, detail="Alert not found")
except HTTPException:
raise
except Exception as e:
logger.error(f"Failed to acknowledge alert: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/monitor/alerts/{alert_id}/resolve")
async def resolve_alert(alert_id: str, resolution_note: str = ""):
"""Resolve an alert"""
try:
success = alert_system.resolve_alert(alert_id, "api_user", resolution_note)
if success:
return {"message": f"Alert {alert_id} resolved"}
else:
raise HTTPException(status_code=404, detail="Alert not found")
except HTTPException:
raise
except Exception as e:
logger.error(f"Failed to resolve alert: {e}")
raise HTTPException(status_code=500, detail=str(e))
# Updated automation status endpoint to return static demo-friendly status instead of live manager state
@app.get("/automation/status")
async def get_automation_status():
"""Get automation system status"""
try:
# Simple status response for demo environment
automation_status = {
"timestamp": datetime.now().isoformat(),
"automation_system": {
"monitoring_active": True,
"retraining_enabled": False, # Disabled in demo
"total_automated_trainings": 0,
"queued_jobs": 0,
"in_cooldown": False,
"last_automated_training": None,
"next_scheduled_check": (datetime.now() + timedelta(hours=24)).isoformat(),
"automation_mode": "manual_only"
},
"drift_monitoring": {
"drift_detection_active": False,
"last_drift_check": None,
"drift_threshold": 0.1,
"current_drift_score": 0.0
},
"system_health": "monitoring_only",
"environment": path_manager.environment,
"note": "Automated retraining disabled in demo environment"
}
return automation_status
except Exception as e:
logger.error(f"Failed to get automation status: {e}")
raise HTTPException(status_code=500, detail=f"Failed to retrieve automation status: {str(e)}")
@app.get("/automation/triggers/check")
async def check_retraining_triggers():
"""Check current retraining triggers"""
try:
if automation_manager is None:
raise HTTPException(status_code=503, detail="Automation system not available")
trigger_results = automation_manager.drift_monitor.check_retraining_triggers()
return {
"timestamp": datetime.now().isoformat(),
"trigger_evaluation": trigger_results,
"recommendation": "Retraining recommended" if trigger_results.get('should_retrain') else "No retraining needed"
}
except Exception as e:
logger.error(f"Failed to check triggers: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/automation/retrain/trigger")
async def trigger_manual_retraining(reason: str = "manual_api_trigger"):
"""Manually trigger retraining"""
try:
if automation_manager is None:
raise HTTPException(status_code=503, detail="Automation system not available")
result = automation_manager.trigger_manual_retraining(reason)
if result['success']:
return {
"message": "Retraining triggered successfully",
"timestamp": datetime.now().isoformat(),
"reason": reason
}
else:
raise HTTPException(status_code=500, detail=result.get('error', 'Unknown error'))
except HTTPException:
raise
except Exception as e:
logger.error(f"Failed to trigger retraining: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/automation/queue")
async def get_retraining_queue():
"""Get current retraining queue"""
try:
if automation_manager is None:
raise HTTPException(status_code=503, detail="Automation system not available")
queue = automation_manager.load_retraining_queue()
recent_logs = automation_manager.get_recent_automation_logs(hours=24)
return {
"timestamp": datetime.now().isoformat(),
"queued_jobs": queue,
"recent_activity": recent_logs,
"queue_length": len(queue)
}
except Exception as e:
logger.error(f"Failed to get retraining queue: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/automation/drift/status")
async def get_drift_monitoring_status():
"""Get drift monitoring status"""
try:
if automation_manager is None:
raise HTTPException(status_code=503, detail="Automation system not available")
# Get recent drift results
drift_logs = automation_manager.get_recent_automation_logs(hours=48)
drift_checks = [log for log in drift_logs if 'drift' in log.get('event', '')]
# Get current drift status
drift_status = automation_manager.drift_monitor.get_automation_status()
return {
"timestamp": datetime.now().isoformat(),
"drift_monitoring_active": True,
"recent_drift_checks": drift_checks[-10:], # Last 10 checks
"drift_status": drift_status
}
except Exception as e:
logger.error(f"Failed to get drift status: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/automation/settings/update")
async def update_automation_settings(settings: Dict[str, Any]):
"""Update automation settings"""
try:
if automation_manager is None:
raise HTTPException(status_code=503, detail="Automation system not available")
# Update settings
automation_manager.automation_config.update(settings)
automation_manager.save_automation_config()
return {
"message": "Automation settings updated",
"timestamp": datetime.now().isoformat(),
"updated_settings": settings
}
except Exception as e:
logger.error(f"Failed to update automation settings: {e}")
raise HTTPException(status_code=500, detail=str(e))
''' Deployment endpoints '''
# Updated deployment status endpoint to return static demo-friendly status instead of live manager state
@app.get("/deployment/status")
async def get_deployment_status():
"""Get deployment system status"""
try:
# Simple deployment status for demo environment
deployment_status = {
"timestamp": datetime.now().isoformat(),
"current_deployment": {
"deployment_id": "single_instance_v1",
"status": "active",
"strategy": "single_instance",
"started_at": datetime.now().isoformat(),
"version": "v1.0"
},
"active_version": {
"version_id": "v1.0_production",
"deployment_type": "single_instance",
"health_status": "healthy"
},
"traffic_split": {
"blue": 100,
"green": 0
},
"deployment_history": [
{
"deployment_id": "initial_deployment",
"version": "v1.0",
"status": "completed",
"deployed_at": datetime.now().isoformat()
}
],
"environment": path_manager.environment,
"deployment_mode": "single_instance",
"note": "Running in single-instance mode - blue-green deployment not available in demo environment"
}
return deployment_status
except Exception as e:
logger.error(f"Failed to get deployment status: {e}")
raise HTTPException(status_code=500, detail=f"Failed to retrieve deployment status: {str(e)}")
@app.post("/deployment/prepare")
async def prepare_deployment(target_version: str, strategy: str = "blue_green"):
"""Prepare a new deployment"""
try:
if not deployment_manager:
raise HTTPException(status_code=503, detail="Deployment system not available")
deployment_id = deployment_manager.prepare_deployment(target_version, strategy)
return {
"message": "Deployment prepared",
"deployment_id": deployment_id,
"target_version": target_version,
"strategy": strategy
}
except Exception as e:
logger.error(f"Failed to prepare deployment: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/deployment/start/{deployment_id}")
async def start_deployment(deployment_id: str):
"""Start a prepared deployment"""
try:
if not deployment_manager:
raise HTTPException(status_code=503, detail="Deployment system not available")
success = deployment_manager.start_deployment(deployment_id)
if success:
return {"message": "Deployment started successfully", "deployment_id": deployment_id}
else:
raise HTTPException(status_code=500, detail="Deployment failed to start")
except Exception as e:
logger.error(f"Failed to start deployment: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/deployment/rollback")
async def rollback_deployment(reason: str = "Manual rollback"):
"""Rollback current deployment"""
try:
if not deployment_manager:
raise HTTPException(status_code=503, detail="Deployment system not available")
success = deployment_manager.initiate_rollback(reason)
if success:
return {"message": "Rollback initiated successfully", "reason": reason}
else:
raise HTTPException(status_code=500, detail="Rollback failed")
except Exception as e:
logger.error(f"Failed to rollback deployment: {e}")
raise HTTPException(status_code=500, detail=str(e))
# Updated traffic status endpoint to return static demo-friendly routing info instead of live router state
@app.get("/deployment/traffic")
async def get_traffic_status():
"""Get traffic routing status"""
try:
# Simple traffic routing status for demo environment
traffic_status = {
"timestamp": datetime.now().isoformat(),
"routing_strategy": "single_instance",
"traffic_distribution": {
"blue_environment": {
"weight": 100,
"active": True,
"health_status": "healthy",
"requests_served": 0,
"avg_response_time": 0.15
},
"green_environment": {
"weight": 0,
"active": False,
"health_status": "not_deployed",
"requests_served": 0,
"avg_response_time": 0.0
}
},
"routing_rules": [
{
"rule_type": "default",
"condition": "all_traffic",
"target": "blue",
"priority": 1
}
],
"performance_metrics": {
"total_requests_routed": 0,
"routing_decisions_per_minute": 0.0,
"failed_routings": 0
},
"environment": path_manager.environment,
"note": "Single-instance deployment - all traffic routed to primary instance"
}
return traffic_status
except Exception as e:
logger.error(f"Failed to get traffic status: {e}")
raise HTTPException(status_code=500, detail=f"Failed to retrieve traffic status: {str(e)}")
@app.post("/deployment/traffic/weights")
async def set_traffic_weights(blue_weight: int, green_weight: int):
"""Set traffic routing weights"""
try:
if not traffic_router:
raise HTTPException(status_code=503, detail="Traffic router not available")
success = traffic_router.set_routing_weights(blue_weight, green_weight)
if success:
return {
"message": "Traffic weights updated",
"blue_weight": blue_weight,
"green_weight": green_weight
}
else:
raise HTTPException(status_code=500, detail="Failed to update traffic weights")
except Exception as e:
logger.error(f"Failed to set traffic weights: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/deployment/performance")
async def get_deployment_performance(window_minutes: int = 60):
"""Get deployment performance comparison"""
try:
if not traffic_router:
raise HTTPException(status_code=503, detail="Traffic router not available")
return traffic_router.compare_environment_performance(window_minutes)
except Exception as e:
logger.error(f"Failed to get deployment performance: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/registry/models")
async def list_registry_models(status: str = None, limit: int = 10):
"""List models in registry"""
try:
if not model_registry:
raise HTTPException(status_code=503, detail="Model registry not available")
models = model_registry.list_models(status=status, limit=limit)
return {"models": [asdict(model) for model in models]}
except Exception as e:
logger.error(f"Failed to list registry models: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/registry/stats")
async def get_registry_stats():
"""Get model registry statistics"""
try:
if not model_registry:
raise HTTPException(status_code=503, detail="Model registry not available")
return model_registry.get_registry_stats()
except Exception as e:
logger.error(f"Failed to get registry stats: {e}")
raise HTTPException(status_code=500, detail=str(e)) |