File size: 35,006 Bytes
c46f34c 19795d9 c62a096 19795d9 aba1cd9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 |
# File: data/data_validator.py
# Comprehensive data validation pipeline with checkpoints and monitoring
import json
import time
import logging
import pandas as pd
from pathlib import Path
from datetime import datetime, timedelta
from typing import List, Dict, Any, Tuple, Optional, Union
from pydantic import ValidationError
import hashlib
from collections import defaultdict, Counter
# Import validation schemas
from .validation_schemas import (
NewsArticleSchema, TextContentSchema, LabelSchema, DataSourceSchema,
BatchValidationSchema, ValidationResultSchema, BatchValidationResultSchema,
ValidationLevel, TextQualityLevel, DataSource, NewsLabel
)
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class ValidationCheckpoint:
"""Individual validation checkpoint for pipeline monitoring"""
def __init__(self, name: str, description: str, validation_level: ValidationLevel = ValidationLevel.MODERATE):
self.name = name
self.description = description
self.validation_level = validation_level
self.start_time = None
self.end_time = None
self.results = []
self.errors = []
self.warnings = []
def start(self):
"""Start checkpoint timing"""
self.start_time = time.time()
logger.info(f"Starting validation checkpoint: {self.name}")
def end(self):
"""End checkpoint timing"""
self.end_time = time.time()
duration = self.processing_time
logger.info(f"Completed validation checkpoint: {self.name} ({duration:.2f}s)")
def add_result(self, result: ValidationResultSchema):
"""Add validation result"""
self.results.append(result)
def add_error(self, error: str):
"""Add validation error"""
self.errors.append(error)
logger.error(f"Checkpoint {self.name}: {error}")
def add_warning(self, warning: str):
"""Add validation warning"""
self.warnings.append(warning)
logger.warning(f"Checkpoint {self.name}: {warning}")
@property
def processing_time(self) -> float:
"""Calculate processing time"""
if self.start_time and self.end_time:
return self.end_time - self.start_time
return 0.0
@property
def success_rate(self) -> float:
"""Calculate success rate"""
if not self.results:
return 0.0
valid_count = sum(1 for result in self.results if result.is_valid)
return valid_count / len(self.results)
def to_dict(self) -> Dict[str, Any]:
"""Convert checkpoint to dictionary"""
return {
'name': self.name,
'description': self.description,
'validation_level': self.validation_level.value,
'processing_time': self.processing_time,
'total_validations': len(self.results),
'success_rate': self.success_rate,
'error_count': len(self.errors),
'warning_count': len(self.warnings),
'errors': self.errors,
'warnings': self.warnings
}
class DataValidationPipeline:
"""Comprehensive data validation pipeline with checkpoints and monitoring"""
def __init__(self, base_path: Optional[Path] = None):
self.base_path = base_path or Path("/tmp")
self.setup_paths()
self.checkpoints = {}
self.validation_history = []
self.quality_stats = defaultdict(int)
def setup_paths(self):
"""Setup validation paths"""
self.logs_dir = self.base_path / "logs"
self.validation_dir = self.base_path / "validation"
self.cache_dir = self.base_path / "cache"
# Create directories
for path in [self.logs_dir, self.validation_dir, self.cache_dir]:
path.mkdir(parents=True, exist_ok=True)
# Setup file paths
self.validation_log_path = self.logs_dir / "validation_log.json"
self.validation_stats_path = self.validation_dir / "validation_statistics.json"
self.failed_validations_path = self.validation_dir / "failed_validations.json"
self.quality_report_path = self.validation_dir / "quality_report.json"
def create_checkpoint(self, name: str, description: str,
validation_level: ValidationLevel = ValidationLevel.MODERATE) -> ValidationCheckpoint:
"""Create a new validation checkpoint"""
checkpoint = ValidationCheckpoint(name, description, validation_level)
self.checkpoints[name] = checkpoint
return checkpoint
def validate_single_article(self, text: str, label: int, source: str,
validation_level: ValidationLevel = ValidationLevel.MODERATE,
**metadata) -> ValidationResultSchema:
"""Validate a single article with comprehensive checks"""
start_time = time.time()
errors = []
warnings = []
quality_metrics = {}
try:
# Create text content schema
text_content = TextContentSchema(text=text)
quality_metrics['word_count'] = text_content.word_count
quality_metrics['character_count'] = text_content.character_count
quality_metrics['sentence_count'] = text_content.sentence_count
except ValidationError as e:
for error in e.errors():
errors.append(f"Text validation: {error['msg']}")
try:
# Create label schema
label_info = LabelSchema(label=label)
except ValidationError as e:
for error in e.errors():
errors.append(f"Label validation: {error['msg']}")
try:
# Create source schema
source_info = DataSourceSchema(
source=DataSource(source),
timestamp=datetime.now(),
**{k: v for k, v in metadata.items() if k in ['url', 'batch_id']}
)
except ValidationError as e:
for error in e.errors():
errors.append(f"Source validation: {error['msg']}")
# Additional quality checks based on validation level
if validation_level in [ValidationLevel.MODERATE, ValidationLevel.STRICT]:
# Language detection (simplified)
if text:
english_words = {'the', 'and', 'is', 'in', 'to', 'of', 'a', 'that', 'it', 'with', 'for', 'as', 'was', 'on', 'are', 'you'}
words = set(text.lower().split())
english_ratio = len(words & english_words) / len(words) if words else 0
if english_ratio < 0.1:
warnings.append("Text may not be in English")
quality_metrics['english_ratio'] = english_ratio
# Content coherence check
if text and len(text.split()) > 10:
sentences = [s.strip() for s in text.split('.') if s.strip()]
if len(sentences) > 1:
avg_sentence_length = sum(len(s.split()) for s in sentences) / len(sentences)
quality_metrics['avg_sentence_length'] = avg_sentence_length
if avg_sentence_length < 3:
warnings.append("Very short average sentence length")
elif avg_sentence_length > 50:
warnings.append("Very long average sentence length")
if validation_level == ValidationLevel.STRICT:
# Advanced quality checks
if text:
# Check for AI-generated patterns (simplified)
ai_indicators = ['as an ai', 'i am an artificial', 'generated by', 'chatgpt', 'gpt-3', 'gpt-4']
if any(indicator in text.lower() for indicator in ai_indicators):
warnings.append("Text may be AI-generated")
# Check for template patterns
template_patterns = [r'\{[^}]+\}', r'\[[^\]]+\]', r'<[^>]+>']
import re
for pattern in template_patterns:
if re.search(pattern, text):
warnings.append("Text contains template patterns")
break
# Check readability (simplified Flesch reading ease)
words = text.split()
sentences = len([s for s in text.split('.') if s.strip()])
syllables = sum(max(1, len([c for c in word if c.lower() in 'aeiouy'])) for word in words)
if sentences > 0 and words:
avg_sentence_length = len(words) / sentences
avg_syllables = syllables / len(words)
# Simplified Flesch score
flesch_score = 206.835 - (1.015 * avg_sentence_length) - (84.6 * avg_syllables)
quality_metrics['flesch_score'] = flesch_score
if flesch_score < 30:
warnings.append("Text is very difficult to read")
elif flesch_score > 90:
warnings.append("Text is very easy to read (may be simplistic)")
# Calculate overall quality score
quality_score = self._calculate_quality_score(quality_metrics, errors, warnings)
quality_metrics['overall_quality_score'] = quality_score
# Determine if validation passed
is_valid = len(errors) == 0
processing_time = time.time() - start_time
return ValidationResultSchema(
is_valid=is_valid,
errors=errors,
warnings=warnings,
quality_metrics=quality_metrics,
validation_level=validation_level,
processing_time=processing_time
)
def validate_batch(self, articles_data: List[Dict[str, Any]],
batch_id: Optional[str] = None,
validation_level: ValidationLevel = ValidationLevel.MODERATE) -> BatchValidationResultSchema:
"""Validate a batch of articles with comprehensive reporting"""
if not batch_id:
batch_id = f"batch_{datetime.now().strftime('%Y%m%d_%H%M%S')}_{hashlib.md5(str(articles_data).encode()).hexdigest()[:8]}"
logger.info(f"Starting batch validation: {batch_id} ({len(articles_data)} articles)")
# Create validation checkpoint
checkpoint = self.create_checkpoint(
f"batch_validation_{batch_id}",
f"Batch validation for {len(articles_data)} articles",
validation_level
)
checkpoint.start()
validation_results = []
valid_count = 0
invalid_count = 0
quality_distribution = Counter()
source_distribution = Counter()
# Validate each article
for i, article_data in enumerate(articles_data):
try:
text = article_data.get('text', '')
label = article_data.get('label', 0)
source = article_data.get('source', 'unknown')
# Extract metadata
metadata = {k: v for k, v in article_data.items()
if k not in ['text', 'label', 'source']}
# Validate article
result = self.validate_single_article(
text, label, source, validation_level, **metadata
)
validation_results.append(result)
checkpoint.add_result(result)
if result.is_valid:
valid_count += 1
else:
invalid_count += 1
# Update distributions
quality_score = result.quality_metrics.get('overall_quality_score', 0)
if quality_score >= 0.8:
quality_level = 'high'
elif quality_score >= 0.6:
quality_level = 'medium'
elif quality_score >= 0.4:
quality_level = 'low'
else:
quality_level = 'invalid'
quality_distribution[quality_level] += 1
source_distribution[source] += 1
except Exception as e:
error_msg = f"Failed to validate article {i}: {str(e)}"
checkpoint.add_error(error_msg)
invalid_count += 1
checkpoint.end()
# Calculate overall quality score
if validation_results:
quality_scores = [r.quality_metrics.get('overall_quality_score', 0) for r in validation_results]
overall_quality_score = sum(quality_scores) / len(quality_scores)
else:
overall_quality_score = 0.0
# Create validation summary
validation_summary = {
'batch_id': batch_id,
'total_articles': len(articles_data),
'validation_level': validation_level.value,
'processing_time': checkpoint.processing_time,
'success_rate': checkpoint.success_rate,
'error_count': len(checkpoint.errors),
'warning_count': len(checkpoint.warnings),
'quality_metrics': {
'average_quality_score': overall_quality_score,
'quality_distribution': dict(quality_distribution),
'source_distribution': dict(source_distribution)
}
}
# Create batch validation result
batch_result = BatchValidationResultSchema(
batch_id=batch_id,
total_articles=len(articles_data),
valid_articles=valid_count,
invalid_articles=invalid_count,
validation_results=validation_results,
overall_quality_score=overall_quality_score,
quality_distribution=dict(quality_distribution),
source_distribution=dict(source_distribution),
validation_summary=validation_summary
)
# Log batch validation
self._log_batch_validation(batch_result)
# Update statistics
self._update_validation_statistics(batch_result)
logger.info(f"Batch validation completed: {batch_id} "
f"({valid_count}/{len(articles_data)} valid, "
f"quality: {overall_quality_score:.3f})")
return batch_result
def validate_dataframe(self, df: pd.DataFrame,
validation_level: ValidationLevel = ValidationLevel.MODERATE,
batch_id: Optional[str] = None) -> BatchValidationResultSchema:
"""Validate a pandas DataFrame"""
# Convert DataFrame to list of dictionaries
articles_data = df.to_dict('records')
return self.validate_batch(articles_data, batch_id, validation_level)
def validate_csv_file(self, file_path: Path,
validation_level: ValidationLevel = ValidationLevel.MODERATE,
batch_id: Optional[str] = None) -> BatchValidationResultSchema:
"""Validate articles from a CSV file"""
try:
df = pd.read_csv(file_path)
if batch_id is None:
batch_id = f"csv_{file_path.stem}_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
return self.validate_dataframe(df, validation_level, batch_id)
except Exception as e:
logger.error(f"Failed to validate CSV file {file_path}: {e}")
raise
def validate_scraped_data(self, scraped_data: List[Dict[str, Any]],
source_name: str = "scraped_data") -> BatchValidationResultSchema:
"""Validate scraped data with specific checks for web content"""
# Create checkpoint for scraped data validation
checkpoint = self.create_checkpoint(
f"scraped_validation_{source_name}",
f"Validation for scraped data from {source_name}",
ValidationLevel.MODERATE
)
checkpoint.start()
# Add scraped-specific validation logic
enhanced_data = []
for item in scraped_data:
# Ensure required fields
if 'source' not in item:
item['source'] = 'scraped_real'
if 'label' not in item:
item['label'] = 0 # Default to real for scraped news
enhanced_data.append(item)
result = self.validate_batch(
enhanced_data,
f"scraped_{source_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
ValidationLevel.MODERATE
)
checkpoint.end()
# Additional scraped data quality checks
if result.overall_quality_score < 0.6:
checkpoint.add_warning(f"Low quality scraped data: {result.overall_quality_score:.3f}")
# Check for suspicious patterns in scraped data
suspicious_count = 0
for validation_result in result.validation_results:
if any('suspicious' in warning.lower() for warning in validation_result.warnings):
suspicious_count += 1
if suspicious_count > len(scraped_data) * 0.1: # More than 10% suspicious
checkpoint.add_warning(f"High number of suspicious articles: {suspicious_count}/{len(scraped_data)}")
return result
def _calculate_quality_score(self, quality_metrics: Dict[str, Any],
errors: List[str], warnings: List[str]) -> float:
"""Calculate overall quality score based on metrics and issues"""
base_score = 1.0
# Penalize for errors and warnings
base_score -= len(errors) * 0.2
base_score -= len(warnings) * 0.05
# Adjust based on content metrics
word_count = quality_metrics.get('word_count', 0)
if word_count < 20:
base_score -= 0.3
elif word_count < 50:
base_score -= 0.1
elif word_count > 1000:
base_score += 0.1
# Adjust based on readability
flesch_score = quality_metrics.get('flesch_score')
if flesch_score:
if 30 <= flesch_score <= 70: # Good readability range
base_score += 0.1
elif flesch_score < 10 or flesch_score > 90: # Poor readability
base_score -= 0.15
# Adjust based on English content ratio
english_ratio = quality_metrics.get('english_ratio')
if english_ratio:
if english_ratio >= 0.3:
base_score += 0.05
else:
base_score -= 0.1
return max(0.0, min(1.0, base_score))
def _log_batch_validation(self, batch_result: BatchValidationResultSchema):
"""Log batch validation results"""
try:
log_entry = {
'timestamp': datetime.now().isoformat(),
'batch_id': batch_result.batch_id,
'total_articles': batch_result.total_articles,
'valid_articles': batch_result.valid_articles,
'success_rate': batch_result.success_rate,
'overall_quality_score': batch_result.overall_quality_score,
'validation_summary': batch_result.validation_summary
}
# Load existing logs
logs = []
if self.validation_log_path.exists():
try:
with open(self.validation_log_path, 'r') as f:
logs = json.load(f)
except:
logs = []
logs.append(log_entry)
# Keep only last 1000 entries
if len(logs) > 1000:
logs = logs[-1000:]
# Save logs
with open(self.validation_log_path, 'w') as f:
json.dump(logs, f, indent=2)
except Exception as e:
logger.error(f"Failed to log batch validation: {e}")
def _update_validation_statistics(self, batch_result: BatchValidationResultSchema):
"""Update validation statistics"""
try:
# Load existing stats
stats = {}
if self.validation_stats_path.exists():
try:
with open(self.validation_stats_path, 'r') as f:
stats = json.load(f)
except:
stats = {}
# Initialize stats if empty
if not stats:
stats = {
'total_validations': 0,
'total_articles': 0,
'total_valid_articles': 0,
'average_quality_score': 0.0,
'validation_history': [],
'quality_trends': [],
'source_statistics': {},
'last_updated': None
}
# Update statistics
stats['total_validations'] += 1
stats['total_articles'] += batch_result.total_articles
stats['total_valid_articles'] += batch_result.valid_articles
# Update average quality score
current_avg = stats['average_quality_score']
total_validations = stats['total_validations']
stats['average_quality_score'] = (
(current_avg * (total_validations - 1) + batch_result.overall_quality_score) /
total_validations
)
# Add to history
history_entry = {
'timestamp': datetime.now().isoformat(),
'batch_id': batch_result.batch_id,
'quality_score': batch_result.overall_quality_score,
'success_rate': batch_result.success_rate,
'article_count': batch_result.total_articles
}
stats['validation_history'].append(history_entry)
stats['quality_trends'].append({
'timestamp': datetime.now().isoformat(),
'quality_score': batch_result.overall_quality_score
})
# Keep only last 100 history entries
if len(stats['validation_history']) > 100:
stats['validation_history'] = stats['validation_history'][-100:]
if len(stats['quality_trends']) > 100:
stats['quality_trends'] = stats['quality_trends'][-100:]
# Update source statistics
for source, count in batch_result.source_distribution.items():
if source not in stats['source_statistics']:
stats['source_statistics'][source] = {'total_articles': 0, 'total_validations': 0}
stats['source_statistics'][source]['total_articles'] += count
stats['source_statistics'][source]['total_validations'] += 1
stats['last_updated'] = datetime.now().isoformat()
# Save updated stats
with open(self.validation_stats_path, 'w') as f:
json.dump(stats, f, indent=2)
except Exception as e:
logger.error(f"Failed to update validation statistics: {e}")
def get_validation_statistics(self) -> Dict[str, Any]:
"""Get current validation statistics"""
try:
if self.validation_stats_path.exists():
with open(self.validation_stats_path, 'r') as f:
return json.load(f)
return {}
except Exception as e:
logger.error(f"Failed to load validation statistics: {e}")
return {}
def get_validation_history(self, limit: int = 50) -> List[Dict[str, Any]]:
"""Get validation history"""
try:
if self.validation_log_path.exists():
with open(self.validation_log_path, 'r') as f:
logs = json.load(f)
return logs[-limit:] if limit else logs
return []
except Exception as e:
logger.error(f"Failed to load validation history: {e}")
return []
def generate_quality_report(self) -> Dict[str, Any]:
"""Generate comprehensive quality report"""
try:
stats = self.get_validation_statistics()
if not stats:
return {'error': 'No validation statistics available'}
# Calculate trends
quality_trends = stats.get('quality_trends', [])
if len(quality_trends) >= 2:
recent_scores = [t['quality_score'] for t in quality_trends[-10:]]
older_scores = [t['quality_score'] for t in quality_trends[-20:-10]] if len(quality_trends) >= 20 else []
recent_avg = sum(recent_scores) / len(recent_scores)
older_avg = sum(older_scores) / len(older_scores) if older_scores else recent_avg
quality_trend = recent_avg - older_avg
else:
quality_trend = 0.0
# Generate report
report = {
'report_timestamp': datetime.now().isoformat(),
'overall_statistics': {
'total_validations': stats.get('total_validations', 0),
'total_articles': stats.get('total_articles', 0),
'overall_success_rate': (stats.get('total_valid_articles', 0) /
max(stats.get('total_articles', 1), 1)),
'average_quality_score': stats.get('average_quality_score', 0.0),
'quality_trend': quality_trend
},
'source_breakdown': stats.get('source_statistics', {}),
'recent_performance': {
'last_10_validations': quality_trends[-10:] if quality_trends else [],
'recent_average_quality': (sum(t['quality_score'] for t in quality_trends[-10:]) /
len(quality_trends[-10:])) if quality_trends else 0.0
},
'quality_assessment': self._assess_overall_quality(stats),
'recommendations': self._generate_recommendations(stats)
}
# Save report
with open(self.quality_report_path, 'w') as f:
json.dump(report, f, indent=2)
return report
except Exception as e:
logger.error(f"Failed to generate quality report: {e}")
return {'error': str(e)}
def _assess_overall_quality(self, stats: Dict[str, Any]) -> Dict[str, Any]:
"""Assess overall data quality"""
avg_quality = stats.get('average_quality_score', 0.0)
success_rate = stats.get('total_valid_articles', 0) / max(stats.get('total_articles', 1), 1)
if avg_quality >= 0.8 and success_rate >= 0.9:
quality_level = 'excellent'
quality_color = 'green'
elif avg_quality >= 0.6 and success_rate >= 0.8:
quality_level = 'good'
quality_color = 'blue'
elif avg_quality >= 0.4 and success_rate >= 0.6:
quality_level = 'fair'
quality_color = 'yellow'
else:
quality_level = 'poor'
quality_color = 'red'
return {
'quality_level': quality_level,
'quality_color': quality_color,
'average_score': avg_quality,
'success_rate': success_rate,
'assessment': f"Data quality is {quality_level} with {success_rate:.1%} validation success rate"
}
def _generate_recommendations(self, stats: Dict[str, Any]) -> List[str]:
"""Generate quality improvement recommendations"""
recommendations = []
avg_quality = stats.get('average_quality_score', 0.0)
success_rate = stats.get('total_valid_articles', 0) / max(stats.get('total_articles', 1), 1)
if avg_quality < 0.6:
recommendations.append("Improve data source quality - consider additional content filters")
if success_rate < 0.8:
recommendations.append("Review validation criteria - high failure rate detected")
source_stats = stats.get('source_statistics', {})
if source_stats:
# Find problematic sources
for source, source_info in source_stats.items():
if source_info.get('total_articles', 0) > 10: # Only check sources with enough data
# This is simplified - in practice you'd track success rates per source
pass
if len(recommendations) == 0:
recommendations.append("Data quality is satisfactory - continue current practices")
return recommendations
def cleanup_old_logs(self, days_to_keep: int = 30):
"""Clean up old validation logs"""
try:
cutoff_date = datetime.now() - timedelta(days=days_to_keep)
# Clean validation logs
if self.validation_log_path.exists():
with open(self.validation_log_path, 'r') as f:
logs = json.load(f)
filtered_logs = []
for log in logs:
try:
log_date = datetime.fromisoformat(log['timestamp'])
if log_date > cutoff_date:
filtered_logs.append(log)
except:
# Keep logs with invalid timestamps
filtered_logs.append(log)
with open(self.validation_log_path, 'w') as f:
json.dump(filtered_logs, f, indent=2)
logger.info(f"Cleaned up validation logs: kept {len(filtered_logs)}/{len(logs)} entries")
except Exception as e:
logger.error(f"Failed to cleanup old logs: {e}")
# Convenience functions for external use
def validate_text(text: str, label: int, source: str = "user_input",
validation_level: ValidationLevel = ValidationLevel.MODERATE) -> ValidationResultSchema:
"""Validate a single text input"""
validator = DataValidationPipeline()
return validator.validate_single_article(text, label, source, validation_level)
def validate_articles_list(articles: List[Dict[str, Any]],
validation_level: ValidationLevel = ValidationLevel.MODERATE) -> BatchValidationResultSchema:
"""Validate a list of articles"""
validator = DataValidationPipeline()
return validator.validate_batch(articles, validation_level=validation_level)
def validate_csv(file_path: str,
validation_level: ValidationLevel = ValidationLevel.MODERATE) -> BatchValidationResultSchema:
"""Validate articles from a CSV file"""
validator = DataValidationPipeline()
return validator.validate_csv_file(Path(file_path), validation_level)
def get_validation_stats() -> Dict[str, Any]:
"""Get current validation statistics"""
validator = DataValidationPipeline()
return validator.get_validation_statistics()
def generate_quality_report() -> Dict[str, Any]:
"""Generate quality report"""
validator = DataValidationPipeline()
return validator.generate_quality_report()
class DataValidator:
"""Simple validator for API requests"""
def __init__(self):
self.pipeline = DataValidationPipeline()
def validate_text(self, text: str) -> 'SimpleValidationResult':
"""Validate text input for API"""
try:
# Use the pipeline's validation method
result = self.pipeline.validate_single_article(
text=text,
label=0, # Dummy label for input validation
source="user_input",
validation_level=ValidationLevel.MODERATE
)
# Convert to simple result format
if result.is_valid:
if result.quality_metrics.get('overall_quality_score', 0) >= 0.8:
validation_level = TextQualityLevel.HIGH
elif result.quality_metrics.get('overall_quality_score', 0) >= 0.6:
validation_level = TextQualityLevel.MEDIUM
elif result.quality_metrics.get('overall_quality_score', 0) >= 0.3:
validation_level = TextQualityLevel.LOW
else:
validation_level = TextQualityLevel.INVALID
else:
validation_level = TextQualityLevel.INVALID
return SimpleValidationResult(
validation_level=validation_level,
quality_score=result.quality_metrics.get('overall_quality_score', 0.0),
issues=[SimpleIssue(message=error, issue_type="error") for error in result.errors] +
[SimpleIssue(message=warning, issue_type="warning") for warning in result.warnings]
)
except Exception as e:
return SimpleValidationResult(
validation_level=TextQualityLevel.INVALID,
quality_score=0.0,
issues=[SimpleIssue(message=f"Validation failed: {str(e)}", issue_type="error")]
)
class SimpleIssue:
"""Simple issue class for API validation"""
def __init__(self, message: str, issue_type: str):
self.message = message
self.issue_type = issue_type
def dict(self):
return {'message': self.message, 'type': self.issue_type}
class SimpleValidationResult:
"""Simple validation result for API"""
def __init__(self, validation_level: TextQualityLevel, quality_score: float, issues: List[SimpleIssue]):
self.validation_level = validation_level
self.quality_score = quality_score
self.issues = issues |