File size: 17,580 Bytes
6ced852 bfc4267 6ced852 bfc4267 6ced852 bfc4267 6ced852 bfc4267 6ced852 bfc4267 6ced852 bfc4267 6ced852 bfc4267 6ced852 bfc4267 6ced852 bfc4267 6ced852 bfc4267 6ced852 bfc4267 6ced852 bfc4267 6ced852 bfc4267 6ced852 bfc4267 6ced852 bfc4267 6ced852 bfc4267 6ced852 bfc4267 6ced852 267dd6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
import pandas as pd
import numpy as np
from pathlib import Path
import logging
import re
from typing import Optional, Tuple
from sklearn.model_selection import train_test_split
import hashlib
import json
from datetime import datetime
from data.data_validator import DataValidationPipeline
from data.validation_schemas import ValidationLevel, DataSource
from typing import Tuple, Dict
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('/tmp/data_preparation.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
class DatasetPreparer:
"""Robust dataset preparation with comprehensive validation and error handling"""
def __init__(self, base_dir: Path = None):
self.base_dir = base_dir or Path(__file__).resolve().parent
self.setup_paths()
def setup_paths(self):
"""Setup all necessary paths"""
# Input paths
self.kaggle_fake = self.base_dir / "kaggle" / "Fake.csv"
self.kaggle_real = self.base_dir / "kaggle" / "True.csv"
self.liar_paths = [
self.base_dir / "liar" / "train.tsv",
self.base_dir / "liar" / "test.tsv",
self.base_dir / "liar" / "valid.tsv"
]
# Output paths
self.output_dir = Path("/tmp/data")
self.output_dir.mkdir(parents=True, exist_ok=True)
self.output_path = self.output_dir / "combined_dataset.csv"
self.metadata_path = self.output_dir / "dataset_metadata.json"
def validate_text_quality(self, text: str) -> bool:
"""Validate text quality with comprehensive checks"""
if not isinstance(text, str):
return False
text = text.strip()
# Basic length check
if len(text) < 10:
return False
# Check for meaningful content
if not any(c.isalpha() for c in text):
return False
# Check for sentence structure
if not any(punct in text for punct in '.!?'):
return False
# Check for excessive repetition
words = text.lower().split()
if len(words) > 0:
most_common_word_count = max(words.count(word) for word in set(words))
if most_common_word_count > len(words) * 0.5: # More than 50% repetition
return False
# Check for excessive special characters
special_char_ratio = sum(1 for c in text if not c.isalnum() and not c.isspace()) / len(text)
if special_char_ratio > 0.3: # More than 30% special characters
return False
return True
def clean_text(self, text: str) -> str:
"""Clean and normalize text"""
if not isinstance(text, str):
return ""
# Remove excessive whitespace
text = re.sub(r'\s+', ' ', text)
# Remove URLs
text = re.sub(r'http\S+|www\S+|https\S+', '', text)
# Remove excessive punctuation
text = re.sub(r'[!]{2,}', '!', text)
text = re.sub(r'[?]{2,}', '?', text)
text = re.sub(r'[.]{2,}', '...', text)
# Remove non-printable characters
text = ''.join(char for char in text if ord(char) >= 32)
return text.strip()
def load_kaggle_dataset(self) -> Optional[pd.DataFrame]:
"""Load and process Kaggle dataset with error handling"""
try:
logger.info("Loading Kaggle dataset...")
# Check if files exist
if not self.kaggle_fake.exists() or not self.kaggle_real.exists():
logger.warning("Kaggle dataset files not found")
return None
# Load datasets
df_fake = pd.read_csv(self.kaggle_fake)
df_real = pd.read_csv(self.kaggle_real)
logger.info(f"Loaded {len(df_fake)} fake and {len(df_real)} real articles from Kaggle")
# Process fake news
df_fake['label'] = 1
df_fake['text'] = df_fake['title'].fillna('') + ". " + df_fake['text'].fillna('')
df_fake['source'] = 'kaggle_fake'
# Process real news
df_real['label'] = 0
df_real['text'] = df_real['title'].fillna('') + ". " + df_real['text'].fillna('')
df_real['source'] = 'kaggle_real'
# Combine datasets
df_combined = pd.concat([
df_fake[['text', 'label', 'source']],
df_real[['text', 'label', 'source']]
], ignore_index=True)
logger.info(f"Combined Kaggle dataset: {len(df_combined)} samples")
return self.validate_dataset_with_schemas(df_combined, 'kaggle_combined')
except Exception as e:
logger.error(f"Error loading Kaggle dataset: {e}")
return None
def load_liar_dataset(self) -> Optional[pd.DataFrame]:
"""Load and process LIAR dataset with robust error handling"""
try:
logger.info("Loading LIAR dataset...")
liar_dfs = []
total_processed = 0
for path in self.liar_paths:
if not path.exists():
logger.warning(f"LIAR file not found: {path}")
continue
try:
# Read TSV with flexible parameters
df = pd.read_csv(
path,
sep='\t',
header=None,
quoting=3,
on_bad_lines='skip',
low_memory=False
)
# Expected columns for LIAR dataset
expected_columns = [
'id', 'label_text', 'statement', 'subject', 'speaker', 'job',
'state', 'party', 'barely_true', 'false', 'half_true',
'mostly_true', 'pants_on_fire', 'context'
]
# Handle different column counts
if len(df.columns) >= 3:
df.columns = expected_columns[:len(df.columns)]
# Map labels to binary classification
if 'label_text' in df.columns:
df['label'] = df['label_text'].apply(
lambda x: 1 if str(x).lower() in ['false', 'pants-fire', 'barely-true'] else 0
)
else:
continue
# Extract text
if 'statement' in df.columns:
df['text'] = df['statement'].astype(str)
else:
continue
df['source'] = f'liar_{path.stem}'
processed_df = df[['text', 'label', 'source']].copy()
liar_dfs.append(processed_df)
total_processed += len(processed_df)
logger.info(f"Processed {len(processed_df)} samples from {path.name}")
except Exception as e:
logger.error(f"Error processing LIAR file {path}: {e}")
continue
if liar_dfs:
combined_liar = pd.concat(liar_dfs, ignore_index=True)
logger.info(f"Combined LIAR dataset: {len(combined_liar)} samples")
return self.validate_dataset_with_schemas(combined_liar, 'liar_combined')
else:
logger.warning("No LIAR data could be processed")
return None
except Exception as e:
logger.error(f"Error loading LIAR dataset: {e}")
return None
def validate_dataset(self, df: pd.DataFrame) -> pd.DataFrame:
"""Comprehensive dataset validation and cleaning"""
logger.info("Starting dataset validation...")
initial_count = len(df)
# Remove null texts
df = df.dropna(subset=['text'])
logger.info(f"Removed {initial_count - len(df)} null text entries")
# Clean text
df['text'] = df['text'].apply(self.clean_text)
# Validate text quality
valid_mask = df['text'].apply(self.validate_text_quality)
df = df[valid_mask]
# logger.info(f"Removed {initial_count - len(valid_mask.sum())} low-quality texts")
logger.info(f"Removed {initial_count - valid_mask.sum()} low-quality texts")
# Remove duplicates
before_dedup = len(df)
df = df.drop_duplicates(subset=['text'])
logger.info(f"Removed {before_dedup - len(df)} duplicate texts")
# Validate label distribution
label_counts = df['label'].value_counts()
logger.info(f"Label distribution: {label_counts.to_dict()}")
# Check for balance
if len(label_counts) > 1:
balance_ratio = label_counts.min() / label_counts.max()
if balance_ratio < 0.3:
logger.warning(f"Dataset is imbalanced (ratio: {balance_ratio:.2f})")
# Add metadata
df['text_length'] = df['text'].str.len()
df['word_count'] = df['text'].str.split().str.len()
df['processed_timestamp'] = datetime.now().isoformat()
return df
def generate_dataset_metadata(self, df: pd.DataFrame) -> dict:
"""Generate comprehensive dataset metadata"""
metadata = {
'total_samples': len(df),
'label_distribution': df['label'].value_counts().to_dict(),
'source_distribution': df['source'].value_counts().to_dict(),
'text_length_stats': {
'mean': float(df['text_length'].mean()),
'std': float(df['text_length'].std()),
'min': int(df['text_length'].min()),
'max': int(df['text_length'].max()),
'median': float(df['text_length'].median())
},
'word_count_stats': {
'mean': float(df['word_count'].mean()),
'std': float(df['word_count'].std()),
'min': int(df['word_count'].min()),
'max': int(df['word_count'].max()),
'median': float(df['word_count'].median())
},
'data_hash': hashlib.md5(df['text'].str.cat().encode()).hexdigest(),
'creation_timestamp': datetime.now().isoformat(),
'quality_score': self.calculate_quality_score(df)
}
return metadata
def calculate_quality_score(self, df: pd.DataFrame) -> float:
"""Calculate overall dataset quality score"""
scores = []
# Balance score
label_counts = df['label'].value_counts()
if len(label_counts) > 1:
balance_score = label_counts.min() / label_counts.max()
scores.append(balance_score)
# Diversity score (based on unique text ratio)
diversity_score = df['text'].nunique() / len(df)
scores.append(diversity_score)
# Length consistency score
text_lengths = df['text_length']
length_cv = text_lengths.std() / text_lengths.mean() # Coefficient of variation
length_score = max(0, 1 - length_cv / 2) # Normalize to 0-1
scores.append(length_score)
return float(np.mean(scores))
def prepare_datasets(self) -> Tuple[bool, str]:
"""Main method to prepare all datasets with validation"""
logger.info("Starting dataset preparation with validation...")
try:
# Load and validate datasets
kaggle_result = self.load_kaggle_dataset()
liar_result = self.load_liar_dataset()
# Handle None returns gracefully
if kaggle_result is None:
logger.warning("Kaggle dataset loading failed")
kaggle_df, kaggle_validation = pd.DataFrame(), {
'source': 'kaggle_combined', 'original_count': 0, 'valid_count': 0,
'success_rate': 0, 'overall_quality_score': 0, 'validation_timestamp': datetime.now().isoformat()
}
else:
kaggle_df, kaggle_validation = kaggle_result
if liar_result is None:
logger.warning("LIAR dataset loading failed")
liar_df, liar_validation = pd.DataFrame(), {
'source': 'liar_combined', 'original_count': 0, 'valid_count': 0,
'success_rate': 0, 'overall_quality_score': 0, 'validation_timestamp': datetime.now().isoformat()
}
else:
liar_df, liar_validation = liar_result
# Combine datasets
datasets_to_combine = [df for df in [kaggle_df, liar_df] if not df.empty]
if not datasets_to_combine:
return False, "No datasets could be loaded and validated"
combined_df = pd.concat(datasets_to_combine, ignore_index=True)
# Save combined dataset
combined_df.to_csv(self.output_path, index=False)
# Save validation reports
total_original = kaggle_validation['original_count'] + liar_validation['original_count']
validation_report = {
'datasets': {
'kaggle': kaggle_validation,
'liar': liar_validation
},
'combined_stats': {
'total_articles': len(combined_df),
'total_original': total_original,
'overall_success_rate': len(combined_df) / max(1, total_original),
'validation_timestamp': datetime.now().isoformat()
}
}
validation_report_path = self.output_dir / "dataset_validation_report.json"
with open(validation_report_path, 'w') as f:
json.dump(validation_report, f, indent=2)
logger.info(f"Dataset preparation complete. Validation report saved to {validation_report_path}")
return True, f"Successfully prepared {len(combined_df)} validated articles"
except Exception as e:
logger.error(f"Dataset preparation failed: {e}")
return False, f"Dataset preparation failed: {str(e)}"
def validate_dataset_with_schemas(self, df: pd.DataFrame, source_name: str) -> Tuple[pd.DataFrame, Dict]:
"""Validate dataset using comprehensive schemas"""
logger.info(f"Starting schema validation for {source_name}...")
validator = DataValidationPipeline()
# Convert DataFrame to validation format
articles_data = []
for _, row in df.iterrows():
article_data = {
'text': str(row.get('text', '')),
'label': int(row.get('label', 0)),
'source': source_name
}
if 'title' in row and pd.notna(row['title']):
article_data['title'] = str(row['title'])
if 'url' in row and pd.notna(row['url']):
article_data['url'] = str(row['url'])
articles_data.append(article_data)
# Perform batch validation
validation_result = validator.validate_batch(
articles_data,
batch_id=f"{source_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
validation_level=ValidationLevel.MODERATE
)
# Filter valid articles and add quality scores
valid_indices = [i for i, result in enumerate(validation_result.validation_results) if result.is_valid]
if valid_indices:
valid_df = df.iloc[valid_indices].copy()
quality_scores = [validation_result.validation_results[i].quality_metrics.get('overall_quality_score', 0.0)
for i in valid_indices]
valid_df['validation_quality_score'] = quality_scores
valid_df['validation_timestamp'] = datetime.now().isoformat()
else:
valid_df = pd.DataFrame(columns=df.columns)
validation_summary = {
'source': source_name,
'original_count': len(df),
'valid_count': len(valid_df),
'success_rate': validation_result.success_rate,
'overall_quality_score': validation_result.overall_quality_score,
'validation_timestamp': datetime.now().isoformat()
}
return valid_df, validation_summary
def main():
"""Main execution function"""
preparer = DatasetPreparer()
success, message = preparer.prepare_datasets()
if success:
print(f"β
{message}")
else:
print(f"β {message}")
exit(1)
if __name__ == "__main__":
main()
|