File size: 26,536 Bytes
291cac4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 |
import json
import joblib
import logging
import hashlib
from enum import Enum
from pathlib import Path
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Any, Tuple
from dataclasses import dataclass, asdict
logger = logging.getLogger(__name__)
class ModelStatus(Enum):
TRAINING = "training"
VALIDATING = "validating"
STAGED = "staged"
ACTIVE = "active"
RETIRED = "retired"
FAILED = "failed"
@dataclass
class ModelMetadata:
"""Comprehensive model metadata"""
version_id: str
name: str
description: str
created_at: str
created_by: str
status: str
# Model files
model_path: str
vectorizer_path: str
pipeline_path: Optional[str]
# Performance metrics
training_metrics: Dict[str, float]
validation_metrics: Dict[str, float]
cross_validation_results: Dict[str, Any]
# Training details
training_config: Dict[str, Any]
dataset_info: Dict[str, Any]
feature_info: Dict[str, Any]
# Deployment info
deployment_history: List[Dict[str, Any]]
performance_history: List[Dict[str, Any]]
# Model signature
model_signature: str
dependencies: Dict[str, str]
# Tags and labels
tags: List[str]
labels: Dict[str, str]
class ModelRegistry:
"""Central registry for managing model versions and metadata"""
def __init__(self, base_dir: Path = None):
self.base_dir = base_dir or Path("/tmp")
self.setup_registry_paths()
self.setup_registry_config()
# Model storage
self.models = {} # version_id -> ModelMetadata
self.load_registry()
def setup_registry_paths(self):
"""Setup model registry paths"""
self.registry_dir = self.base_dir / "registry"
self.registry_dir.mkdir(parents=True, exist_ok=True)
# Registry files
self.registry_index_path = self.registry_dir / "model_index.json"
self.registry_metadata_path = self.registry_dir / "registry_metadata.json"
self.registry_log_path = self.registry_dir / "registry_log.json"
# Model storage directory
self.models_storage_dir = self.registry_dir / "models"
self.models_storage_dir.mkdir(parents=True, exist_ok=True)
def setup_registry_config(self):
"""Setup registry configuration"""
self.registry_config = {
'max_versions_per_model': 10,
'auto_cleanup_enabled': True,
'cleanup_after_days': 30,
'backup_enabled': True,
'backup_interval_hours': 24,
'validation_required': True,
'signature_verification': True
}
def register_model(self, model_path: str, vectorizer_path: str,
metadata: Dict[str, Any], version_id: str = None) -> str:
"""Register a new model version"""
try:
# Generate version ID if not provided
if not version_id:
version_id = f"v{datetime.now().strftime('%Y%m%d_%H%M%S')}"
# Validate model files exist
if not Path(model_path).exists():
raise FileNotFoundError(f"Model file not found: {model_path}")
if not Path(vectorizer_path).exists():
raise FileNotFoundError(f"Vectorizer file not found: {vectorizer_path}")
# Create model storage directory
model_storage_dir = self.models_storage_dir / version_id
model_storage_dir.mkdir(parents=True, exist_ok=True)
# Copy model files to registry storage
import shutil
registry_model_path = model_storage_dir / "model.pkl"
registry_vectorizer_path = model_storage_dir / "vectorizer.pkl"
shutil.copy2(model_path, registry_model_path)
shutil.copy2(vectorizer_path, registry_vectorizer_path)
# Generate model signature
model_signature = self.generate_model_signature(registry_model_path, registry_vectorizer_path)
# Create comprehensive metadata
model_metadata = ModelMetadata(
version_id=version_id,
name=metadata.get('name', f'model_{version_id}'),
description=metadata.get('description', 'No description provided'),
created_at=datetime.now().isoformat(),
created_by=metadata.get('created_by', 'system'),
status=ModelStatus.VALIDATING.value,
# File paths
model_path=str(registry_model_path),
vectorizer_path=str(registry_vectorizer_path),
pipeline_path=metadata.get('pipeline_path'),
# Performance metrics
training_metrics=metadata.get('training_metrics', {}),
validation_metrics=metadata.get('validation_metrics', {}),
cross_validation_results=metadata.get('cross_validation_results', {}),
# Training details
training_config=metadata.get('training_config', {}),
dataset_info=metadata.get('dataset_info', {}),
feature_info=metadata.get('feature_info', {}),
# Deployment info
deployment_history=[],
performance_history=[],
# Model signature
model_signature=model_signature,
dependencies=metadata.get('dependencies', {}),
# Tags and labels
tags=metadata.get('tags', []),
labels=metadata.get('labels', {})
)
# Validate model if required
if self.registry_config['validation_required']:
validation_result = self.validate_model(model_metadata)
if not validation_result['valid']:
model_metadata.status = ModelStatus.FAILED.value
self.log_registry_event("model_validation_failed",
f"Model validation failed: {validation_result['errors']}")
else:
model_metadata.status = ModelStatus.STAGED.value
else:
model_metadata.status = ModelStatus.STAGED.value
# Save metadata to file
metadata_file = model_storage_dir / "metadata.json"
with open(metadata_file, 'w') as f:
json.dump(asdict(model_metadata), f, indent=2)
# Register in memory
self.models[version_id] = model_metadata
# Update registry index
self.update_registry_index()
# Log registration
self.log_registry_event("model_registered", f"Registered model version {version_id}", {
'version_id': version_id,
'model_signature': model_signature,
'status': model_metadata.status
})
logger.info(f"Successfully registered model version: {version_id}")
return version_id
except Exception as e:
logger.error(f"Failed to register model: {e}")
raise e
def get_model(self, version_id: str) -> Optional[ModelMetadata]:
"""Get model metadata by version ID"""
return self.models.get(version_id)
def get_active_model(self) -> Optional[ModelMetadata]:
"""Get currently active model"""
for model in self.models.values():
if model.status == ModelStatus.ACTIVE.value:
return model
return None
def list_models(self, status: str = None, limit: int = None) -> List[ModelMetadata]:
"""List models with optional filtering"""
models = list(self.models.values())
# Filter by status
if status:
models = [m for m in models if m.status == status]
# Sort by creation date (newest first)
models.sort(key=lambda x: x.created_at, reverse=True)
# Apply limit
if limit:
models = models[:limit]
return models
def promote_model(self, version_id: str) -> bool:
"""Promote a model to active status"""
try:
model = self.get_model(version_id)
if not model:
raise ValueError(f"Model {version_id} not found")
if model.status != ModelStatus.STAGED.value:
raise ValueError(f"Model {version_id} is not staged for promotion")
# Demote current active model
current_active = self.get_active_model()
if current_active:
current_active.status = ModelStatus.RETIRED.value
self.log_registry_event("model_retired", f"Retired model {current_active.version_id}")
# Promote new model
model.status = ModelStatus.ACTIVE.value
# Record deployment
deployment_record = {
'promoted_at': datetime.now().isoformat(),
'promoted_by': 'system',
'previous_active': current_active.version_id if current_active else None
}
model.deployment_history.append(deployment_record)
# Update registry
self.update_registry_index()
self.save_model_metadata(model)
self.log_registry_event("model_promoted", f"Promoted model {version_id} to active", {
'version_id': version_id,
'previous_active': current_active.version_id if current_active else None
})
logger.info(f"Successfully promoted model {version_id} to active")
return True
except Exception as e:
logger.error(f"Failed to promote model {version_id}: {e}")
return False
def retire_model(self, version_id: str) -> bool:
"""Retire a model version"""
try:
model = self.get_model(version_id)
if not model:
raise ValueError(f"Model {version_id} not found")
old_status = model.status
model.status = ModelStatus.RETIRED.value
# Update registry
self.update_registry_index()
self.save_model_metadata(model)
self.log_registry_event("model_retired", f"Retired model {version_id}", {
'version_id': version_id,
'previous_status': old_status
})
logger.info(f"Successfully retired model {version_id}")
return True
except Exception as e:
logger.error(f"Failed to retire model {version_id}: {e}")
return False
def delete_model(self, version_id: str, force: bool = False) -> bool:
"""Delete a model version"""
try:
model = self.get_model(version_id)
if not model:
raise ValueError(f"Model {version_id} not found")
# Prevent deletion of active model unless forced
if model.status == ModelStatus.ACTIVE.value and not force:
raise ValueError("Cannot delete active model without force=True")
# Remove from memory
del self.models[version_id]
# Remove model storage directory
model_storage_dir = self.models_storage_dir / version_id
if model_storage_dir.exists():
import shutil
shutil.rmtree(model_storage_dir)
# Update registry index
self.update_registry_index()
self.log_registry_event("model_deleted", f"Deleted model {version_id}", {
'version_id': version_id,
'forced': force
})
logger.info(f"Successfully deleted model {version_id}")
return True
except Exception as e:
logger.error(f"Failed to delete model {version_id}: {e}")
return False
def validate_model(self, model_metadata: ModelMetadata) -> Dict[str, Any]:
"""Validate a registered model"""
validation_result = {
'valid': True,
'errors': [],
'warnings': []
}
try:
# Check if model files exist
if not Path(model_metadata.model_path).exists():
validation_result['errors'].append("Model file not found")
validation_result['valid'] = False
if not Path(model_metadata.vectorizer_path).exists():
validation_result['errors'].append("Vectorizer file not found")
validation_result['valid'] = False
# Try to load model
try:
model = joblib.load(model_metadata.model_path)
vectorizer = joblib.load(model_metadata.vectorizer_path)
# Check if model has required methods
if not hasattr(model, 'predict'):
validation_result['errors'].append("Model missing predict method")
validation_result['valid'] = False
if not hasattr(vectorizer, 'transform'):
validation_result['errors'].append("Vectorizer missing transform method")
validation_result['valid'] = False
# Test prediction with dummy data
try:
test_text = ["This is a test article for validation"]
X = vectorizer.transform(test_text)
prediction = model.predict(X)
if hasattr(model, 'predict_proba'):
probabilities = model.predict_proba(X)
except Exception as e:
validation_result['errors'].append(f"Model prediction test failed: {str(e)}")
validation_result['valid'] = False
except Exception as e:
validation_result['errors'].append(f"Failed to load model: {str(e)}")
validation_result['valid'] = False
# Check performance metrics
if not model_metadata.training_metrics:
validation_result['warnings'].append("No training metrics available")
# Verify signature if enabled
if self.registry_config['signature_verification']:
current_signature = self.generate_model_signature(
model_metadata.model_path,
model_metadata.vectorizer_path
)
if current_signature != model_metadata.model_signature:
validation_result['errors'].append("Model signature verification failed")
validation_result['valid'] = False
except Exception as e:
validation_result['errors'].append(f"Validation error: {str(e)}")
validation_result['valid'] = False
return validation_result
def generate_model_signature(self, model_path: str, vectorizer_path: str) -> str:
"""Generate a signature for model files"""
try:
hasher = hashlib.sha256()
# Hash model file
with open(model_path, 'rb') as f:
for chunk in iter(lambda: f.read(4096), b""):
hasher.update(chunk)
# Hash vectorizer file
with open(vectorizer_path, 'rb') as f:
for chunk in iter(lambda: f.read(4096), b""):
hasher.update(chunk)
return hasher.hexdigest()
except Exception as e:
logger.error(f"Failed to generate model signature: {e}")
return ""
def record_performance(self, version_id: str, performance_metrics: Dict[str, float]):
"""Record performance metrics for a model"""
try:
model = self.get_model(version_id)
if not model:
raise ValueError(f"Model {version_id} not found")
performance_record = {
'timestamp': datetime.now().isoformat(),
'metrics': performance_metrics
}
model.performance_history.append(performance_record)
# Keep only last 100 performance records
if len(model.performance_history) > 100:
model.performance_history = model.performance_history[-100:]
# Save updated metadata
self.save_model_metadata(model)
logger.info(f"Recorded performance for model {version_id}")
except Exception as e:
logger.error(f"Failed to record performance for model {version_id}: {e}")
def get_model_comparison(self, version_id1: str, version_id2: str) -> Dict[str, Any]:
"""Compare two model versions"""
try:
model1 = self.get_model(version_id1)
model2 = self.get_model(version_id2)
if not model1 or not model2:
raise ValueError("One or both models not found")
comparison = {
'model1': {
'version_id': model1.version_id,
'created_at': model1.created_at,
'status': model1.status,
'training_metrics': model1.training_metrics,
'validation_metrics': model1.validation_metrics
},
'model2': {
'version_id': model2.version_id,
'created_at': model2.created_at,
'status': model2.status,
'training_metrics': model2.training_metrics,
'validation_metrics': model2.validation_metrics
},
'comparison_timestamp': datetime.now().isoformat()
}
# Calculate metric differences
metric_diffs = {}
for metric in model1.training_metrics:
if metric in model2.training_metrics:
diff = model2.training_metrics[metric] - model1.training_metrics[metric]
metric_diffs[metric] = {
'difference': diff,
'improvement': diff > 0,
'percentage_change': (diff / model1.training_metrics[metric]) * 100 if model1.training_metrics[metric] != 0 else 0
}
comparison['metric_differences'] = metric_diffs
return comparison
except Exception as e:
logger.error(f"Failed to compare models: {e}")
return {'error': str(e)}
def cleanup_old_models(self):
"""Clean up old retired models"""
try:
if not self.registry_config['auto_cleanup_enabled']:
return
cleanup_date = datetime.now() - timedelta(days=self.registry_config['cleanup_after_days'])
models_to_cleanup = []
for model in self.models.values():
if (model.status == ModelStatus.RETIRED.value and
datetime.fromisoformat(model.created_at) < cleanup_date):
models_to_cleanup.append(model.version_id)
for version_id in models_to_cleanup:
self.delete_model(version_id, force=True)
logger.info(f"Cleaned up old model: {version_id}")
except Exception as e:
logger.error(f"Failed to cleanup old models: {e}")
def update_registry_index(self):
"""Update the registry index file"""
try:
index = {
'last_updated': datetime.now().isoformat(),
'total_models': len(self.models),
'models_by_status': {},
'model_versions': []
}
# Count models by status
for model in self.models.values():
status = model.status
index['models_by_status'][status] = index['models_by_status'].get(status, 0) + 1
# Add model summaries
for model in self.models.values():
index['model_versions'].append({
'version_id': model.version_id,
'name': model.name,
'status': model.status,
'created_at': model.created_at,
'signature': model.model_signature
})
# Save index
with open(self.registry_index_path, 'w') as f:
json.dump(index, f, indent=2)
except Exception as e:
logger.error(f"Failed to update registry index: {e}")
def save_model_metadata(self, model: ModelMetadata):
"""Save model metadata to file"""
try:
model_storage_dir = self.models_storage_dir / model.version_id
metadata_file = model_storage_dir / "metadata.json"
with open(metadata_file, 'w') as f:
json.dump(asdict(model), f, indent=2)
except Exception as e:
logger.error(f"Failed to save model metadata: {e}")
def load_registry(self):
"""Load registry from storage"""
try:
# Load from individual model metadata files
if self.models_storage_dir.exists():
for model_dir in self.models_storage_dir.iterdir():
if model_dir.is_dir():
metadata_file = model_dir / "metadata.json"
if metadata_file.exists():
try:
with open(metadata_file, 'r') as f:
metadata_dict = json.load(f)
model_metadata = ModelMetadata(**metadata_dict)
self.models[model_metadata.version_id] = model_metadata
except Exception as e:
logger.warning(f"Failed to load model metadata from {metadata_file}: {e}")
logger.info(f"Loaded {len(self.models)} models from registry")
except Exception as e:
logger.error(f"Failed to load registry: {e}")
def log_registry_event(self, event: str, message: str, details: Dict = None):
"""Log registry events"""
try:
log_entry = {
'timestamp': datetime.now().isoformat(),
'event': event,
'message': message,
'details': details or {}
}
# Load existing logs
logs = []
if self.registry_log_path.exists():
try:
with open(self.registry_log_path, 'r') as f:
logs = json.load(f)
except:
logs = []
logs.append(log_entry)
# Keep only last 1000 entries
if len(logs) > 1000:
logs = logs[-1000:]
# Save logs
with open(self.registry_log_path, 'w') as f:
json.dump(logs, f, indent=2)
except Exception as e:
logger.error(f"Failed to log registry event: {e}")
def get_registry_stats(self) -> Dict[str, Any]:
"""Get registry statistics"""
try:
stats = {
'total_models': len(self.models),
'models_by_status': {},
'active_model': None,
'latest_model': None,
'storage_info': {},
'recent_activity': []
}
# Count by status
for model in self.models.values():
status = model.status
stats['models_by_status'][status] = stats['models_by_status'].get(status, 0) + 1
# Get active model
active_model = self.get_active_model()
if active_model:
stats['active_model'] = {
'version_id': active_model.version_id,
'created_at': active_model.created_at,
'training_metrics': active_model.training_metrics
}
# Get latest model
models_by_date = sorted(self.models.values(), key=lambda x: x.created_at, reverse=True)
if models_by_date:
latest = models_by_date[0]
stats['latest_model'] = {
'version_id': latest.version_id,
'created_at': latest.created_at,
'status': latest.status
}
# Storage information
if self.models_storage_dir.exists():
total_size = sum(f.stat().st_size for f in self.models_storage_dir.rglob('*') if f.is_file())
stats['storage_info'] = {
'total_size_mb': total_size / (1024 * 1024),
'model_count': len(list(self.models_storage_dir.iterdir()))
}
# Recent activity
if self.registry_log_path.exists():
try:
with open(self.registry_log_path, 'r') as f:
logs = json.load(f)
stats['recent_activity'] = logs[-10:] # Last 10 events
except:
pass
return stats
except Exception as e:
logger.error(f"Failed to get registry stats: {e}")
return {'error': str(e)} |