File size: 26,049 Bytes
569a9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
import json
import time
import random
import joblib
import logging
import hashlib
from enum import Enum
from pathlib import Path
from datetime import datetime, timedelta
from dataclasses import dataclass, asdict
from typing import Dict, List, Optional, Any, Tuple

logger = logging.getLogger(__name__)

class RoutingStrategy(Enum):
    ROUND_ROBIN = "round_robin"
    WEIGHTED = "weighted"
    HASH_BASED = "hash_based"
    CANARY = "canary"
    A_B_TEST = "a_b_test"

@dataclass
class RoutingRule:
    """Traffic routing rule configuration"""
    rule_id: str
    strategy: str
    weights: Dict[str, int]  # environment -> percentage
    conditions: Dict[str, Any]
    active: bool
    created_at: str
    updated_at: str

@dataclass
class RequestMetrics:
    """Metrics for individual requests"""
    request_id: str
    timestamp: str
    environment: str  # blue or green
    response_time: float
    status_code: int
    confidence: Optional[float]
    prediction: Optional[str]
    client_id: Optional[str]
    user_agent: Optional[str]

class TrafficRouter:
    """Intelligent traffic routing for blue-green deployments"""
    
    def __init__(self, base_dir: Path = None):
        self.base_dir = base_dir or Path("/tmp")
        self.setup_router_paths()
        self.setup_router_config()
        
        # Current routing state
        self.current_routing_rule = None
        self.blue_model = None
        self.green_model = None
        self.blue_vectorizer = None
        self.green_vectorizer = None
        
        # Performance tracking
        self.request_metrics = []
        self.performance_cache = {}
        
        # Load models and routing state
        self.load_routing_state()
        self.load_models()
    
    def setup_router_paths(self):
        """Setup traffic router paths"""
        self.router_dir = self.base_dir / "deployment" / "router"
        self.router_dir.mkdir(parents=True, exist_ok=True)
        
        # Router state files
        self.routing_state_path = self.router_dir / "routing_state.json"
        self.routing_rules_path = self.router_dir / "routing_rules.json"
        self.request_log_path = self.router_dir / "request_log.json"
        self.performance_log_path = self.router_dir / "performance_log.json"
        
        # Model environment paths
        self.blue_model_dir = self.base_dir / "deployment" / "models" / "blue"
        self.green_model_dir = self.base_dir / "deployment" / "models" / "green"
    
    def setup_router_config(self):
        """Setup router configuration"""
        self.router_config = {
            'default_routing': {
                'strategy': RoutingStrategy.WEIGHTED.value,
                'blue_weight': 100,
                'green_weight': 0
            },
            'performance_tracking': {
                'enable_metrics': True,
                'metrics_buffer_size': 10000,
                'performance_window_minutes': 60,
                'cache_performance_seconds': 30
            },
            'routing_decisions': {
                'hash_based_header': 'user-agent',
                'canary_user_percentage': 5,
                'a_b_test_hash_field': 'client_id',
                'sticky_sessions': False
            },
            'health_checks': {
                'enable_health_routing': True,
                'unhealthy_weight': 0,
                'health_check_interval': 30
            }
        }
    
    def set_routing_weights(self, blue_weight: int, green_weight: int) -> bool:
        """Set traffic routing weights"""
        try:
            # Normalize weights to percentages
            total_weight = blue_weight + green_weight
            if total_weight == 0:
                raise ValueError("Total weight cannot be zero")
            
            blue_percentage = int((blue_weight / total_weight) * 100)
            green_percentage = 100 - blue_percentage
            
            # Create or update routing rule
            routing_rule = RoutingRule(
                rule_id=f"weight_rule_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
                strategy=RoutingStrategy.WEIGHTED.value,
                weights={'blue': blue_percentage, 'green': green_percentage},
                conditions={},
                active=True,
                created_at=datetime.now().isoformat(),
                updated_at=datetime.now().isoformat()
            )
            
            self.current_routing_rule = routing_rule
            self.save_routing_state()
            
            self.log_routing_event("weights_updated", f"Updated routing weights: Blue {blue_percentage}%, Green {green_percentage}%", {
                'blue_weight': blue_percentage,
                'green_weight': green_percentage
            })
            
            logger.info(f"Updated routing weights: Blue {blue_percentage}%, Green {green_percentage}%")
            return True
            
        except Exception as e:
            logger.error(f"Failed to set routing weights: {e}")
            return False
    
    def route_request(self, request_data: Dict[str, Any]) -> str:
        """Route a request to blue or green environment"""
        try:
            if not self.current_routing_rule:
                # Default to blue if no routing rule
                return "blue"
            
            strategy = self.current_routing_rule.strategy
            
            if strategy == RoutingStrategy.WEIGHTED.value:
                return self._route_weighted(request_data)
            elif strategy == RoutingStrategy.ROUND_ROBIN.value:
                return self._route_round_robin(request_data)
            elif strategy == RoutingStrategy.HASH_BASED.value:
                return self._route_hash_based(request_data)
            elif strategy == RoutingStrategy.CANARY.value:
                return self._route_canary(request_data)
            elif strategy == RoutingStrategy.A_B_TEST.value:
                return self._route_a_b_test(request_data)
            else:
                return "blue"  # Default fallback
                
        except Exception as e:
            logger.error(f"Routing decision failed: {e}")
            return "blue"  # Safe fallback
    
    def _route_weighted(self, request_data: Dict[str, Any]) -> str:
        """Route based on weighted distribution"""
        weights = self.current_routing_rule.weights
        blue_weight = weights.get('blue', 100)
        green_weight = weights.get('green', 0)
        
        # Generate random number 0-99
        random_num = random.randint(0, 99)
        
        # Route to green if random number is less than green weight
        if random_num < green_weight:
            return "green"
        else:
            return "blue"
    
    def _route_round_robin(self, request_data: Dict[str, Any]) -> str:
        """Route using round-robin algorithm"""
        # Simple counter-based round robin
        request_count = len(self.request_metrics)
        weights = self.current_routing_rule.weights
        
        blue_weight = weights.get('blue', 50)
        green_weight = weights.get('green', 50)
        
        # Calculate cycle length based on weights
        cycle_length = blue_weight + green_weight
        position_in_cycle = request_count % cycle_length
        
        if position_in_cycle < blue_weight:
            return "blue"
        else:
            return "green"
    
    def _route_hash_based(self, request_data: Dict[str, Any]) -> str:
        """Route based on hash of request characteristics"""
    def _route_hash_based(self, request_data: Dict[str, Any]) -> str:
        """Route based on hash of request characteristics"""
        hash_field = self.router_config['routing_decisions']['hash_based_header']
        hash_value = request_data.get(hash_field, 'default')
        
        # Generate hash
        hash_digest = hashlib.md5(str(hash_value).encode()).hexdigest()
        hash_int = int(hash_digest[:8], 16)
        
        weights = self.current_routing_rule.weights
        green_weight = weights.get('green', 0)
        
        # Route based on hash modulo
        if (hash_int % 100) < green_weight:
            return "green"
        else:
            return "blue"
    
    def _route_canary(self, request_data: Dict[str, Any]) -> str:
        """Route canary traffic to green environment"""
        canary_percentage = self.router_config['routing_decisions']['canary_user_percentage']
        
        # Use client ID or user agent for consistent canary routing
        client_id = request_data.get('client_id') or request_data.get('user_agent', 'anonymous')
        hash_digest = hashlib.md5(client_id.encode()).hexdigest()
        hash_int = int(hash_digest[:8], 16)
        
        if (hash_int % 100) < canary_percentage:
            return "green"  # Canary users get green
        else:
            return "blue"   # Regular users get blue
    
    def _route_a_b_test(self, request_data: Dict[str, Any]) -> str:
        """Route for A/B testing"""
        hash_field = self.router_config['routing_decisions']['a_b_test_hash_field']
        hash_value = request_data.get(hash_field, request_data.get('user_agent', 'default'))
        
        # Generate consistent hash for A/B testing
        hash_digest = hashlib.md5(str(hash_value).encode()).hexdigest()
        hash_int = int(hash_digest[:8], 16)
        
        weights = self.current_routing_rule.weights
        green_weight = weights.get('green', 50)  # Default 50/50 for A/B test
        
        if (hash_int % 100) < green_weight:
            return "green"
        else:
            return "blue"
    
    def make_prediction(self, text: str, request_data: Dict[str, Any] = None) -> Tuple[str, Dict[str, Any]]:
        """Make prediction using routed model"""
        request_id = f"req_{datetime.now().strftime('%Y%m%d_%H%M%S_%f')}"
        start_time = time.time()
        
        try:
            # Determine routing
            if request_data is None:
                request_data = {}
            
            environment = self.route_request(request_data)
            
            # Get appropriate model and vectorizer
            if environment == "green" and self.green_model and self.green_vectorizer:
                model = self.green_model
                vectorizer = self.green_vectorizer
            else:
                # Fallback to blue
                environment = "blue"
                model = self.blue_model
                vectorizer = self.blue_vectorizer
            
            if not model or not vectorizer:
                raise ValueError(f"No model available for {environment} environment")
            
            # Make prediction
            X = vectorizer.transform([text])
            prediction = model.predict(X)[0]
            probabilities = model.predict_proba(X)[0]
            confidence = float(max(probabilities))
            
            # Convert prediction to readable format
            label = "Fake" if prediction == 1 else "Real"
            
            processing_time = time.time() - start_time
            
            # Record metrics
            self.record_request_metrics(
                request_id=request_id,
                environment=environment,
                response_time=processing_time,
                status_code=200,
                confidence=confidence,
                prediction=label,
                client_id=request_data.get('client_id'),
                user_agent=request_data.get('user_agent')
            )
            
            result = {
                'prediction': label,
                'confidence': confidence,
                'processing_time': processing_time,
                'environment': environment,
                'request_id': request_id,
                'model_version': 'unknown',  # Could be enhanced with version info
                'timestamp': datetime.now().isoformat()
            }
            
            return environment, result
            
        except Exception as e:
            processing_time = time.time() - start_time
            
            # Record error metrics
            self.record_request_metrics(
                request_id=request_id,
                environment=environment if 'environment' in locals() else 'unknown',
                response_time=processing_time,
                status_code=500,
                confidence=None,
                prediction=None,
                client_id=request_data.get('client_id'),
                user_agent=request_data.get('user_agent')
            )
            
            logger.error(f"Prediction failed: {e}")
            raise e
    
    def record_request_metrics(self, request_id: str, environment: str, 
                             response_time: float, status_code: int,
                             confidence: Optional[float] = None,
                             prediction: Optional[str] = None,
                             client_id: Optional[str] = None,
                             user_agent: Optional[str] = None):
        """Record metrics for a request"""
        try:
            metrics = RequestMetrics(
                request_id=request_id,
                timestamp=datetime.now().isoformat(),
                environment=environment,
                response_time=response_time,
                status_code=status_code,
                confidence=confidence,
                prediction=prediction,
                client_id=client_id,
                user_agent=user_agent
            )
            
            self.request_metrics.append(metrics)
            
            # Keep buffer size manageable
            buffer_size = self.router_config['performance_tracking']['metrics_buffer_size']
            if len(self.request_metrics) > buffer_size:
                self.request_metrics = self.request_metrics[-buffer_size:]
            
            # Log to file periodically
            if len(self.request_metrics) % 100 == 0:
                self.save_request_metrics()
            
        except Exception as e:
            logger.error(f"Failed to record request metrics: {e}")
    
    def get_environment_performance(self, environment: str, window_minutes: int = 60) -> Dict[str, Any]:
        """Get performance metrics for an environment"""
        try:
            # Check cache first
            cache_key = f"{environment}_{window_minutes}"
            cache_timeout = self.router_config['performance_tracking']['cache_performance_seconds']
            
            if (cache_key in self.performance_cache and 
                time.time() - self.performance_cache[cache_key]['cached_at'] < cache_timeout):
                return self.performance_cache[cache_key]['data']
            
            # Calculate performance from recent metrics
            cutoff_time = datetime.now() - timedelta(minutes=window_minutes)
            
            relevant_metrics = [
                m for m in self.request_metrics
                if (m.environment == environment and 
                    datetime.fromisoformat(m.timestamp) > cutoff_time)
            ]
            
            if not relevant_metrics:
                return {
                    'environment': environment,
                    'window_minutes': window_minutes,
                    'request_count': 0,
                    'avg_response_time': 0,
                    'error_rate': 0,
                    'avg_confidence': 0,
                    'requests_per_minute': 0
                }
            
            # Calculate metrics
            response_times = [m.response_time for m in relevant_metrics]
            error_count = len([m for m in relevant_metrics if m.status_code >= 400])
            confidences = [m.confidence for m in relevant_metrics if m.confidence is not None]
            
            performance = {
                'environment': environment,
                'window_minutes': window_minutes,
                'request_count': len(relevant_metrics),
                'avg_response_time': sum(response_times) / len(response_times),
                'error_rate': error_count / len(relevant_metrics),
                'avg_confidence': sum(confidences) / len(confidences) if confidences else 0,
                'requests_per_minute': len(relevant_metrics) / window_minutes,
                'p95_response_time': sorted(response_times)[int(len(response_times) * 0.95)] if response_times else 0,
                'successful_requests': len(relevant_metrics) - error_count
            }
            
            # Cache result
            self.performance_cache[cache_key] = {
                'data': performance,
                'cached_at': time.time()
            }
            
            return performance
            
        except Exception as e:
            logger.error(f"Failed to get environment performance: {e}")
            return {'error': str(e)}
    
    def compare_environment_performance(self, window_minutes: int = 60) -> Dict[str, Any]:
        """Compare performance between blue and green environments"""
        try:
            blue_perf = self.get_environment_performance('blue', window_minutes)
            green_perf = self.get_environment_performance('green', window_minutes)
            
            comparison = {
                'timestamp': datetime.now().isoformat(),
                'window_minutes': window_minutes,
                'blue_performance': blue_perf,
                'green_performance': green_perf,
                'comparison': {}
            }
            
            if blue_perf.get('request_count', 0) > 0 and green_perf.get('request_count', 0) > 0:
                # Calculate relative differences
                comparison['comparison'] = {
                    'response_time_diff': green_perf['avg_response_time'] - blue_perf['avg_response_time'],
                    'error_rate_diff': green_perf['error_rate'] - blue_perf['error_rate'],
                    'confidence_diff': green_perf['avg_confidence'] - blue_perf['avg_confidence'],
                    'traffic_distribution': {
                        'blue_percentage': (blue_perf['request_count'] / (blue_perf['request_count'] + green_perf['request_count'])) * 100,
                        'green_percentage': (green_perf['request_count'] / (blue_perf['request_count'] + green_perf['request_count'])) * 100
                    }
                }
                
                # Add recommendations
                recommendations = []
                if green_perf['error_rate'] > blue_perf['error_rate'] * 1.5:
                    recommendations.append("Green environment has significantly higher error rate")
                if green_perf['avg_response_time'] > blue_perf['avg_response_time'] * 1.5:
                    recommendations.append("Green environment has significantly slower response times")
                if green_perf['avg_confidence'] < blue_perf['avg_confidence'] * 0.9:
                    recommendations.append("Green environment has lower prediction confidence")
                
                comparison['recommendations'] = recommendations
            
            return comparison
            
        except Exception as e:
            logger.error(f"Failed to compare environment performance: {e}")
            return {'error': str(e)}
    
    def load_models(self):
        """Load models for both environments"""
        try:
            # Load blue environment
            blue_model_path = self.blue_model_dir / "model.pkl"
            blue_vectorizer_path = self.blue_model_dir / "vectorizer.pkl"
            
            if blue_model_path.exists() and blue_vectorizer_path.exists():
                self.blue_model = joblib.load(blue_model_path)
                self.blue_vectorizer = joblib.load(blue_vectorizer_path)
                logger.info("Loaded blue environment models")
            
            # Load green environment
            green_model_path = self.green_model_dir / "model.pkl"
            green_vectorizer_path = self.green_model_dir / "vectorizer.pkl"
            
            if green_model_path.exists() and green_vectorizer_path.exists():
                self.green_model = joblib.load(green_model_path)
                self.green_vectorizer = joblib.load(green_vectorizer_path)
                logger.info("Loaded green environment models")
            
        except Exception as e:
            logger.error(f"Failed to load models: {e}")
    
    def get_routing_status(self) -> Dict[str, Any]:
        """Get current routing status"""
        try:
            status = {
                'timestamp': datetime.now().isoformat(),
                'current_routing_rule': asdict(self.current_routing_rule) if self.current_routing_rule else None,
                'environment_status': {
                    'blue': {
                        'model_loaded': self.blue_model is not None,
                        'vectorizer_loaded': self.blue_vectorizer is not None
                    },
                    'green': {
                        'model_loaded': self.green_model is not None,
                        'vectorizer_loaded': self.green_vectorizer is not None
                    }
                },
                'recent_performance': {
                    'blue': self.get_environment_performance('blue', 15),
                    'green': self.get_environment_performance('green', 15)
                },
                'traffic_distribution': self._get_recent_traffic_distribution()
            }
            
            return status
            
        except Exception as e:
            logger.error(f"Failed to get routing status: {e}")
            return {'error': str(e)}
    
    def _get_recent_traffic_distribution(self) -> Dict[str, Any]:
        """Get recent traffic distribution"""
        try:
            cutoff_time = datetime.now() - timedelta(minutes=15)
            recent_metrics = [
                m for m in self.request_metrics
                if datetime.fromisoformat(m.timestamp) > cutoff_time
            ]
            
            if not recent_metrics:
                return {'blue': 0, 'green': 0, 'total': 0}
            
            blue_count = len([m for m in recent_metrics if m.environment == 'blue'])
            green_count = len([m for m in recent_metrics if m.environment == 'green'])
            total_count = len(recent_metrics)
            
            return {
                'blue': blue_count,
                'green': green_count,
                'total': total_count,
                'blue_percentage': (blue_count / total_count) * 100 if total_count > 0 else 0,
                'green_percentage': (green_count / total_count) * 100 if total_count > 0 else 0
            }
            
        except Exception as e:
            logger.error(f"Failed to get traffic distribution: {e}")
            return {'error': str(e)}
    
    def save_routing_state(self):
        """Save current routing state"""
        try:
            state = {
                'current_routing_rule': asdict(self.current_routing_rule) if self.current_routing_rule else None,
                'last_updated': datetime.now().isoformat()
            }
            
            with open(self.routing_state_path, 'w') as f:
                json.dump(state, f, indent=2)
            
        except Exception as e:
            logger.error(f"Failed to save routing state: {e}")
    
    def load_routing_state(self):
        """Load routing state from file"""
        try:
            if self.routing_state_path.exists():
                with open(self.routing_state_path, 'r') as f:
                    state = json.load(f)
                
                if state.get('current_routing_rule'):
                    self.current_routing_rule = RoutingRule(**state['current_routing_rule'])
                
                logger.info("Loaded routing state from file")
            else:
                # Set default routing rule
                self.set_routing_weights(100, 0)  # Default to 100% blue
            
        except Exception as e:
            logger.warning(f"Failed to load routing state: {e}")
            # Set default routing rule
            self.set_routing_weights(100, 0)
    
    def save_request_metrics(self):
        """Save request metrics to file"""
        try:
            # Save last 1000 metrics
            metrics_to_save = self.request_metrics[-1000:]
            metrics_data = [asdict(m) for m in metrics_to_save]
            
            with open(self.request_log_path, 'w') as f:
                json.dump(metrics_data, f, indent=2)
            
        except Exception as e:
            logger.error(f"Failed to save request metrics: {e}")
    
    def log_routing_event(self, event: str, message: str, details: Dict = None):
        """Log routing events"""
        try:
            log_entry = {
                'timestamp': datetime.now().isoformat(),
                'event': event,
                'message': message,
                'details': details or {}
            }
            
            # This could be enhanced to save to a separate routing events log
            logger.info(f"Routing event: {event} - {message}")
            
        except Exception as e:
            logger.error(f"Failed to log routing event: {e}")
    
    def cleanup_old_metrics(self, days: int = 7):
        """Clean up old metrics data"""
        try:
            cutoff_time = datetime.now() - timedelta(days=days)
            
            # Filter recent metrics
            self.request_metrics = [
                m for m in self.request_metrics
                if datetime.fromisoformat(m.timestamp) > cutoff_time
            ]
            
            # Clear performance cache
            self.performance_cache.clear()
            
            logger.info(f"Cleaned up metrics older than {days} days")
            
        except Exception as e:
            logger.error(f"Failed to cleanup old metrics: {e}")