File size: 26,049 Bytes
569a9fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 |
import json
import time
import random
import joblib
import logging
import hashlib
from enum import Enum
from pathlib import Path
from datetime import datetime, timedelta
from dataclasses import dataclass, asdict
from typing import Dict, List, Optional, Any, Tuple
logger = logging.getLogger(__name__)
class RoutingStrategy(Enum):
ROUND_ROBIN = "round_robin"
WEIGHTED = "weighted"
HASH_BASED = "hash_based"
CANARY = "canary"
A_B_TEST = "a_b_test"
@dataclass
class RoutingRule:
"""Traffic routing rule configuration"""
rule_id: str
strategy: str
weights: Dict[str, int] # environment -> percentage
conditions: Dict[str, Any]
active: bool
created_at: str
updated_at: str
@dataclass
class RequestMetrics:
"""Metrics for individual requests"""
request_id: str
timestamp: str
environment: str # blue or green
response_time: float
status_code: int
confidence: Optional[float]
prediction: Optional[str]
client_id: Optional[str]
user_agent: Optional[str]
class TrafficRouter:
"""Intelligent traffic routing for blue-green deployments"""
def __init__(self, base_dir: Path = None):
self.base_dir = base_dir or Path("/tmp")
self.setup_router_paths()
self.setup_router_config()
# Current routing state
self.current_routing_rule = None
self.blue_model = None
self.green_model = None
self.blue_vectorizer = None
self.green_vectorizer = None
# Performance tracking
self.request_metrics = []
self.performance_cache = {}
# Load models and routing state
self.load_routing_state()
self.load_models()
def setup_router_paths(self):
"""Setup traffic router paths"""
self.router_dir = self.base_dir / "deployment" / "router"
self.router_dir.mkdir(parents=True, exist_ok=True)
# Router state files
self.routing_state_path = self.router_dir / "routing_state.json"
self.routing_rules_path = self.router_dir / "routing_rules.json"
self.request_log_path = self.router_dir / "request_log.json"
self.performance_log_path = self.router_dir / "performance_log.json"
# Model environment paths
self.blue_model_dir = self.base_dir / "deployment" / "models" / "blue"
self.green_model_dir = self.base_dir / "deployment" / "models" / "green"
def setup_router_config(self):
"""Setup router configuration"""
self.router_config = {
'default_routing': {
'strategy': RoutingStrategy.WEIGHTED.value,
'blue_weight': 100,
'green_weight': 0
},
'performance_tracking': {
'enable_metrics': True,
'metrics_buffer_size': 10000,
'performance_window_minutes': 60,
'cache_performance_seconds': 30
},
'routing_decisions': {
'hash_based_header': 'user-agent',
'canary_user_percentage': 5,
'a_b_test_hash_field': 'client_id',
'sticky_sessions': False
},
'health_checks': {
'enable_health_routing': True,
'unhealthy_weight': 0,
'health_check_interval': 30
}
}
def set_routing_weights(self, blue_weight: int, green_weight: int) -> bool:
"""Set traffic routing weights"""
try:
# Normalize weights to percentages
total_weight = blue_weight + green_weight
if total_weight == 0:
raise ValueError("Total weight cannot be zero")
blue_percentage = int((blue_weight / total_weight) * 100)
green_percentage = 100 - blue_percentage
# Create or update routing rule
routing_rule = RoutingRule(
rule_id=f"weight_rule_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
strategy=RoutingStrategy.WEIGHTED.value,
weights={'blue': blue_percentage, 'green': green_percentage},
conditions={},
active=True,
created_at=datetime.now().isoformat(),
updated_at=datetime.now().isoformat()
)
self.current_routing_rule = routing_rule
self.save_routing_state()
self.log_routing_event("weights_updated", f"Updated routing weights: Blue {blue_percentage}%, Green {green_percentage}%", {
'blue_weight': blue_percentage,
'green_weight': green_percentage
})
logger.info(f"Updated routing weights: Blue {blue_percentage}%, Green {green_percentage}%")
return True
except Exception as e:
logger.error(f"Failed to set routing weights: {e}")
return False
def route_request(self, request_data: Dict[str, Any]) -> str:
"""Route a request to blue or green environment"""
try:
if not self.current_routing_rule:
# Default to blue if no routing rule
return "blue"
strategy = self.current_routing_rule.strategy
if strategy == RoutingStrategy.WEIGHTED.value:
return self._route_weighted(request_data)
elif strategy == RoutingStrategy.ROUND_ROBIN.value:
return self._route_round_robin(request_data)
elif strategy == RoutingStrategy.HASH_BASED.value:
return self._route_hash_based(request_data)
elif strategy == RoutingStrategy.CANARY.value:
return self._route_canary(request_data)
elif strategy == RoutingStrategy.A_B_TEST.value:
return self._route_a_b_test(request_data)
else:
return "blue" # Default fallback
except Exception as e:
logger.error(f"Routing decision failed: {e}")
return "blue" # Safe fallback
def _route_weighted(self, request_data: Dict[str, Any]) -> str:
"""Route based on weighted distribution"""
weights = self.current_routing_rule.weights
blue_weight = weights.get('blue', 100)
green_weight = weights.get('green', 0)
# Generate random number 0-99
random_num = random.randint(0, 99)
# Route to green if random number is less than green weight
if random_num < green_weight:
return "green"
else:
return "blue"
def _route_round_robin(self, request_data: Dict[str, Any]) -> str:
"""Route using round-robin algorithm"""
# Simple counter-based round robin
request_count = len(self.request_metrics)
weights = self.current_routing_rule.weights
blue_weight = weights.get('blue', 50)
green_weight = weights.get('green', 50)
# Calculate cycle length based on weights
cycle_length = blue_weight + green_weight
position_in_cycle = request_count % cycle_length
if position_in_cycle < blue_weight:
return "blue"
else:
return "green"
def _route_hash_based(self, request_data: Dict[str, Any]) -> str:
"""Route based on hash of request characteristics"""
def _route_hash_based(self, request_data: Dict[str, Any]) -> str:
"""Route based on hash of request characteristics"""
hash_field = self.router_config['routing_decisions']['hash_based_header']
hash_value = request_data.get(hash_field, 'default')
# Generate hash
hash_digest = hashlib.md5(str(hash_value).encode()).hexdigest()
hash_int = int(hash_digest[:8], 16)
weights = self.current_routing_rule.weights
green_weight = weights.get('green', 0)
# Route based on hash modulo
if (hash_int % 100) < green_weight:
return "green"
else:
return "blue"
def _route_canary(self, request_data: Dict[str, Any]) -> str:
"""Route canary traffic to green environment"""
canary_percentage = self.router_config['routing_decisions']['canary_user_percentage']
# Use client ID or user agent for consistent canary routing
client_id = request_data.get('client_id') or request_data.get('user_agent', 'anonymous')
hash_digest = hashlib.md5(client_id.encode()).hexdigest()
hash_int = int(hash_digest[:8], 16)
if (hash_int % 100) < canary_percentage:
return "green" # Canary users get green
else:
return "blue" # Regular users get blue
def _route_a_b_test(self, request_data: Dict[str, Any]) -> str:
"""Route for A/B testing"""
hash_field = self.router_config['routing_decisions']['a_b_test_hash_field']
hash_value = request_data.get(hash_field, request_data.get('user_agent', 'default'))
# Generate consistent hash for A/B testing
hash_digest = hashlib.md5(str(hash_value).encode()).hexdigest()
hash_int = int(hash_digest[:8], 16)
weights = self.current_routing_rule.weights
green_weight = weights.get('green', 50) # Default 50/50 for A/B test
if (hash_int % 100) < green_weight:
return "green"
else:
return "blue"
def make_prediction(self, text: str, request_data: Dict[str, Any] = None) -> Tuple[str, Dict[str, Any]]:
"""Make prediction using routed model"""
request_id = f"req_{datetime.now().strftime('%Y%m%d_%H%M%S_%f')}"
start_time = time.time()
try:
# Determine routing
if request_data is None:
request_data = {}
environment = self.route_request(request_data)
# Get appropriate model and vectorizer
if environment == "green" and self.green_model and self.green_vectorizer:
model = self.green_model
vectorizer = self.green_vectorizer
else:
# Fallback to blue
environment = "blue"
model = self.blue_model
vectorizer = self.blue_vectorizer
if not model or not vectorizer:
raise ValueError(f"No model available for {environment} environment")
# Make prediction
X = vectorizer.transform([text])
prediction = model.predict(X)[0]
probabilities = model.predict_proba(X)[0]
confidence = float(max(probabilities))
# Convert prediction to readable format
label = "Fake" if prediction == 1 else "Real"
processing_time = time.time() - start_time
# Record metrics
self.record_request_metrics(
request_id=request_id,
environment=environment,
response_time=processing_time,
status_code=200,
confidence=confidence,
prediction=label,
client_id=request_data.get('client_id'),
user_agent=request_data.get('user_agent')
)
result = {
'prediction': label,
'confidence': confidence,
'processing_time': processing_time,
'environment': environment,
'request_id': request_id,
'model_version': 'unknown', # Could be enhanced with version info
'timestamp': datetime.now().isoformat()
}
return environment, result
except Exception as e:
processing_time = time.time() - start_time
# Record error metrics
self.record_request_metrics(
request_id=request_id,
environment=environment if 'environment' in locals() else 'unknown',
response_time=processing_time,
status_code=500,
confidence=None,
prediction=None,
client_id=request_data.get('client_id'),
user_agent=request_data.get('user_agent')
)
logger.error(f"Prediction failed: {e}")
raise e
def record_request_metrics(self, request_id: str, environment: str,
response_time: float, status_code: int,
confidence: Optional[float] = None,
prediction: Optional[str] = None,
client_id: Optional[str] = None,
user_agent: Optional[str] = None):
"""Record metrics for a request"""
try:
metrics = RequestMetrics(
request_id=request_id,
timestamp=datetime.now().isoformat(),
environment=environment,
response_time=response_time,
status_code=status_code,
confidence=confidence,
prediction=prediction,
client_id=client_id,
user_agent=user_agent
)
self.request_metrics.append(metrics)
# Keep buffer size manageable
buffer_size = self.router_config['performance_tracking']['metrics_buffer_size']
if len(self.request_metrics) > buffer_size:
self.request_metrics = self.request_metrics[-buffer_size:]
# Log to file periodically
if len(self.request_metrics) % 100 == 0:
self.save_request_metrics()
except Exception as e:
logger.error(f"Failed to record request metrics: {e}")
def get_environment_performance(self, environment: str, window_minutes: int = 60) -> Dict[str, Any]:
"""Get performance metrics for an environment"""
try:
# Check cache first
cache_key = f"{environment}_{window_minutes}"
cache_timeout = self.router_config['performance_tracking']['cache_performance_seconds']
if (cache_key in self.performance_cache and
time.time() - self.performance_cache[cache_key]['cached_at'] < cache_timeout):
return self.performance_cache[cache_key]['data']
# Calculate performance from recent metrics
cutoff_time = datetime.now() - timedelta(minutes=window_minutes)
relevant_metrics = [
m for m in self.request_metrics
if (m.environment == environment and
datetime.fromisoformat(m.timestamp) > cutoff_time)
]
if not relevant_metrics:
return {
'environment': environment,
'window_minutes': window_minutes,
'request_count': 0,
'avg_response_time': 0,
'error_rate': 0,
'avg_confidence': 0,
'requests_per_minute': 0
}
# Calculate metrics
response_times = [m.response_time for m in relevant_metrics]
error_count = len([m for m in relevant_metrics if m.status_code >= 400])
confidences = [m.confidence for m in relevant_metrics if m.confidence is not None]
performance = {
'environment': environment,
'window_minutes': window_minutes,
'request_count': len(relevant_metrics),
'avg_response_time': sum(response_times) / len(response_times),
'error_rate': error_count / len(relevant_metrics),
'avg_confidence': sum(confidences) / len(confidences) if confidences else 0,
'requests_per_minute': len(relevant_metrics) / window_minutes,
'p95_response_time': sorted(response_times)[int(len(response_times) * 0.95)] if response_times else 0,
'successful_requests': len(relevant_metrics) - error_count
}
# Cache result
self.performance_cache[cache_key] = {
'data': performance,
'cached_at': time.time()
}
return performance
except Exception as e:
logger.error(f"Failed to get environment performance: {e}")
return {'error': str(e)}
def compare_environment_performance(self, window_minutes: int = 60) -> Dict[str, Any]:
"""Compare performance between blue and green environments"""
try:
blue_perf = self.get_environment_performance('blue', window_minutes)
green_perf = self.get_environment_performance('green', window_minutes)
comparison = {
'timestamp': datetime.now().isoformat(),
'window_minutes': window_minutes,
'blue_performance': blue_perf,
'green_performance': green_perf,
'comparison': {}
}
if blue_perf.get('request_count', 0) > 0 and green_perf.get('request_count', 0) > 0:
# Calculate relative differences
comparison['comparison'] = {
'response_time_diff': green_perf['avg_response_time'] - blue_perf['avg_response_time'],
'error_rate_diff': green_perf['error_rate'] - blue_perf['error_rate'],
'confidence_diff': green_perf['avg_confidence'] - blue_perf['avg_confidence'],
'traffic_distribution': {
'blue_percentage': (blue_perf['request_count'] / (blue_perf['request_count'] + green_perf['request_count'])) * 100,
'green_percentage': (green_perf['request_count'] / (blue_perf['request_count'] + green_perf['request_count'])) * 100
}
}
# Add recommendations
recommendations = []
if green_perf['error_rate'] > blue_perf['error_rate'] * 1.5:
recommendations.append("Green environment has significantly higher error rate")
if green_perf['avg_response_time'] > blue_perf['avg_response_time'] * 1.5:
recommendations.append("Green environment has significantly slower response times")
if green_perf['avg_confidence'] < blue_perf['avg_confidence'] * 0.9:
recommendations.append("Green environment has lower prediction confidence")
comparison['recommendations'] = recommendations
return comparison
except Exception as e:
logger.error(f"Failed to compare environment performance: {e}")
return {'error': str(e)}
def load_models(self):
"""Load models for both environments"""
try:
# Load blue environment
blue_model_path = self.blue_model_dir / "model.pkl"
blue_vectorizer_path = self.blue_model_dir / "vectorizer.pkl"
if blue_model_path.exists() and blue_vectorizer_path.exists():
self.blue_model = joblib.load(blue_model_path)
self.blue_vectorizer = joblib.load(blue_vectorizer_path)
logger.info("Loaded blue environment models")
# Load green environment
green_model_path = self.green_model_dir / "model.pkl"
green_vectorizer_path = self.green_model_dir / "vectorizer.pkl"
if green_model_path.exists() and green_vectorizer_path.exists():
self.green_model = joblib.load(green_model_path)
self.green_vectorizer = joblib.load(green_vectorizer_path)
logger.info("Loaded green environment models")
except Exception as e:
logger.error(f"Failed to load models: {e}")
def get_routing_status(self) -> Dict[str, Any]:
"""Get current routing status"""
try:
status = {
'timestamp': datetime.now().isoformat(),
'current_routing_rule': asdict(self.current_routing_rule) if self.current_routing_rule else None,
'environment_status': {
'blue': {
'model_loaded': self.blue_model is not None,
'vectorizer_loaded': self.blue_vectorizer is not None
},
'green': {
'model_loaded': self.green_model is not None,
'vectorizer_loaded': self.green_vectorizer is not None
}
},
'recent_performance': {
'blue': self.get_environment_performance('blue', 15),
'green': self.get_environment_performance('green', 15)
},
'traffic_distribution': self._get_recent_traffic_distribution()
}
return status
except Exception as e:
logger.error(f"Failed to get routing status: {e}")
return {'error': str(e)}
def _get_recent_traffic_distribution(self) -> Dict[str, Any]:
"""Get recent traffic distribution"""
try:
cutoff_time = datetime.now() - timedelta(minutes=15)
recent_metrics = [
m for m in self.request_metrics
if datetime.fromisoformat(m.timestamp) > cutoff_time
]
if not recent_metrics:
return {'blue': 0, 'green': 0, 'total': 0}
blue_count = len([m for m in recent_metrics if m.environment == 'blue'])
green_count = len([m for m in recent_metrics if m.environment == 'green'])
total_count = len(recent_metrics)
return {
'blue': blue_count,
'green': green_count,
'total': total_count,
'blue_percentage': (blue_count / total_count) * 100 if total_count > 0 else 0,
'green_percentage': (green_count / total_count) * 100 if total_count > 0 else 0
}
except Exception as e:
logger.error(f"Failed to get traffic distribution: {e}")
return {'error': str(e)}
def save_routing_state(self):
"""Save current routing state"""
try:
state = {
'current_routing_rule': asdict(self.current_routing_rule) if self.current_routing_rule else None,
'last_updated': datetime.now().isoformat()
}
with open(self.routing_state_path, 'w') as f:
json.dump(state, f, indent=2)
except Exception as e:
logger.error(f"Failed to save routing state: {e}")
def load_routing_state(self):
"""Load routing state from file"""
try:
if self.routing_state_path.exists():
with open(self.routing_state_path, 'r') as f:
state = json.load(f)
if state.get('current_routing_rule'):
self.current_routing_rule = RoutingRule(**state['current_routing_rule'])
logger.info("Loaded routing state from file")
else:
# Set default routing rule
self.set_routing_weights(100, 0) # Default to 100% blue
except Exception as e:
logger.warning(f"Failed to load routing state: {e}")
# Set default routing rule
self.set_routing_weights(100, 0)
def save_request_metrics(self):
"""Save request metrics to file"""
try:
# Save last 1000 metrics
metrics_to_save = self.request_metrics[-1000:]
metrics_data = [asdict(m) for m in metrics_to_save]
with open(self.request_log_path, 'w') as f:
json.dump(metrics_data, f, indent=2)
except Exception as e:
logger.error(f"Failed to save request metrics: {e}")
def log_routing_event(self, event: str, message: str, details: Dict = None):
"""Log routing events"""
try:
log_entry = {
'timestamp': datetime.now().isoformat(),
'event': event,
'message': message,
'details': details or {}
}
# This could be enhanced to save to a separate routing events log
logger.info(f"Routing event: {event} - {message}")
except Exception as e:
logger.error(f"Failed to log routing event: {e}")
def cleanup_old_metrics(self, days: int = 7):
"""Clean up old metrics data"""
try:
cutoff_time = datetime.now() - timedelta(days=days)
# Filter recent metrics
self.request_metrics = [
m for m in self.request_metrics
if datetime.fromisoformat(m.timestamp) > cutoff_time
]
# Clear performance cache
self.performance_cache.clear()
logger.info(f"Cleaned up metrics older than {days} days")
except Exception as e:
logger.error(f"Failed to cleanup old metrics: {e}") |