File size: 22,733 Bytes
5454222
 
0cfbe2d
2736dc6
5454222
2736dc6
5454222
 
 
 
 
 
0cfbe2d
 
 
2736dc6
5454222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cfbe2d
5454222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cfbe2d
5454222
 
 
 
 
0cfbe2d
5454222
0cfbe2d
5454222
 
 
0cfbe2d
5454222
0cfbe2d
5454222
 
 
0cfbe2d
5454222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cfbe2d
5454222
 
 
 
0cfbe2d
5454222
 
 
0cfbe2d
5454222
 
0cfbe2d
5454222
 
 
 
2736dc6
5454222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cfbe2d
5454222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cfbe2d
5454222
 
 
0cfbe2d
5454222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cfbe2d
5454222
 
 
0cfbe2d
5454222
 
 
 
 
 
0cfbe2d
5454222
 
 
0cfbe2d
5454222
 
 
 
 
0cfbe2d
5454222
 
 
 
 
 
 
 
 
 
2736dc6
5454222
 
 
 
2736dc6
5454222
 
 
 
 
 
 
2736dc6
5454222
 
 
 
 
 
 
 
 
 
 
 
 
 
0cfbe2d
5454222
 
 
0cfbe2d
5454222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cfbe2d
5454222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2736dc6
5454222
 
 
 
0cfbe2d
 
5454222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cfbe2d
 
5454222
 
 
 
 
 
 
2736dc6
0cfbe2d
5454222
 
 
 
 
 
 
 
0cfbe2d
 
5454222
 
 
 
 
 
 
dc282dc
 
5454222
 
 
 
 
 
dc282dc
5454222
dc282dc
5454222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc282dc
5454222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc282dc
5454222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc282dc
5454222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113fca9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
# File: features/linguistic_analyzer.py
# Advanced Linguistic Analysis Component for Enhanced Feature Engineering

import numpy as np
import pandas as pd
import re
import logging
from typing import List, Dict, Any, Tuple
from sklearn.base import BaseEstimator, TransformerMixin
from collections import Counter, defaultdict
import warnings
warnings.filterwarnings('ignore')

logger = logging.getLogger(__name__)


class LinguisticAnalyzer(BaseEstimator, TransformerMixin):
    """
    Advanced linguistic analysis for fake news detection.
    Analyzes syntactic patterns, discourse markers, and linguistic anomalies.
    """
    
    def __init__(self):
        self.discourse_markers = self._load_discourse_markers()
        self.linguistic_patterns = self._load_linguistic_patterns()
        self.pos_patterns = self._load_pos_patterns()
        self.is_fitted_ = False
        
    def _load_discourse_markers(self):
        """Load discourse markers for coherence analysis"""
        markers = {
            'addition': {'also', 'furthermore', 'moreover', 'additionally', 'besides', 'plus', 'and'},
            'contrast': {'however', 'but', 'nevertheless', 'nonetheless', 'yet', 'still', 'although', 'though'},
            'cause_effect': {'therefore', 'thus', 'consequently', 'as a result', 'because', 'since', 'so'},
            'temporal': {'then', 'next', 'afterwards', 'meanwhile', 'subsequently', 'finally', 'first', 'second'},
            'emphasis': {'indeed', 'certainly', 'obviously', 'clearly', 'definitely', 'absolutely', 'surely'},
            'concession': {'admittedly', 'granted', 'to be sure', 'of course', 'naturally', 'undoubtedly'},
            'exemplification': {'for example', 'for instance', 'such as', 'namely', 'specifically', 'particularly'},
            'summary': {'in conclusion', 'to summarize', 'in summary', 'overall', 'in general', 'basically'}
        }
        return markers
    
    def _load_linguistic_patterns(self):
        """Load patterns for linguistic analysis"""
        patterns = {
            'modal_verbs': {'can', 'could', 'may', 'might', 'must', 'shall', 'should', 'will', 'would'},
            'hedge_words': {'probably', 'possibly', 'perhaps', 'maybe', 'likely', 'apparently', 'seemingly', 'supposedly'},
            'boosters': {'very', 'extremely', 'highly', 'completely', 'totally', 'absolutely', 'definitely', 'certainly'},
            'negation': {'not', 'no', 'never', 'nothing', 'nobody', 'nowhere', 'neither', 'nor'},
            'intensifiers': {'so', 'such', 'quite', 'rather', 'pretty', 'fairly', 'really', 'truly', 'deeply'},
            'questioning': {'why', 'how', 'what', 'when', 'where', 'who', 'which', 'whose'},
            'personal_pronouns': {'i', 'you', 'he', 'she', 'it', 'we', 'they', 'me', 'him', 'her', 'us', 'them'},
            'demonstratives': {'this', 'that', 'these', 'those', 'here', 'there'},
            'quantifiers': {'all', 'every', 'each', 'some', 'any', 'many', 'few', 'several', 'most', 'much'}
        }
        return patterns
    
    def _load_pos_patterns(self):
        """Load part-of-speech patterns (simplified without NLTK)"""
        # Simple heuristics for POS detection
        patterns = {
            'verb_endings': {'ed', 'ing', 'en', 's', 'es'},
            'noun_endings': {'tion', 'sion', 'ment', 'ness', 'ity', 'er', 'or', 'ist', 'ism'},
            'adjective_endings': {'able', 'ible', 'ful', 'less', 'ous', 'eous', 'ious', 'ive', 'ic', 'al'},
            'adverb_endings': {'ly', 'ward', 'wise'}
        }
        return patterns
    
    def fit(self, X, y=None):
        """Fit the linguistic analyzer"""
        self.is_fitted_ = True
        return self
    
    def transform(self, X):
        """Extract linguistic features"""
        if not self.is_fitted_:
            raise ValueError("LinguisticAnalyzer must be fitted before transform")
        
        # Convert input to array if needed
        if isinstance(X, pd.Series):
            X = X.values
        elif isinstance(X, list):
            X = np.array(X)
        
        features = []
        
        for text in X:
            text_features = self._extract_linguistic_features(str(text))
            features.append(text_features)
        
        return np.array(features)
    
    def fit_transform(self, X, y=None):
        """Fit and transform in one step"""
        return self.fit(X, y).transform(X)
    
    def _extract_linguistic_features(self, text):
        """Extract comprehensive linguistic features"""
        text_lower = text.lower()
        words = re.findall(r'\b\w+\b', text_lower)
        sentences = re.split(r'[.!?]+', text)
        sentences = [s.strip() for s in sentences if s.strip()]
        
        if len(words) == 0:
            return [0.0] * 25  # Return zeros for empty text
        
        features = []
        
        # Discourse marker features
        discourse_features = self._extract_discourse_features(text_lower, words)
        features.extend(discourse_features)
        
        # Linguistic pattern features
        pattern_features = self._extract_pattern_features(text_lower, words)
        features.extend(pattern_features)
        
        # Syntactic complexity features
        syntax_features = self._extract_syntax_features(text, sentences, words)
        features.extend(syntax_features)
        
        # Coherence and flow features
        coherence_features = self._extract_coherence_features(text, sentences)
        features.extend(coherence_features)
        
        return features
    
    def _extract_discourse_features(self, text_lower, words):
        """Extract discourse marker features"""
        features = []
        total_words = len(words)
        
        # Count discourse markers by category
        for marker_type, markers in self.discourse_markers.items():
            marker_count = 0
            
            # Single word markers
            marker_count += sum(1 for word in words if word in markers)
            
            # Multi-word markers
            for marker in markers:
                if ' ' in marker:
                    marker_count += text_lower.count(marker)
            
            marker_ratio = marker_count / total_words if total_words > 0 else 0
            features.append(marker_ratio)
        
        return features
    
    def _extract_pattern_features(self, text_lower, words):
        """Extract linguistic pattern features"""
        features = []
        total_words = len(words)
        
        # Count linguistic patterns
        for pattern_type, pattern_words in self.linguistic_patterns.items():
            pattern_count = sum(1 for word in words if word in pattern_words)
            pattern_ratio = pattern_count / total_words if total_words > 0 else 0
            features.append(pattern_ratio)
        
        return features
    
    def _extract_syntax_features(self, text, sentences, words):
        """Extract syntactic complexity features"""
        features = []
        
        # Average sentence length
        if sentences:
            avg_sentence_length = len(words) / len(sentences)
        else:
            avg_sentence_length = 0
        features.append(avg_sentence_length)
        
        # Sentence length variance
        if len(sentences) > 1:
            sentence_lengths = [len(sentence.split()) for sentence in sentences]
            mean_length = sum(sentence_lengths) / len(sentence_lengths)
            variance = sum((length - mean_length) ** 2 for length in sentence_lengths) / len(sentence_lengths)
        else:
            variance = 0
        features.append(variance)
        
        # Complex sentence indicators
        complex_indicators = self._count_complex_sentence_indicators(text)
        features.extend(complex_indicators)
        
        return features
    
    def _count_complex_sentence_indicators(self, text):
        """Count indicators of complex sentence structure"""
        indicators = []
        
        # Subordinating conjunctions
        subordinating = ['although', 'because', 'since', 'while', 'whereas', 'if', 'unless', 'when', 'where']
        sub_count = sum(text.lower().count(f' {conj} ') for conj in subordinating)
        indicators.append(sub_count / len(text) * 1000 if text else 0)
        
        # Relative pronouns
        relative_pronouns = ['that', 'which', 'who', 'whom', 'whose', 'where', 'when']
        rel_count = sum(text.lower().count(f' {pron} ') for pron in relative_pronouns)
        indicators.append(rel_count / len(text) * 1000 if text else 0)
        
        # Passive voice indicators (simplified)
        passive_indicators = ['was', 'were', 'been', 'being']
        passive_count = sum(text.lower().count(f' {ind} ') for ind in passive_indicators)
        indicators.append(passive_count / len(text) * 1000 if text else 0)
        
        return indicators
    
    def _extract_coherence_features(self, text, sentences):
        """Extract text coherence and flow features"""
        features = []
        
        # Paragraph structure (approximate)
        paragraphs = text.split('\n\n')
        paragraphs = [p.strip() for p in paragraphs if p.strip()]
        
        # Average paragraph length
        if paragraphs:
            avg_paragraph_length = sum(len(p.split()) for p in paragraphs) / len(paragraphs)
        else:
            avg_paragraph_length = 0
        features.append(avg_paragraph_length)
        
        # Topic coherence (simplified using word repetition)
        coherence_score = self._calculate_lexical_coherence(sentences)
        features.append(coherence_score)
        
        # Transition density
        transition_density = self._calculate_transition_density(text)
        features.append(transition_density)
        
        return features
    
    def _calculate_lexical_coherence(self, sentences):
        """Calculate lexical coherence between sentences"""
        if len(sentences) < 2:
            return 0
        
        coherence_scores = []
        
        for i in range(len(sentences) - 1):
            words1 = set(re.findall(r'\b\w+\b', sentences[i].lower()))
            words2 = set(re.findall(r'\b\w+\b', sentences[i + 1].lower()))
            
            # Remove very common words
            common_words = {'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by'}
            words1 = words1 - common_words
            words2 = words2 - common_words
            
            if words1 and words2:
                overlap = len(words1.intersection(words2))
                union = len(words1.union(words2))
                coherence = overlap / union if union > 0 else 0
                coherence_scores.append(coherence)
        
        return sum(coherence_scores) / len(coherence_scores) if coherence_scores else 0
    
    def _calculate_transition_density(self, text):
        """Calculate density of transition words"""
        transition_words = {
            'however', 'therefore', 'furthermore', 'moreover', 'consequently',
            'nevertheless', 'nonetheless', 'meanwhile', 'additionally', 'similarly',
            'likewise', 'in contrast', 'on the other hand', 'for example', 'for instance'
        }
        
        text_lower = text.lower()
        transition_count = 0
        
        for transition in transition_words:
            if ' ' in transition:
                transition_count += text_lower.count(transition)
            else:
                transition_count += len(re.findall(rf'\b{transition}\b', text_lower))
        
        return transition_count / len(text) * 1000 if text else 0
    
    def get_feature_names(self):
        """Get names of extracted features"""
        feature_names = []
        
        # Discourse marker features
        for marker_type in self.discourse_markers.keys():
            feature_names.append(f'linguistic_{marker_type}_markers_ratio')
        
        # Linguistic pattern features
        for pattern_type in self.linguistic_patterns.keys():
            feature_names.append(f'linguistic_{pattern_type}_ratio')
        
        # Syntax features
        syntax_features = [
            'linguistic_avg_sentence_length',
            'linguistic_sentence_length_variance',
            'linguistic_subordinating_density',
            'linguistic_relative_pronouns_density',
            'linguistic_passive_voice_density'
        ]
        feature_names.extend(syntax_features)
        
        # Coherence features
        coherence_features = [
            'linguistic_avg_paragraph_length',
            'linguistic_lexical_coherence',
            'linguistic_transition_density'
        ]
        feature_names.extend(coherence_features)
        
        return feature_names
    
    def analyze_text_linguistics(self, text):
        """Detailed linguistic analysis of a single text"""
        if not self.is_fitted_:
            raise ValueError("LinguisticAnalyzer must be fitted before analysis")
        
        text_lower = text.lower()
        words = re.findall(r'\b\w+\b', text_lower)
        sentences = re.split(r'[.!?]+', text)
        sentences = [s.strip() for s in sentences if s.strip()]
        
        analysis = {
            'basic_stats': {
                'text_length': len(text),
                'word_count': len(words),
                'sentence_count': len(sentences),
                'avg_words_per_sentence': len(words) / len(sentences) if sentences else 0
            },
            'discourse_markers': {},
            'linguistic_patterns': {},
            'syntactic_complexity': {},
            'coherence_analysis': {}
        }
        
        # Analyze discourse markers
        for marker_type, markers in self.discourse_markers.items():
            found_markers = []
            for word in words:
                if word in markers:
                    found_markers.append(word)
            
            # Check multi-word markers
            for marker in markers:
                if ' ' in marker and marker in text_lower:
                    found_markers.extend([marker] * text_lower.count(marker))
            
            analysis['discourse_markers'][marker_type] = {
                'count': len(found_markers),
                'ratio': len(found_markers) / len(words) if words else 0,
                'markers_found': list(set(found_markers))[:5]  # Top 5 unique markers
            }
        
        # Analyze linguistic patterns
        for pattern_type, pattern_words in self.linguistic_patterns.items():
            found_patterns = [word for word in words if word in pattern_words]
            analysis['linguistic_patterns'][pattern_type] = {
                'count': len(found_patterns),
                'ratio': len(found_patterns) / len(words) if words else 0,
                'patterns_found': list(set(found_patterns))[:5]
            }
        
        # Analyze syntactic complexity
        complex_indicators = self._count_complex_sentence_indicators(text)
        analysis['syntactic_complexity'] = {
            'subordinating_conjunctions_density': complex_indicators[0],
            'relative_pronouns_density': complex_indicators[1],
            'passive_voice_density': complex_indicators[2],
            'sentence_length_variance': self._extract_syntax_features(text, sentences, words)[1],
            'complexity_score': sum(complex_indicators) / len(complex_indicators)
        }
        
        # Analyze coherence
        analysis['coherence_analysis'] = {
            'lexical_coherence': self._calculate_lexical_coherence(sentences),
            'transition_density': self._calculate_transition_density(text),
            'paragraph_structure': len(text.split('\n\n')),
            'overall_coherence_score': (self._calculate_lexical_coherence(sentences) + 
                                      min(1.0, self._calculate_transition_density(text) / 10)) / 2
        }
        
        # Overall assessment
        analysis['overall_assessment'] = {
            'linguistic_sophistication': self._assess_sophistication(analysis),
            'discourse_quality': self._assess_discourse_quality(analysis),
            'potential_anomalies': self._detect_linguistic_anomalies(analysis)
        }
        
        return analysis
    
    def _assess_sophistication(self, analysis):
        """Assess overall linguistic sophistication"""
        sophistication_score = 0
        
        # Discourse marker variety
        marker_variety = len([mt for mt, data in analysis['discourse_markers'].items() if data['count'] > 0])
        sophistication_score += marker_variety / len(self.discourse_markers) * 0.3
        
        # Complex syntax usage
        syntax_score = analysis['syntactic_complexity']['complexity_score']
        sophistication_score += min(syntax_score, 0.02) / 0.02 * 0.3  # Cap and normalize
        
        # Coherence quality
        coherence_score = analysis['coherence_analysis']['overall_coherence_score']
        sophistication_score += coherence_score * 0.4
        
        if sophistication_score > 0.7:
            return 'high'
        elif sophistication_score > 0.4:
            return 'medium'
        else:
            return 'low'
    
    def _assess_discourse_quality(self, analysis):
        """Assess discourse quality and organization"""
        quality_indicators = []
        
        # Balanced use of discourse markers
        marker_counts = [data['count'] for data in analysis['discourse_markers'].values()]
        if marker_counts:
            marker_balance = 1 - (max(marker_counts) - min(marker_counts)) / (sum(marker_counts) + 1)
            quality_indicators.append(marker_balance)
        
        # Coherence score
        quality_indicators.append(analysis['coherence_analysis']['overall_coherence_score'])
        
        # Transition usage
        transition_score = min(1.0, analysis['coherence_analysis']['transition_density'] / 5)
        quality_indicators.append(transition_score)
        
        avg_quality = sum(quality_indicators) / len(quality_indicators) if quality_indicators else 0
        
        if avg_quality > 0.7:
            return 'excellent'
        elif avg_quality > 0.5:
            return 'good'
        elif avg_quality > 0.3:
            return 'fair'
        else:
            return 'poor'
    
    def _detect_linguistic_anomalies(self, analysis):
        """Detect potential linguistic anomalies that might indicate manipulation"""
        anomalies = []
        
        # Excessive use of boosters/intensifiers
        booster_ratio = analysis['linguistic_patterns']['boosters']['ratio']
        if booster_ratio > 0.05:  # More than 5% boosters
            anomalies.append({
                'type': 'excessive_boosters',
                'severity': 'medium',
                'description': f'High use of intensifying language ({booster_ratio:.1%})',
                'examples': analysis['linguistic_patterns']['boosters']['patterns_found']
            })
        
        # Unusual negation patterns
        negation_ratio = analysis['linguistic_patterns']['negation']['ratio']
        if negation_ratio > 0.08:  # More than 8% negation
            anomalies.append({
                'type': 'excessive_negation',
                'severity': 'low',
                'description': f'High use of negative language ({negation_ratio:.1%})',
                'examples': analysis['linguistic_patterns']['negation']['patterns_found']
            })
        
        # Low coherence with high complexity (potential obfuscation)
        coherence = analysis['coherence_analysis']['overall_coherence_score']
        complexity = analysis['syntactic_complexity']['complexity_score']
        if complexity > 0.01 and coherence < 0.3:
            anomalies.append({
                'type': 'complexity_without_coherence',
                'severity': 'high',
                'description': 'Complex language structure with poor coherence (potential obfuscation)',
                'coherence_score': coherence,
                'complexity_score': complexity
            })
        
        # Unusual question density
        question_ratio = analysis['linguistic_patterns']['questioning']['ratio']
        if question_ratio > 0.06:  # More than 6% question words
            anomalies.append({
                'type': 'excessive_questioning',
                'severity': 'medium',
                'description': f'High density of questioning language ({question_ratio:.1%})',
                'examples': analysis['linguistic_patterns']['questioning']['patterns_found']
            })
        
        return anomalies
    
    def get_manipulation_indicators(self, text):
        """Get specific linguistic manipulation indicators"""
        analysis = self.analyze_text_linguistics(text)
        
        indicators = {
            'linguistic_manipulation_score': 0.0,
            'specific_indicators': [],
            'overall_risk': 'low'
        }
        
        # Check for manipulation patterns
        manipulation_score = 0
        
        # Excessive emphasis/boosters
        if analysis['linguistic_patterns']['boosters']['ratio'] > 0.05:
            manipulation_score += 0.3
            indicators['specific_indicators'].append('excessive_emphasis')
        
        # Lack of hedging (overconfidence)
        if analysis['linguistic_patterns']['hedge_words']['ratio'] < 0.01:
            manipulation_score += 0.2
            indicators['specific_indicators'].append('overconfident_language')
        
        # Poor coherence (confusion tactics)
        if analysis['coherence_analysis']['overall_coherence_score'] < 0.3:
            manipulation_score += 0.4
            indicators['specific_indicators'].append('poor_coherence')
        
        # Excessive questioning (doubt seeding)
        if analysis['linguistic_patterns']['questioning']['ratio'] > 0.06:
            manipulation_score += 0.3
            indicators['specific_indicators'].append('excessive_questioning')
        
        # High personal pronoun usage (false intimacy)
        if analysis['linguistic_patterns']['personal_pronouns']['ratio'] > 0.15:
            manipulation_score += 0.2
            indicators['specific_indicators'].append('false_intimacy')
        
        indicators['linguistic_manipulation_score'] = min(1.0, manipulation_score)
        
        # Overall risk assessment
        if manipulation_score > 0.7:
            indicators['overall_risk'] = 'high'
        elif manipulation_score > 0.4:
            indicators['overall_risk'] = 'medium'
        else:
            indicators['overall_risk'] = 'low'
        
        return indicators