File size: 25,151 Bytes
cc910a7 c4fbb31 cc910a7 6e0beb3 cc910a7 6e0beb3 075b701 c4fbb31 6e0beb3 075b701 6e0beb3 cc910a7 075b701 ed74282 e847844 2d18777 cc910a7 2d18777 cc910a7 c745fee cc910a7 2d18777 e847844 c745fee e847844 c745fee e847844 2d18777 e847844 cc910a7 2d18777 e847844 cc910a7 e847844 2d18777 e847844 cc910a7 e847844 c745fee 2d18777 c745fee 2d18777 cc910a7 e847844 5bb1d1a 2d18777 e847844 2d18777 cc910a7 e847844 cc910a7 2d18777 e847844 c678ee1 e847844 2d18777 cc910a7 091b449 f984f56 2d38242 f984f56 2d38242 2d18777 f984f56 6e0beb3 f984f56 075b701 f984f56 075b701 f984f56 075b701 f984f56 075b701 f984f56 6e0beb3 c745fee e847844 c745fee cc910a7 2d18777 c745fee e847844 c678ee1 e847844 5bb1d1a cc910a7 2d18777 e847844 cc910a7 e847844 c678ee1 f984f56 c678ee1 e847844 2358630 e847844 2358630 e847844 2358630 c678ee1 e847844 c4fbb31 2358630 c4fbb31 2358630 c678ee1 6e0beb3 ed74282 c4fbb31 6e0beb3 c2c8dfb c4fbb31 c2c8dfb c4fbb31 44dceca f984f56 44dceca f984f56 44dceca f984f56 9702556 c678ee1 f984f56 cc910a7 f984f56 075b701 5bb1d1a f984f56 5bb1d1a f984f56 8b0a2e5 cc910a7 2d18777 e847844 cc910a7 2d18777 f984f56 e847844 f984f56 e847844 cc910a7 f984f56 cc910a7 f984f56 cc910a7 2d18777 cc910a7 c745fee cc910a7 2d18777 cc910a7 c745fee cc910a7 e847844 cc910a7 2d18777 e847844 cc910a7 e847844 2d18777 680d58d c745fee e847844 cc910a7 e847844 680d58d e847844 2d18777 e847844 5bb1d1a cc910a7 2d18777 cc910a7 c745fee cc910a7 2d18777 e847844 9702556 e847844 9702556 e847844 9702556 5bb1d1a e847844 9702556 e847844 9702556 e847844 9702556 5bb1d1a e847844 5bb1d1a cc910a7 9440fd6 e847844 9440fd6 e847844 9440fd6 cc910a7 e847844 44dceca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 |
import os
import sys
import json
import shutil
import joblib
import pandas as pd
from pathlib import Path
from datetime import datetime
from sklearn.pipeline import Pipeline
from sklearn.ensemble import VotingClassifier
from sklearn.model_selection import cross_validate
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, f1_score
from sklearn.feature_extraction.text import TfidfVectorizer
# Import the new path manager# Cal
try:
from path_config import path_manager
except ImportError:
# Add current directory to path
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from path_config import path_manager
def log_step(message):
"""Log initialization steps"""
print(f"[{datetime.now().strftime('%H:%M:%S')}] {message}")
def create_directories():
"""Create necessary directories"""
log_step("Creating directory structure...")
# Directories are already created by path_manager initialization
directories = [
path_manager.get_data_path(),
path_manager.get_model_path(),
path_manager.get_logs_path(),
path_manager.get_cache_path(),
path_manager.get_temp_path()
]
for dir_path in directories:
if dir_path.exists():
log_step(f"β
Directory exists: {dir_path}")
else:
try:
dir_path.mkdir(parents=True, exist_ok=True)
log_step(f"β
Created directory: {dir_path}")
except Exception as e:
log_step(f"β οΈ Failed to create {dir_path}: {e}")
return False
# Create kaggle subdirectory
kaggle_dir = path_manager.get_data_path('kaggle')
kaggle_dir.mkdir(parents=True, exist_ok=True)
log_step(f"β
Created kaggle directory: {kaggle_dir}")
return True
def check_existing_datasets():
"""Check for existing datasets in the project structure"""
log_step("Checking for existing datasets...")
# Check for datasets in the current project structure
base_dir = path_manager.base_paths['base']
# Possible source locations
source_locations = [
base_dir / "data" / "kaggle" / "Fake.csv",
base_dir / "data" / "kaggle" / "True.csv",
base_dir / "data" / "combined_dataset.csv"
]
found_files = []
for source_file in source_locations:
if source_file.exists():
found_files.append(source_file)
log_step(f"β
Found existing dataset: {source_file}")
return found_files
def copy_existing_datasets():
"""Copy existing datasets if they're not in the target location"""
log_step("Copying existing datasets to target locations...")
base_dir = path_manager.base_paths['base']
target_data_dir = path_manager.get_data_path()
# Define source-target pairs
copy_operations = [
(base_dir / "data" / "kaggle" / "Fake.csv", target_data_dir / "kaggle" / "Fake.csv"),
(base_dir / "data" / "kaggle" / "True.csv", target_data_dir / "kaggle" / "True.csv"),
(base_dir / "data" / "combined_dataset.csv", target_data_dir / "combined_dataset.csv")
]
copied_count = 0
for source, target in copy_operations:
# Skip if source and target are the same (already in correct location)
if source == target:
if source.exists():
log_step(f"β
Dataset already in correct location: {target}")
copied_count += 1
continue
if source.exists():
try:
# Ensure target directory exists
target.parent.mkdir(parents=True, exist_ok=True)
# Copy file
shutil.copy2(source, target)
log_step(f"β
Copied {source} β {target}")
copied_count += 1
except Exception as e:
log_step(f"β οΈ Failed to copy {source}: {e}")
else:
log_step(f"β οΈ Source file not found: {source}")
return copied_count > 0
def create_minimal_dataset():
"""Create a minimal dataset if no existing dataset is found"""
log_step("Creating minimal dataset...")
combined_path = path_manager.get_combined_dataset_path()
if combined_path.exists():
log_step(f"β
Combined dataset already exists: {combined_path}")
return True
try:
# Create minimal training data with diverse examples
minimal_data = pd.DataFrame({
'text': [
# Real news examples
'Scientists at MIT have developed a new renewable energy technology that could revolutionize solar power generation.',
'The Federal Reserve announced interest rate decisions following their latest economic review meeting.',
'Local authorities report significant improvements in air quality following new environmental regulations.',
'Research published in Nature journal reveals new insights about climate change adaptation strategies.',
'Economic indicators show steady growth in the manufacturing sector across multiple regions.',
'Healthcare officials recommend updated vaccination schedules based on latest medical research findings.',
'Transportation department announces infrastructure improvements for major highway systems nationwide.',
'Educational institutions implement new digital learning platforms to enhance student engagement.',
'Agricultural experts develop drought-resistant crop varieties to improve food security globally.',
'Technology companies invest heavily in cybersecurity measures to protect user data privacy.',
# Fake news examples
'SHOCKING: Government officials secretly planning to control population through mind control technology.',
'EXCLUSIVE: Celebrities caught in massive alien communication scandal that mainstream media won\'t report.',
'BREAKING: Scientists discover time travel but government hiding the truth from public knowledge.',
'EXPOSED: Pharmaceutical companies deliberately spreading diseases to increase their massive profits.',
'URGENT: Social media platforms using secret algorithms to brainwash users into political compliance.',
'LEAKED: Banking system about to collapse completely, insiders reveal financial catastrophe coming soon.',
'CONFIRMED: Weather modification technology being used to create artificial natural disasters worldwide.',
'REVEALED: Food companies adding dangerous chemicals that cause instant health problems and addiction.',
'CONSPIRACY: Educational system designed to suppress critical thinking and create obedient citizens.',
'TRUTH: Technology giants working with foreign powers to undermine national sovereignty completely.'
],
'label': [
# Real news labels (0)
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
# Fake news labels (1)
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
]
})
# Save the dataset
minimal_data.to_csv(combined_path, index=False)
log_step(f"β
Created minimal dataset with {len(minimal_data)} samples at {combined_path}")
# Verify the file was created correctly
if combined_path.exists():
df_check = pd.read_csv(combined_path)
log_step(f"β
Verified dataset: {len(df_check)} rows loaded successfully")
return True
else:
log_step("β Failed to verify created dataset")
return False
except Exception as e:
log_step(f"β Failed to create minimal dataset: {str(e)}")
return False
def run_initial_training():
"""Run basic model training"""
log_step("Starting initial model training...")
try:
# Get all the paths
model_path = path_manager.get_model_file_path()
vectorizer_path = path_manager.get_vectorizer_path()
pipeline_path = path_manager.get_pipeline_path()
log_step(f"Model path: {model_path}")
log_step(f"Vectorizer path: {vectorizer_path}")
log_step(f"Pipeline path: {pipeline_path}")
# Check if model already exists
if pipeline_path.exists() or (model_path.exists() and vectorizer_path.exists()):
log_step("β
Model files already exist, checking if pipeline needs to be created...")
# If individual components exist but pipeline doesn't, create pipeline
if model_path.exists() and vectorizer_path.exists() and not pipeline_path.exists():
log_step("Creating pipeline from existing components...")
try:
# Load existing components
# model = joblib.load(model_path)
vectorizer = joblib.load(vectorizer_path)
# Create pipeline
# pipeline = Pipeline([
# ('vectorizer', vectorizer),
# ('model', model)
# ])
# Create ensemble method pipeline
# Initialize ensemble model
ensemble_model = VotingClassifier(
estimators=[
('logistic', LogisticRegression(max_iter=1000, random_state=42, class_weight='balanced')),
('random_forest', RandomForestClassifier(n_estimators=50, random_state=42, class_weight='balanced'))
],
voting='soft'
)
pipeline = Pipeline([
('vectorizer', TfidfVectorizer(...)),
('model', ensemble_model) # Use ensemble instead of single model
])
# Save pipeline
joblib.dump(pipeline, pipeline_path)
log_step(f"β
Created pipeline from existing components: {pipeline_path}")
except Exception as e:
log_step(f"β οΈ Failed to create pipeline from existing components: {e}")
return True
# Load dataset
dataset_path = path_manager.get_combined_dataset_path()
if not dataset_path.exists():
log_step("β No dataset available for training")
return False
df = pd.read_csv(dataset_path)
log_step(f"Loaded dataset with {len(df)} samples")
# Validate dataset
if len(df) < 10:
log_step("β Dataset too small for training")
return False
# Prepare data
X = df['text'].values
y = df['label'].values
# Check class distribution
class_counts = pd.Series(y).value_counts()
log_step(f"Class distribution: {class_counts.to_dict()}")
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42, stratify=y if len(class_counts) > 1 else None
)
# Create pipeline with preprocessing
pipeline = Pipeline([
('vectorizer', TfidfVectorizer(
max_features=5000,
stop_words='english',
ngram_range=(1, 2),
min_df=1,
max_df=0.95
)),
('model', LogisticRegression(
max_iter=1000,
random_state=42,
class_weight='balanced'
))
])
# Train model with cross-validation
log_step("Training model with cross-validation...")
# Perform cross-validation before final training
cv_results = cross_validate(
pipeline, X_train, y_train,
cv=3,
scoring=['accuracy', 'f1_weighted', 'precision_weighted', 'recall_weighted'],
return_train_score=True
)
# Train final model on all training data
pipeline.fit(X_train, y_train)
# Evaluate on test set
y_pred = pipeline.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred, average='weighted')
# Calculate quality indicators directly from cv_results
train_acc_mean = float(cv_results['train_accuracy'].mean())
test_acc_mean = float(cv_results['test_accuracy'].mean())
test_acc_std = float(cv_results['test_accuracy'].std())
overfitting_score = train_acc_mean - test_acc_mean
stability_score = 1 - (test_acc_std / test_acc_mean) if test_acc_mean > 0 else 0
# Save CV results for API access
cv_data = {
"methodology": {
"n_splits": 3,
"cv_type": "StratifiedKFold",
"random_state": 42
},
"test_scores": {
"accuracy": {
"mean": test_acc_mean,
"std": test_acc_std,
"scores": cv_results['test_accuracy'].tolist()
},
"f1": {
"mean": float(cv_results['test_f1_weighted'].mean()),
"std": float(cv_results['test_f1_weighted'].std()),
"scores": cv_results['test_f1_weighted'].tolist()
}
},
"train_scores": {
"accuracy": {
"mean": train_acc_mean,
"std": float(cv_results['train_accuracy'].std()),
"scores": cv_results['train_accuracy'].tolist()
}
},
"performance_indicators": {
"overfitting_score": overfitting_score,
"stability_score": stability_score
}
}
# Save CV results
cv_results_path = path_manager.get_logs_path("cv_results.json")
with open(cv_results_path, 'w') as f:
json.dump(cv_data, f, indent=2)
log_step(f"Saved CV results to: {cv_results_path}")
# Ensure model directory exists
model_path.parent.mkdir(parents=True, exist_ok=True)
# Save complete pipeline FIRST (this is the priority)
log_step(f"Saving pipeline to: {pipeline_path}")
joblib.dump(pipeline, pipeline_path)
# Verify pipeline was saved
if pipeline_path.exists():
log_step(f"β
Pipeline saved successfully to {pipeline_path}")
# Test loading the pipeline
try:
test_pipeline = joblib.load(pipeline_path)
test_pred = test_pipeline.predict(["This is a test"])
log_step(f"β
Pipeline verification successful: {test_pred}")
except Exception as e:
log_step(f"β οΈ Pipeline verification failed: {e}")
else:
log_step(f"β Pipeline was not saved to {pipeline_path}")
# Save individual components for backward compatibility
try:
joblib.dump(pipeline.named_steps['model'], model_path)
joblib.dump(pipeline.named_steps['vectorizer'], vectorizer_path)
log_step(f"β
Saved individual components")
except Exception as e:
log_step(f"β οΈ Failed to save individual components: {e}")
# Save metadata
metadata = {
"model_version": "v1.0_init",
"model_type": "ensemble_voting_pipeline", # "logistic_regression_pipeline",
"test_accuracy": float(accuracy),
"test_f1": float(f1),
"train_size": len(X_train),
"test_size": len(X_test),
"timestamp": datetime.now().isoformat(),
"training_method": "initialization",
"environment": path_manager.environment,
"data_path": str(dataset_path),
"class_distribution": class_counts.to_dict(),
"pipeline_created": pipeline_path.exists(),
"individual_components_created": model_path.exists() and vectorizer_path.exists(),
"cv_f1_mean": float(cv_results['test_f1_weighted'].mean()),
"cv_f1_std": float(cv_results['test_f1_weighted'].std()),
"cv_accuracy_mean": float(cv_results['test_accuracy'].mean()),
"cv_accuracy_std": float(cv_results['test_accuracy'].std()),
"overfitting_score": cv_data['performance_indicators']['overfitting_score'],
"stability_score": cv_data['performance_indicators']['stability_score']
}
metadata_path = path_manager.get_metadata_path()
with open(metadata_path, 'w') as f:
json.dump(metadata, f, indent=2)
log_step(f"β
Training completed successfully")
log_step(f" Accuracy: {accuracy:.4f}")
log_step(f" F1 Score: {f1:.4f}")
log_step(f" Pipeline saved: {pipeline_path.exists()}")
log_step(f" Model saved to: {model_path}")
log_step(f" Vectorizer saved to: {vectorizer_path}")
return True
except Exception as e:
log_step(f"β Training failed: {str(e)}")
import traceback
log_step(f"β Traceback: {traceback.format_exc()}")
return False
def create_initial_logs():
"""Create initial log files"""
log_step("Creating initial log files...")
try:
# Activity log
activity_log = [{
"timestamp": datetime.now().strftime("%Y-%m-%d %I:%M %p"),
"event": "System initialized successfully",
"level": "INFO",
"environment": path_manager.environment
}]
activity_log_path = path_manager.get_activity_log_path()
with open(activity_log_path, 'w') as f:
json.dump(activity_log, f, indent=2)
log_step(f"β
Created activity log: {activity_log_path}")
# Create monitoring directory structure
monitor_dir = path_manager.get_logs_path("monitor")
monitor_dir.mkdir(parents=True, exist_ok=True)
log_step(f"β
Created monitor directory: {monitor_dir}")
# Create empty monitoring logs
monitoring_log_path = path_manager.get_logs_path("monitoring_log.json")
with open(monitoring_log_path, 'w') as f:
json.dump([], f)
log_step(f"β
Created monitoring log: {monitoring_log_path}")
# Create monitor-specific log files
monitor_log_files = [
"monitor/predictions.json",
"monitor/metrics.json",
"monitor/alerts.json"
]
for log_file in monitor_log_files:
log_path = path_manager.get_logs_path(log_file)
log_path.parent.mkdir(parents=True, exist_ok=True) # Ensure parent dir exists
if not log_path.exists():
with open(log_path, 'w') as f:
json.dump([], f)
log_step(f"β
Created {log_file}")
# Create other necessary log files
log_files = [
"drift_history.json",
"drift_alerts.json",
"scheduler_execution.json",
"scheduler_errors.json"
]
for log_file in log_files:
log_path = path_manager.get_logs_path(log_file)
if not log_path.exists():
with open(log_path, 'w') as f:
json.dump([], f)
log_step(f"β
Created {log_file}")
return True
except Exception as e:
log_step(f"β Log creation failed: {str(e)}")
return False
def verify_system():
"""Verify that the system is properly initialized"""
log_step("Verifying system initialization...")
# Check critical files
critical_files = [
(path_manager.get_combined_dataset_path(), "Combined dataset"),
(path_manager.get_model_file_path(), "Model file"),
(path_manager.get_vectorizer_path(), "Vectorizer file"),
(path_manager.get_pipeline_path(), "Pipeline file"),
(path_manager.get_metadata_path(), "Metadata file"),
(path_manager.get_activity_log_path(), "Activity log")
]
all_good = True
for file_path, description in critical_files:
if file_path.exists():
log_step(f"β
{description}: {file_path}")
else:
log_step(f"β Missing {description}: {file_path}")
if description == "Pipeline file":
# Pipeline is critical, mark as not all good
all_good = False
# Test model loading - prioritize pipeline
try:
import joblib
pipeline_path = path_manager.get_pipeline_path()
if pipeline_path.exists():
pipeline = joblib.load(pipeline_path)
test_pred = pipeline.predict(["This is a test text"])
log_step(f"β
Pipeline test prediction successful: {test_pred}")
else:
log_step("β οΈ Pipeline not available, testing individual components...")
model_path = path_manager.get_model_file_path()
vectorizer_path = path_manager.get_vectorizer_path()
if model_path.exists() and vectorizer_path.exists():
model = joblib.load(model_path)
vectorizer = joblib.load(vectorizer_path)
test_text_vec = vectorizer.transform(["This is a test text"])
test_pred = model.predict(test_text_vec)
log_step(f"β
Individual components test prediction successful: {test_pred}")
else:
log_step("β No working model components found")
all_good = False
except Exception as e:
log_step(f"β Model test failed: {e}")
all_good = False
return all_good
def main():
"""Main initialization function"""
log_step("π Starting system initialization...")
log_step(f"π Environment: {path_manager.environment}")
log_step(f"π Base directory: {path_manager.base_paths['base']}")
log_step(f"π Data directory: {path_manager.base_paths['data']}")
log_step(f"π€ Model directory: {path_manager.base_paths['model']}")
steps = [
("Directory Creation", create_directories),
("Existing Dataset Copy", copy_existing_datasets),
("Minimal Dataset Creation", create_minimal_dataset),
("Model Training", run_initial_training),
("Log File Creation", create_initial_logs),
("System Verification", verify_system)
]
failed_steps = []
completed_steps = []
for step_name, step_function in steps:
try:
log_step(f"π Starting: {step_name}")
if step_function():
log_step(f"β
{step_name} completed")
completed_steps.append(step_name)
else:
log_step(f"β {step_name} failed")
failed_steps.append(step_name)
except Exception as e:
log_step(f"β {step_name} failed: {str(e)}")
failed_steps.append(step_name)
# Summary
log_step(f"\nπ Initialization Summary:")
log_step(f" β
Completed: {len(completed_steps)}/{len(steps)} steps")
log_step(f" β Failed: {len(failed_steps)}/{len(steps)} steps")
if completed_steps:
log_step(f" Completed steps: {', '.join(completed_steps)}")
if failed_steps:
log_step(f" Failed steps: {', '.join(failed_steps)}")
log_step(f"β οΈ Initialization completed with {len(failed_steps)} failed steps")
else:
log_step("π System initialization completed successfully!")
# Environment info
log_step(f"\nπ Environment Information:")
env_info = path_manager.get_environment_info()
log_step(f" Environment: {env_info['environment']}")
log_step(f" Available datasets: {sum(env_info['available_datasets'].values())}")
log_step(f" Available models: {sum(env_info['available_models'].values())}")
# Final pipeline check
pipeline_path = path_manager.get_pipeline_path()
log_step(f"\nπ― Final Pipeline Check:")
log_step(f" Pipeline path: {pipeline_path}")
log_step(f" Pipeline exists: {pipeline_path.exists()}")
if pipeline_path.exists():
try:
import joblib
pipeline = joblib.load(pipeline_path)
log_step(f" Pipeline loadable: β
")
log_step(f" Pipeline steps: {list(pipeline.named_steps.keys())}")
except Exception as e:
log_step(f" Pipeline load error: {e}")
log_step("\nπ― System ready for use!")
return len(failed_steps) == 0
if __name__ == "__main__":
success = main()
if not success:
sys.exit(1) |