File size: 84,100 Bytes
4798f78 c84e11d 7e70d4f c84e11d efab419 c84e11d efab419 c84e11d 391b3f4 c84e11d efab419 7e70d4f efab419 dbb9a1a 4798f78 dbb9a1a efab419 4798f78 efab419 7e70d4f 4798f78 9cbcf89 efab419 7e70d4f 9cbcf89 dbb9a1a 9cbcf89 dbb9a1a 9cbcf89 dbb9a1a 9cbcf89 dbb9a1a 9cbcf89 dbb9a1a 9cbcf89 dbb9a1a 9cbcf89 dbb9a1a 9cbcf89 dbb9a1a 9cbcf89 dbb9a1a 9cbcf89 dbb9a1a 9cbcf89 dbb9a1a 9cbcf89 dbb9a1a 9cbcf89 dbb9a1a 9cbcf89 dbb9a1a 9cbcf89 dbb9a1a 9cbcf89 dbb9a1a 4798f78 dbb9a1a 4798f78 dbb9a1a 4798f78 dbb9a1a 4798f78 dbb9a1a 9cbcf89 4798f78 efab419 4798f78 dbb9a1a 4798f78 9cbcf89 4798f78 9cbcf89 4798f78 efab419 9cbcf89 efab419 9cbcf89 efab419 9cbcf89 efab419 9cbcf89 efab419 9cbcf89 efab419 9cbcf89 efab419 9cbcf89 efab419 9cbcf89 4798f78 efab419 dbb9a1a efab419 4798f78 9cbcf89 efab419 9cbcf89 efab419 9cbcf89 efab419 9cbcf89 efab419 9cbcf89 efab419 9cbcf89 efab419 9cbcf89 efab419 9cbcf89 efab419 4798f78 efab419 4798f78 efab419 4798f78 9cbcf89 4798f78 9cbcf89 4798f78 9cbcf89 4798f78 9cbcf89 4798f78 9cbcf89 4798f78 9cbcf89 4798f78 9cbcf89 4798f78 efab419 4798f78 efab419 9cbcf89 efab419 4798f78 efab419 9cbcf89 dbb9a1a efab419 4798f78 efab419 9cbcf89 4798f78 9cbcf89 4798f78 9cbcf89 4798f78 dbb9a1a 9cbcf89 dbb9a1a 4798f78 dbb9a1a efab419 dbb9a1a 4798f78 9cbcf89 4798f78 9cbcf89 4798f78 dbb9a1a 4798f78 dbb9a1a 9cbcf89 dbb9a1a 4798f78 efab419 dbb9a1a efab419 9cbcf89 dbb9a1a 9cbcf89 dbb9a1a efab419 9cbcf89 dbb9a1a efab419 dbb9a1a efab419 dbb9a1a efab419 dbb9a1a 9cbcf89 dbb9a1a 9cbcf89 dbb9a1a 9cbcf89 dbb9a1a efab419 9cbcf89 efab419 9cbcf89 efab419 9cbcf89 efab419 9cbcf89 efab419 9cbcf89 efab419 9cbcf89 efab419 dbb9a1a 9cbcf89 4798f78 dbb9a1a efab419 4798f78 efab419 4798f78 dbb9a1a 4798f78 efab419 9cbcf89 dbb9a1a 9cbcf89 dbb9a1a 4798f78 dbb9a1a 9cbcf89 dbb9a1a 4798f78 9cbcf89 dbb9a1a 9cbcf89 dbb9a1a 4798f78 efab419 9cbcf89 4798f78 9cbcf89 efab419 9cbcf89 efab419 9cbcf89 efab419 dbb9a1a 4798f78 9cbcf89 4798f78 efab419 dbb9a1a 9cbcf89 4798f78 9cbcf89 dbb9a1a efab419 9cbcf89 efab419 4798f78 efab419 4798f78 efab419 9cbcf89 4798f78 9cbcf89 efab419 9cbcf89 4798f78 9cbcf89 4798f78 efab419 9cbcf89 efab419 dbb9a1a efab419 9cbcf89 dbb9a1a efab419 9cbcf89 efab419 dbb9a1a 4798f78 9cbcf89 4798f78 efab419 9cbcf89 dbb9a1a efab419 dbb9a1a 9cbcf89 4798f78 9cbcf89 dbb9a1a 4798f78 efab419 4798f78 dbb9a1a 9cbcf89 efab419 9cbcf89 efab419 dbb9a1a 4798f78 dbb9a1a efab419 9cbcf89 4798f78 dbb9a1a efab419 dbb9a1a efab419 7e70d4f c84e11d 9cbcf89 c84e11d 9cbcf89 c84e11d 9cbcf89 c84e11d 9cbcf89 c84e11d 9cbcf89 c84e11d 9cbcf89 c84e11d 4798f78 c84e11d 9cbcf89 c84e11d 9cbcf89 c84e11d 9cbcf89 c84e11d 9cbcf89 4798f78 c84e11d 4798f78 c84e11d 9cbcf89 4798f78 c84e11d 9cbcf89 c84e11d 9cbcf89 7e70d4f 4798f78 9cbcf89 efab419 7e70d4f efab419 7e70d4f 4798f78 7e70d4f 461fece |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 |
# Enhanced version with LightGBM, ensemble voting, and comprehensive cross-validation
import json
import shutil
import joblib
import logging
import hashlib
import schedule
import threading
import numpy as np
import pandas as pd
from scipy import stats
from pathlib import Path
import time as time_module
from datetime import datetime, timedelta
from typing import Dict, Tuple, Optional, Any, List
from monitor.monitor_drift import AdvancedDriftMonitor
import warnings
warnings.filterwarnings('ignore')
# Scikit-learn imports
from sklearn.metrics import (
accuracy_score, precision_score, recall_score, f1_score,
roc_auc_score, confusion_matrix, classification_report
)
from sklearn.model_selection import (
cross_val_score, StratifiedKFold, cross_validate, train_test_split, GridSearchCV
)
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import FunctionTransformer
from sklearn.feature_selection import SelectKBest, chi2
# Import LightGBM
import lightgbm as lgb
# Import enhanced feature engineering components
try:
from features.feature_engineer import AdvancedFeatureEngineer, create_enhanced_pipeline, analyze_feature_importance
from features.sentiment_analyzer import SentimentAnalyzer
from features.readability_analyzer import ReadabilityAnalyzer
from features.entity_analyzer import EntityAnalyzer
from features.linguistic_analyzer import LinguisticAnalyzer
ENHANCED_FEATURES_AVAILABLE = True
except ImportError as e:
ENHANCED_FEATURES_AVAILABLE = False
logging.warning(f"Enhanced features not available in retrain.py, falling back to basic TF-IDF: {e}")
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('/tmp/model_retraining.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Log enhanced feature availability
if ENHANCED_FEATURES_AVAILABLE:
logger.info("Enhanced feature engineering components loaded for retraining")
else:
logger.warning("Enhanced features not available - using standard TF-IDF for retraining")
def preprocess_text_function(texts):
"""Standalone function for text preprocessing - pickle-safe"""
import re
def clean_single_text(text):
text = str(text)
text = re.sub(r'http\S+|www\S+|https\S+', '', text)
text = re.sub(r'\S+@\S+', '', text)
text = re.sub(r'[!]{2,}', '!', text)
text = re.sub(r'[?]{2,}', '?', text)
text = re.sub(r'[.]{3,}', '...', text)
text = re.sub(r'[^a-zA-Z\s.!?]', '', text)
text = re.sub(r'\s+', ' ', text)
return text.strip().lower()
processed = []
for text in texts:
processed.append(clean_single_text(text))
return processed
class CVModelComparator:
"""Advanced model comparison using cross-validation and statistical tests with enhanced features"""
def __init__(self, cv_folds: int = 5, random_state: int = 42):
self.cv_folds = cv_folds
self.random_state = random_state
def create_cv_strategy(self, X, y) -> StratifiedKFold:
"""Create appropriate CV strategy based on data characteristics"""
n_samples = len(X)
min_samples_per_fold = 3
max_folds = n_samples // min_samples_per_fold
unique_classes = np.unique(y)
min_class_count = min([np.sum(y == cls) for cls in unique_classes])
max_folds_by_class = min_class_count
actual_folds = max(2, min(self.cv_folds, max_folds, max_folds_by_class))
logger.info(f"Using {actual_folds} CV folds for enhanced model comparison")
return StratifiedKFold(
n_splits=actual_folds,
shuffle=True,
random_state=self.random_state
)
def perform_model_cv_evaluation(self, model, X, y, cv_strategy=None) -> Dict:
"""Perform comprehensive CV evaluation of a model with enhanced features"""
if cv_strategy is None:
cv_strategy = self.create_cv_strategy(X, y)
logger.info(f"Performing enhanced CV evaluation with {cv_strategy.n_splits} folds...")
scoring_metrics = {
'accuracy': 'accuracy',
'precision': 'precision_weighted',
'recall': 'recall_weighted',
'f1': 'f1_weighted',
'roc_auc': 'roc_auc'
}
try:
cv_scores = cross_validate(
model, X, y,
cv=cv_strategy,
scoring=scoring_metrics,
return_train_score=True,
n_jobs=1,
verbose=0
)
cv_results = {
'n_splits': cv_strategy.n_splits,
'test_scores': {},
'train_scores': {},
'fold_results': [],
'feature_engineering_type': self._detect_feature_type(model)
}
# Process results for each metric
for metric_name in scoring_metrics.keys():
test_key = f'test_{metric_name}'
train_key = f'train_{metric_name}'
if test_key in cv_scores:
test_scores = cv_scores[test_key]
cv_results['test_scores'][metric_name] = {
'mean': float(np.mean(test_scores)),
'std': float(np.std(test_scores)),
'min': float(np.min(test_scores)),
'max': float(np.max(test_scores)),
'scores': test_scores.tolist()
}
if train_key in cv_scores:
train_scores = cv_scores[train_key]
cv_results['train_scores'][metric_name] = {
'mean': float(np.mean(train_scores)),
'std': float(np.std(train_scores)),
'scores': train_scores.tolist()
}
# Individual fold results
for fold_idx in range(cv_strategy.n_splits):
fold_result = {
'fold': fold_idx + 1,
'test_scores': {},
'train_scores': {}
}
for metric_name in scoring_metrics.keys():
test_key = f'test_{metric_name}'
train_key = f'train_{metric_name}'
if test_key in cv_scores:
fold_result['test_scores'][metric_name] = float(cv_scores[test_key][fold_idx])
if train_key in cv_scores:
fold_result['train_scores'][metric_name] = float(cv_scores[train_key][fold_idx])
cv_results['fold_results'].append(fold_result)
# Calculate overfitting and stability scores
if 'accuracy' in cv_results['test_scores'] and 'accuracy' in cv_results['train_scores']:
train_mean = cv_results['train_scores']['accuracy']['mean']
test_mean = cv_results['test_scores']['accuracy']['mean']
cv_results['overfitting_score'] = float(train_mean - test_mean)
test_std = cv_results['test_scores']['accuracy']['std']
cv_results['stability_score'] = float(1 - (test_std / test_mean)) if test_mean > 0 else 0
return cv_results
except Exception as e:
logger.error(f"Enhanced CV evaluation failed: {e}")
return {'error': str(e), 'n_splits': cv_strategy.n_splits}
def _detect_feature_type(self, model) -> str:
"""Detect whether model uses enhanced or standard features"""
try:
if hasattr(model, 'named_steps'):
if 'enhanced_features' in model.named_steps:
return 'enhanced'
elif 'vectorize' in model.named_steps:
return 'standard_tfidf'
return 'unknown'
except:
return 'unknown'
def compare_models_with_cv(self, model1, model2, X, y, model1_name="Production", model2_name="Candidate") -> Dict:
"""Compare two models using cross-validation with enhanced feature awareness"""
logger.info(f"Comparing {model1_name} vs {model2_name} models using enhanced CV...")
try:
cv_strategy = self.create_cv_strategy(X, y)
# Evaluate both models with same CV folds
results1 = self.perform_model_cv_evaluation(model1, X, y, cv_strategy)
results2 = self.perform_model_cv_evaluation(model2, X, y, cv_strategy)
if 'error' in results1 or 'error' in results2:
return {
'error': 'One or both models failed CV evaluation',
'model1_results': results1,
'model2_results': results2
}
# Statistical comparison with feature type awareness
comparison_results = {
'model1_name': model1_name,
'model2_name': model2_name,
'cv_folds': cv_strategy.n_splits,
'model1_cv_results': results1,
'model2_cv_results': results2,
'statistical_tests': {},
'metric_comparisons': {},
'feature_engineering_comparison': {
'model1_features': results1.get('feature_engineering_type', 'unknown'),
'model2_features': results2.get('feature_engineering_type', 'unknown'),
'feature_upgrade': self._assess_feature_upgrade(results1, results2)
}
}
# Compare each metric
for metric in ['accuracy', 'f1', 'precision', 'recall']:
if (metric in results1['test_scores'] and
metric in results2['test_scores']):
scores1 = results1['test_scores'][metric]['scores']
scores2 = results2['test_scores'][metric]['scores']
metric_comparison = self._compare_metric_scores(
scores1, scores2, metric, model1_name, model2_name
)
comparison_results['metric_comparisons'][metric] = metric_comparison
# Enhanced promotion decision logic
promotion_decision = self._make_enhanced_promotion_decision(comparison_results)
comparison_results['promotion_decision'] = promotion_decision
logger.info(f"Enhanced model comparison completed: {promotion_decision['reason']}")
return comparison_results
except Exception as e:
logger.error(f"Enhanced model comparison failed: {e}")
return {'error': str(e)}
def _assess_feature_upgrade(self, results1: Dict, results2: Dict) -> Dict:
"""Assess if there's a feature engineering upgrade"""
feature1 = results1.get('feature_engineering_type', 'unknown')
feature2 = results2.get('feature_engineering_type', 'unknown')
upgrade_assessment = {
'is_upgrade': False,
'upgrade_type': 'none',
'description': 'No feature engineering change detected'
}
if feature1 == 'standard_tfidf' and feature2 == 'enhanced':
upgrade_assessment.update({
'is_upgrade': True,
'upgrade_type': 'standard_to_enhanced',
'description': 'Upgrade from standard TF-IDF to enhanced feature engineering'
})
elif feature1 == 'enhanced' and feature2 == 'standard_tfidf':
upgrade_assessment.update({
'is_upgrade': False,
'upgrade_type': 'enhanced_to_standard',
'description': 'Downgrade from enhanced features to standard TF-IDF'
})
elif feature1 == feature2 and feature1 != 'unknown':
upgrade_assessment.update({
'is_upgrade': False,
'upgrade_type': 'same_features',
'description': f'Both models use {feature1} features'
})
return upgrade_assessment
def _make_enhanced_promotion_decision(self, comparison_results: Dict) -> Dict:
"""Enhanced promotion decision that considers feature engineering upgrades"""
f1_comparison = comparison_results['metric_comparisons'].get('f1', {})
accuracy_comparison = comparison_results['metric_comparisons'].get('accuracy', {})
feature_comparison = comparison_results['feature_engineering_comparison']
promote_candidate = False
promotion_reason = ""
confidence = 0.0
# Factor in feature engineering improvements
feature_upgrade = feature_comparison.get('feature_upgrade', {})
is_feature_upgrade = feature_upgrade.get('is_upgrade', False)
# Enhanced decision logic
if f1_comparison.get('significant_improvement', False):
promote_candidate = True
promotion_reason = f"Significant F1 improvement: {f1_comparison.get('improvement', 0):.4f}"
confidence = 0.8
if is_feature_upgrade:
promotion_reason += " with enhanced feature engineering"
confidence = 0.9
elif is_feature_upgrade and f1_comparison.get('improvement', 0) > 0.005:
# Lower threshold for promotion when upgrading features
promote_candidate = True
promotion_reason = f"Feature engineering upgrade with F1 improvement: {f1_comparison.get('improvement', 0):.4f}"
confidence = 0.7
elif (f1_comparison.get('improvement', 0) > 0.01 and
accuracy_comparison.get('improvement', 0) > 0.01):
promote_candidate = True
promotion_reason = "Practical improvement in both F1 and accuracy"
confidence = 0.6
if is_feature_upgrade:
promotion_reason += " with enhanced features"
confidence = 0.75
elif f1_comparison.get('improvement', 0) > 0.02:
promote_candidate = True
promotion_reason = f"Large F1 improvement: {f1_comparison.get('improvement', 0):.4f}"
confidence = 0.7
else:
if is_feature_upgrade:
promotion_reason = f"Feature upgrade available but insufficient performance gain ({f1_comparison.get('improvement', 0):.4f})"
else:
promotion_reason = "No significant improvement detected"
confidence = 0.3
return {
'promote_candidate': promote_candidate,
'reason': promotion_reason,
'confidence': confidence,
'feature_engineering_factor': is_feature_upgrade,
'feature_upgrade_details': feature_upgrade
}
def _compare_metric_scores(self, scores1: list, scores2: list, metric: str,
model1_name: str, model2_name: str) -> Dict:
"""Compare metric scores between two models using statistical tests"""
try:
# Basic statistics
mean1, mean2 = np.mean(scores1), np.mean(scores2)
std1, std2 = np.std(scores1), np.std(scores2)
improvement = mean2 - mean1
comparison = {
'metric': metric,
f'{model1_name.lower()}_mean': float(mean1),
f'{model2_name.lower()}_mean': float(mean2),
f'{model1_name.lower()}_std': float(std1),
f'{model2_name.lower()}_std': float(std2),
'improvement': float(improvement),
'relative_improvement': float(improvement / mean1 * 100) if mean1 > 0 else 0,
'tests': {}
}
# Paired t-test
try:
t_stat, p_value = stats.ttest_rel(scores2, scores1)
comparison['tests']['paired_ttest'] = {
't_statistic': float(t_stat),
'p_value': float(p_value),
'significant': p_value < 0.05
}
except Exception as e:
logger.warning(f"Paired t-test failed for {metric}: {e}")
# Wilcoxon signed-rank test (non-parametric alternative)
try:
w_stat, w_p_value = stats.wilcoxon(scores2, scores1, alternative='greater')
comparison['tests']['wilcoxon'] = {
'statistic': float(w_stat),
'p_value': float(w_p_value),
'significant': w_p_value < 0.05
}
except Exception as e:
logger.warning(f"Wilcoxon test failed for {metric}: {e}")
# Effect size (Cohen's d)
try:
pooled_std = np.sqrt(((len(scores1) - 1) * std1**2 + (len(scores2) - 1) * std2**2) /
(len(scores1) + len(scores2) - 2))
cohens_d = improvement / pooled_std if pooled_std > 0 else 0
comparison['effect_size'] = float(cohens_d)
except Exception:
comparison['effect_size'] = 0
# Practical significance
practical_threshold = 0.01 # 1% improvement threshold
comparison['practical_significance'] = abs(improvement) > practical_threshold
comparison['significant_improvement'] = (
improvement > practical_threshold and
comparison['tests'].get('paired_ttest', {}).get('significant', False)
)
return comparison
except Exception as e:
logger.error(f"Metric comparison failed for {metric}: {e}")
return {'metric': metric, 'error': str(e)}
class EnsembleManager:
"""Manage ensemble model creation and validation for retraining (matching train.py)"""
def __init__(self, random_state: int = 42):
self.random_state = random_state
def create_ensemble(self, individual_models: Dict[str, Any],
voting: str = 'soft') -> VotingClassifier:
"""Create ensemble from individual models"""
estimators = [(name, model) for name, model in individual_models.items()]
ensemble = VotingClassifier(
estimators=estimators,
voting=voting,
n_jobs=1 # CPU optimization for HFS
)
logger.info(f"Created {voting} voting ensemble with {len(estimators)} models for retraining")
return ensemble
def evaluate_ensemble_vs_individuals(self, ensemble, individual_models: Dict,
X_test, y_test) -> Dict:
"""Compare ensemble performance against individual models"""
results = {}
# Evaluate individual models
for name, model in individual_models.items():
y_pred = model.predict(X_test)
y_pred_proba = model.predict_proba(X_test)[:, 1]
results[name] = {
'accuracy': float(accuracy_score(y_test, y_pred)),
'precision': float(precision_score(y_test, y_pred, average='weighted')),
'recall': float(recall_score(y_test, y_pred, average='weighted')),
'f1': float(f1_score(y_test, y_pred, average='weighted')),
'roc_auc': float(roc_auc_score(y_test, y_pred_proba))
}
# Evaluate ensemble
y_pred_ensemble = ensemble.predict(X_test)
y_pred_proba_ensemble = ensemble.predict_proba(X_test)[:, 1]
results['ensemble'] = {
'accuracy': float(accuracy_score(y_test, y_pred_ensemble)),
'precision': float(precision_score(y_test, y_pred_ensemble, average='weighted')),
'recall': float(recall_score(y_test, y_pred_ensemble, average='weighted')),
'f1': float(f1_score(y_test, y_pred_ensemble, average='weighted')),
'roc_auc': float(roc_auc_score(y_test, y_pred_proba_ensemble))
}
# Calculate improvement over best individual model
best_individual_f1 = max(results[name]['f1'] for name in individual_models.keys())
ensemble_f1 = results['ensemble']['f1']
improvement = ensemble_f1 - best_individual_f1
results['ensemble_analysis'] = {
'best_individual_f1': best_individual_f1,
'ensemble_f1': ensemble_f1,
'improvement': improvement,
'improvement_percentage': (improvement / best_individual_f1) * 100 if best_individual_f1 > 0 else 0,
'is_better': improvement > 0
}
return results
def statistical_ensemble_comparison(self, ensemble, individual_models: Dict,
X, y, cv_manager) -> Dict:
"""Perform statistical comparison between ensemble and individual models"""
cv_strategy = cv_manager.create_cv_strategy(X, y)
results = {}
# Get CV results for ensemble
ensemble_cv = cv_manager.perform_model_cv_evaluation(ensemble, X, y, cv_strategy)
results['ensemble'] = ensemble_cv
# Get CV results for individual models
individual_cv_results = {}
for name, model in individual_models.items():
model_cv = cv_manager.perform_model_cv_evaluation(model, X, y, cv_strategy)
individual_cv_results[name] = model_cv
results[name] = model_cv
# Compare ensemble with each individual model
comparisons = {}
for name, model_cv in individual_cv_results.items():
comparison = cv_manager._compare_metric_scores(
model_cv['test_scores']['f1']['scores'] if 'test_scores' in model_cv and 'f1' in model_cv['test_scores'] else [],
ensemble_cv['test_scores']['f1']['scores'] if 'test_scores' in ensemble_cv and 'f1' in ensemble_cv['test_scores'] else [],
'f1', name, 'ensemble'
)
comparisons[f'ensemble_vs_{name}'] = comparison
results['statistical_comparisons'] = comparisons
# Determine if ensemble should be used
ensemble_f1_scores = ensemble_cv.get('test_scores', {}).get('f1', {}).get('scores', [])
significantly_better_count = 0
for comparison in comparisons.values():
if comparison.get('tests', {}).get('paired_ttest', {}).get('significant', False) and comparison.get('improvement', 0) > 0:
significantly_better_count += 1
results['ensemble_recommendation'] = {
'use_ensemble': significantly_better_count > 0,
'significantly_better_than': significantly_better_count,
'total_comparisons': len(comparisons),
'confidence': significantly_better_count / len(comparisons) if comparisons else 0
}
return results
class EnhancedModelRetrainer:
"""Production-ready model retraining with LightGBM, enhanced features, and ensemble voting"""
def __init__(self):
self.setup_paths()
self.setup_retraining_config()
self.setup_statistical_tests()
self.setup_models() # Add LightGBM and ensemble management
self.cv_comparator = CVModelComparator()
self.ensemble_manager = EnsembleManager()
# Enhanced feature engineering settings
self.enhanced_features_available = ENHANCED_FEATURES_AVAILABLE
self.use_enhanced_features = ENHANCED_FEATURES_AVAILABLE # Default to enhanced if available
self.enable_ensemble = True # Enable ensemble by default
logger.info(f"Enhanced retraining initialized with features: {'enhanced' if self.use_enhanced_features else 'standard'}, ensemble: {self.enable_ensemble}")
def setup_paths(self):
"""Setup all necessary paths"""
self.base_dir = Path("/tmp")
self.data_dir = self.base_dir / "data"
self.model_dir = self.base_dir / "model"
self.logs_dir = self.base_dir / "logs"
self.backup_dir = self.base_dir / "backups"
self.features_dir = self.base_dir / "features" # For enhanced features
# Create directories
for dir_path in [self.data_dir, self.model_dir, self.logs_dir, self.backup_dir, self.features_dir]:
dir_path.mkdir(parents=True, exist_ok=True)
# Current production files
self.prod_model_path = self.model_dir / "model.pkl"
self.prod_vectorizer_path = self.model_dir / "vectorizer.pkl"
self.prod_pipeline_path = self.model_dir / "pipeline.pkl"
self.prod_feature_engineer_path = self.features_dir / "feature_engineer.pkl"
# Candidate files
self.candidate_model_path = self.model_dir / "model_candidate.pkl"
self.candidate_vectorizer_path = self.model_dir / "vectorizer_candidate.pkl"
self.candidate_pipeline_path = self.model_dir / "pipeline_candidate.pkl"
self.candidate_feature_engineer_path = self.features_dir / "feature_engineer_candidate.pkl"
# Data files
self.combined_data_path = self.data_dir / "combined_dataset.csv"
self.scraped_data_path = self.data_dir / "scraped_real.csv"
self.generated_data_path = self.data_dir / "generated_fake.csv"
# Metadata and logs
self.metadata_path = Path("/tmp/metadata.json")
self.retraining_log_path = self.logs_dir / "retraining_log.json"
self.comparison_log_path = self.logs_dir / "model_comparison.json"
self.feature_analysis_log_path = self.logs_dir / "feature_analysis.json"
def setup_retraining_config(self):
"""Setup enhanced retraining configuration"""
self.min_new_samples = 50
self.improvement_threshold = 0.01 # 1% improvement required
self.significance_level = 0.05
self.cv_folds = 5
self.test_size = 0.2
self.random_state = 42
self.max_retries = 3
self.backup_retention_days = 30
# Enhanced feature configuration matching train.py
if self.use_enhanced_features:
self.max_features = 7500
self.feature_selection_k = 3000
else:
self.max_features = 5000
self.feature_selection_k = 2000
self.min_df = 1
self.max_df = 0.95
self.ngram_range = (1, 2)
self.max_iter = 500
self.class_weight = 'balanced'
def setup_statistical_tests(self):
"""Setup statistical test configurations"""
self.statistical_tests = {
'paired_ttest': {'alpha': 0.05, 'name': "Paired T-Test"},
'wilcoxon': {'alpha': 0.05, 'name': "Wilcoxon Signed-Rank Test"},
'mcnemar': {'alpha': 0.05, 'name': "McNemar's Test"}
}
def setup_models(self):
"""Setup model configurations including LightGBM (matching train.py)"""
self.models = {
'logistic_regression': {
'model': LogisticRegression(
max_iter=self.max_iter,
class_weight=self.class_weight,
random_state=self.random_state,
n_jobs=1 # CPU optimization
),
'param_grid': {
'model__C': [0.1, 1, 10],
'model__penalty': ['l2']
}
},
'random_forest': {
'model': RandomForestClassifier(
n_estimators=50, # Reduced for CPU efficiency
class_weight=self.class_weight,
random_state=self.random_state,
n_jobs=1 # CPU optimization
),
'param_grid': {
'model__n_estimators': [50, 100],
'model__max_depth': [10, None]
}
},
'lightgbm': {
'model': lgb.LGBMClassifier(
objective='binary',
boosting_type='gbdt',
num_leaves=31,
max_depth=10,
learning_rate=0.1,
n_estimators=100,
class_weight=self.class_weight,
random_state=self.random_state,
n_jobs=1, # CPU optimization
verbose=-1 # Suppress LightGBM output
),
'param_grid': {
'model__n_estimators': [50, 100],
'model__learning_rate': [0.05, 0.1],
'model__num_leaves': [15, 31]
}
}
}
def detect_production_feature_type(self) -> str:
"""Detect what type of features the production model uses"""
try:
# Check if enhanced feature engineer exists
if self.prod_feature_engineer_path.exists():
return 'enhanced'
# Check pipeline structure
if self.prod_pipeline_path.exists():
pipeline = joblib.load(self.prod_pipeline_path)
if hasattr(pipeline, 'named_steps'):
if 'enhanced_features' in pipeline.named_steps:
return 'enhanced'
elif 'vectorize' in pipeline.named_steps:
return 'standard_tfidf'
# Check metadata
if self.metadata_path.exists():
with open(self.metadata_path, 'r') as f:
metadata = json.load(f)
feature_info = metadata.get('feature_engineering', {})
if feature_info.get('type') == 'enhanced':
return 'enhanced'
return 'standard_tfidf'
except Exception as e:
logger.warning(f"Could not detect production feature type: {e}")
return 'unknown'
def load_existing_metadata(self) -> Optional[Dict]:
"""Load existing model metadata with enhanced feature information"""
try:
if self.metadata_path.exists():
with open(self.metadata_path, 'r') as f:
metadata = json.load(f)
# Log feature engineering information
feature_info = metadata.get('feature_engineering', {})
logger.info(f"Loaded metadata: {metadata.get('model_version', 'Unknown')} with {feature_info.get('type', 'unknown')} features")
return metadata
else:
logger.warning("No existing metadata found")
return None
except Exception as e:
logger.error(f"Failed to load metadata: {str(e)}")
return None
def load_production_model(self) -> Tuple[bool, Optional[Any], str]:
"""Load current production model with enhanced feature support"""
try:
# Detect production feature type
prod_feature_type = self.detect_production_feature_type()
logger.info(f"Production model uses: {prod_feature_type} features")
# Try to load pipeline first (preferred)
if self.prod_pipeline_path.exists():
model = joblib.load(self.prod_pipeline_path)
logger.info("Loaded production pipeline")
return True, model, f"Pipeline loaded successfully ({prod_feature_type} features)"
# Fallback to individual components
elif self.prod_model_path.exists() and self.prod_vectorizer_path.exists():
model = joblib.load(self.prod_model_path)
vectorizer = joblib.load(self.prod_vectorizer_path)
logger.info("Loaded production model and vectorizer components")
return True, (model, vectorizer), f"Model components loaded successfully ({prod_feature_type} features)"
else:
return False, None, "No production model found"
except Exception as e:
error_msg = f"Failed to load production model: {str(e)}"
logger.error(error_msg)
return False, None, error_msg
def load_new_data(self) -> Tuple[bool, Optional[pd.DataFrame], str]:
"""Load and combine all available data"""
try:
logger.info("Loading training data for enhanced retraining...")
dataframes = []
# Load combined dataset (base)
if self.combined_data_path.exists():
df_combined = pd.read_csv(self.combined_data_path)
dataframes.append(df_combined)
logger.info(f"Loaded combined dataset: {len(df_combined)} samples")
# Load scraped real news
if self.scraped_data_path.exists():
df_scraped = pd.read_csv(self.scraped_data_path)
if 'label' not in df_scraped.columns:
df_scraped['label'] = 0 # Real news
dataframes.append(df_scraped)
logger.info(f"Loaded scraped data: {len(df_scraped)} samples")
# Load generated fake news
if self.generated_data_path.exists():
df_generated = pd.read_csv(self.generated_data_path)
if 'label' not in df_generated.columns:
df_generated['label'] = 1 # Fake news
dataframes.append(df_generated)
logger.info(f"Loaded generated data: {len(df_generated)} samples")
if not dataframes:
return False, None, "No data files found"
# Combine all data
df = pd.concat(dataframes, ignore_index=True)
# Data cleaning and validation
df = self.clean_and_validate_data(df)
if len(df) < 100:
return False, None, f"Insufficient data after cleaning: {len(df)} samples"
logger.info(f"Total training data: {len(df)} samples")
return True, df, f"Successfully loaded {len(df)} samples"
except Exception as e:
error_msg = f"Failed to load data: {str(e)}"
logger.error(error_msg)
return False, None, error_msg
def clean_and_validate_data(self, df: pd.DataFrame) -> pd.DataFrame:
"""Clean and validate the training data"""
initial_count = len(df)
# Remove duplicates
df = df.drop_duplicates(subset=['text'], keep='first')
# Remove null values
df = df.dropna(subset=['text', 'label'])
# Validate text quality
df = df[df['text'].astype(str).str.len() > 10]
# Validate labels
df = df[df['label'].isin([0, 1])]
# Remove excessive length texts
df = df[df['text'].astype(str).str.len() < 10000]
logger.info(f"Data cleaning: {initial_count} -> {len(df)} samples")
return df
def create_preprocessing_pipeline(self, use_enhanced: bool = None) -> Pipeline:
"""Create preprocessing pipeline with optional enhanced features (matching train.py)"""
if use_enhanced is None:
use_enhanced = self.use_enhanced_features
if use_enhanced and ENHANCED_FEATURES_AVAILABLE:
logger.info("Creating enhanced feature engineering pipeline for retraining...")
# Create enhanced feature engineer
feature_engineer = AdvancedFeatureEngineer(
enable_sentiment=True,
enable_readability=True,
enable_entities=True,
enable_linguistic=True,
feature_selection_k=self.feature_selection_k,
tfidf_max_features=self.max_features,
ngram_range=self.ngram_range,
min_df=self.min_df,
max_df=self.max_df
)
# Create pipeline with enhanced features
pipeline = Pipeline([
('enhanced_features', feature_engineer),
('model', None) # Will be set during training
])
return pipeline
else:
logger.info("Creating standard TF-IDF pipeline for retraining...")
# Use the standalone function instead of lambda
text_preprocessor = FunctionTransformer(
func=preprocess_text_function,
validate=False
)
# TF-IDF vectorization with optimized parameters
vectorizer = TfidfVectorizer(
max_features=self.max_features,
min_df=self.min_df,
max_df=self.max_df,
ngram_range=self.ngram_range,
stop_words='english',
sublinear_tf=True,
norm='l2'
)
# Feature selection
feature_selector = SelectKBest(
score_func=chi2,
k=min(self.feature_selection_k, self.max_features)
)
# Create standard pipeline
pipeline = Pipeline([
('preprocess', text_preprocessor),
('vectorize', vectorizer),
('feature_select', feature_selector),
('model', None) # Will be set during training
])
return pipeline
def hyperparameter_tuning_with_cv(self, pipeline, X_train, y_train, model_name: str) -> Tuple[Any, Dict]:
"""Perform hyperparameter tuning with nested cross-validation (matching train.py)"""
logger.info(f"Tuning {model_name} for retraining with {'enhanced' if self.use_enhanced_features else 'standard'} features")
try:
# Set the model in the pipeline
pipeline.set_params(model=self.models[model_name]['model'])
# Skip hyperparameter tuning for very small datasets
if len(X_train) < 20:
logger.info(f"Skipping hyperparameter tuning for {model_name} due to small dataset")
pipeline.fit(X_train, y_train)
# Still perform CV evaluation
cv_results = self.cv_comparator.perform_model_cv_evaluation(pipeline, X_train, y_train)
return pipeline, {
'best_params': 'default_parameters',
'best_score': cv_results.get('test_scores', {}).get('f1', {}).get('mean', 'not_calculated'),
'best_estimator': pipeline,
'cross_validation': cv_results,
'note': 'Hyperparameter tuning skipped for small dataset'
}
# Get parameter grid
param_grid = self.models[model_name]['param_grid']
# Create CV strategy
cv_strategy = self.cv_comparator.create_cv_strategy(X_train, y_train)
# Create GridSearchCV with nested cross-validation
grid_search = GridSearchCV(
pipeline,
param_grid,
cv=cv_strategy,
scoring='f1_weighted',
n_jobs=1, # Single job for CPU optimization
verbose=0, # Reduce verbosity for speed
return_train_score=True # For overfitting analysis
)
# Fit grid search
logger.info(f"Starting hyperparameter tuning for {model_name}...")
grid_search.fit(X_train, y_train)
# Perform additional CV on best model
logger.info(f"Performing final CV evaluation for {model_name}...")
best_cv_results = self.cv_comparator.perform_model_cv_evaluation(
grid_search.best_estimator_, X_train, y_train, cv_strategy
)
# Extract results
tuning_results = {
'best_params': grid_search.best_params_,
'best_score': float(grid_search.best_score_),
'best_estimator': grid_search.best_estimator_,
'cv_folds_used': cv_strategy.n_splits,
'cross_validation': best_cv_results,
'grid_search_results': {
'mean_test_scores': grid_search.cv_results_['mean_test_score'].tolist(),
'std_test_scores': grid_search.cv_results_['std_test_score'].tolist(),
'mean_train_scores': grid_search.cv_results_.get('mean_train_score', []).tolist() if 'mean_train_score' in grid_search.cv_results_ else [],
'params': grid_search.cv_results_['params']
}
}
logger.info(f"Hyperparameter tuning completed for {model_name}")
logger.info(f"Best CV score: {grid_search.best_score_:.4f}")
logger.info(f"Best params: {grid_search.best_params_}")
if 'test_scores' in best_cv_results and 'f1' in best_cv_results['test_scores']:
final_f1 = best_cv_results['test_scores']['f1']['mean']
final_f1_std = best_cv_results['test_scores']['f1']['std']
logger.info(f"Final CV F1: {final_f1:.4f} (Β±{final_f1_std:.4f})")
return grid_search.best_estimator_, tuning_results
except Exception as e:
logger.error(f"Hyperparameter tuning failed for {model_name}: {str(e)}")
# Return basic model if tuning fails
try:
pipeline.set_params(model=self.models[model_name]['model'])
pipeline.fit(X_train, y_train)
# Perform basic CV
cv_results = self.cv_comparator.perform_model_cv_evaluation(pipeline, X_train, y_train)
return pipeline, {
'error': str(e),
'fallback': 'simple_training',
'cross_validation': cv_results
}
except Exception as e2:
logger.error(f"Fallback training also failed for {model_name}: {str(e2)}")
raise Exception(f"Both hyperparameter tuning and fallback training failed: {str(e)} | {str(e2)}")
def train_and_evaluate_models(self, X_train, X_test, y_train, y_test) -> Dict:
"""Train and evaluate multiple models including LightGBM with enhanced features and ensemble (matching train.py)"""
results = {}
individual_models = {}
for model_name in self.models.keys():
logger.info(f"Training {model_name} for retraining with {'enhanced' if self.use_enhanced_features else 'standard'} features...")
try:
# Create pipeline (enhanced or standard)
pipeline = self.create_preprocessing_pipeline()
# Hyperparameter tuning with CV
best_model, tuning_results = self.hyperparameter_tuning_with_cv(
pipeline, X_train, y_train, model_name
)
# Store results
results[model_name] = {
'model': best_model,
'tuning_results': tuning_results,
'training_time': datetime.now().isoformat(),
'feature_type': 'enhanced' if self.use_enhanced_features else 'standard'
}
# Store for ensemble creation
individual_models[model_name] = best_model
# Log results
cv_results = tuning_results.get('cross_validation', {})
cv_f1_mean = cv_results.get('test_scores', {}).get('f1', {}).get('mean', 'N/A')
cv_f1_std = cv_results.get('test_scores', {}).get('f1', {}).get('std', 'N/A')
logger.info(f"Model {model_name} - CV F1: {cv_f1_mean:.4f if cv_f1_mean != 'N/A' else cv_f1_mean} "
f"(Β±{cv_f1_std:.4f if cv_f1_std != 'N/A' else cv_f1_std})")
except Exception as e:
logger.error(f"Training failed for {model_name}: {str(e)}")
results[model_name] = {'error': str(e)}
# Create and evaluate ensemble if enabled and we have multiple successful models
if self.enable_ensemble and len(individual_models) >= 2:
logger.info("Creating ensemble model for retraining...")
try:
# Create ensemble
ensemble = self.ensemble_manager.create_ensemble(individual_models, voting='soft')
# Fit ensemble
X_full_train = np.concatenate([X_train, X_test])
y_full_train = np.concatenate([y_train, y_test])
ensemble.fit(X_train, y_train)
# Compare ensemble with individual models using statistical tests
statistical_comparison = self.ensemble_manager.statistical_ensemble_comparison(
ensemble, individual_models, X_full_train, y_full_train, self.cv_comparator
)
# Store ensemble results
results['ensemble'] = {
'model': ensemble,
'statistical_comparison': statistical_comparison,
'training_time': datetime.now().isoformat(),
'feature_type': 'enhanced' if self.use_enhanced_features else 'standard'
}
# Add ensemble to individual models for selection
individual_models['ensemble'] = ensemble
# Log ensemble results
recommendation = statistical_comparison.get('ensemble_recommendation', {})
if recommendation.get('use_ensemble', False):
logger.info(f"β
Ensemble recommended for retraining (confidence: {recommendation.get('confidence', 0):.2f})")
else:
logger.info(f"β Ensemble not recommended for retraining")
except Exception as e:
logger.error(f"Ensemble creation failed for retraining: {str(e)}")
results['ensemble'] = {'error': str(e)}
return results
def select_best_model(self, results: Dict) -> Tuple[str, Any, Dict]:
"""Select the best performing model based on CV results with ensemble consideration (matching train.py)"""
best_model_name = None
best_model = None
best_score = -1
best_metrics = None
# Consider ensemble first if it exists and is recommended
if 'ensemble' in results and 'error' not in results['ensemble']:
ensemble_result = results['ensemble']
statistical_comparison = ensemble_result.get('statistical_comparison', {})
recommendation = statistical_comparison.get('ensemble_recommendation', {})
if recommendation.get('use_ensemble', False):
ensemble_cv = statistical_comparison.get('ensemble', {})
if 'test_scores' in ensemble_cv and 'f1' in ensemble_cv['test_scores']:
f1_score = ensemble_cv['test_scores']['f1']['mean']
if f1_score > best_score:
best_score = f1_score
best_model_name = 'ensemble'
best_model = ensemble_result['model']
best_metrics = {'cross_validation': ensemble_cv}
logger.info("β
Ensemble selected as best model for retraining")
# If ensemble not selected, choose best individual model
if best_model_name is None:
for model_name, result in results.items():
if 'error' in result or model_name == 'ensemble':
continue
# Prioritize CV F1 score if available
tuning_results = result.get('tuning_results', {})
cv_results = tuning_results.get('cross_validation', {})
if 'test_scores' in cv_results and 'f1' in cv_results['test_scores']:
f1_score = cv_results['test_scores']['f1']['mean']
score_type = "CV F1"
else:
f1_score = tuning_results.get('best_score', 0)
score_type = "Grid Search F1"
if f1_score > best_score:
best_score = f1_score
best_model_name = model_name
best_model = result['model']
best_metrics = {'cross_validation': cv_results} if cv_results else tuning_results
if best_model_name is None:
raise ValueError("No models trained successfully for retraining")
score_type = "CV F1" if 'cross_validation' in best_metrics else "Grid Search F1"
logger.info(f"Best model for retraining: {best_model_name} with {score_type} score: {best_score:.4f}")
return best_model_name, best_model, best_metrics
def train_candidate_model(self, df: pd.DataFrame) -> Tuple[bool, Optional[Any], Dict]:
"""Train candidate model with enhanced features and comprehensive CV evaluation"""
try:
logger.info("Training candidate model with enhanced feature engineering and LightGBM...")
# Prepare data
X = df['text'].values
y = df['label'].values
# Determine feature type to use for candidate
candidate_feature_type = 'enhanced' if self.use_enhanced_features else 'standard'
prod_feature_type = self.detect_production_feature_type()
logger.info(f"Training candidate with {candidate_feature_type} features (production uses {prod_feature_type})")
# Additional holdout evaluation
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=self.test_size, stratify=y, random_state=self.random_state
)
# Train and evaluate models including LightGBM and ensemble
results = self.train_and_evaluate_models(X_train, X_test, y_train, y_test)
# Select best model (could be ensemble)
best_model_name, best_model, best_metrics = self.select_best_model(results)
# Train final model on full dataset
final_pipeline = self.create_preprocessing_pipeline(self.use_enhanced_features)
# Replace model component with selected best model
if hasattr(best_model, 'named_steps') and 'model' in best_model.named_steps:
final_pipeline.set_params(model=best_model.named_steps['model'])
elif best_model_name == 'ensemble':
# For ensemble, we need to recreate it with properly fitted individual models
individual_models = {}
for name, result in results.items():
if name != 'ensemble' and 'error' not in result:
# Retrain individual model on full data
individual_pipeline = self.create_preprocessing_pipeline(self.use_enhanced_features)
individual_pipeline.set_params(model=result['model'].named_steps['model'])
individual_pipeline.fit(X, y)
individual_models[name] = individual_pipeline
if len(individual_models) >= 2:
final_ensemble = self.ensemble_manager.create_ensemble(individual_models, voting='soft')
final_ensemble.fit(X, y)
best_model = final_ensemble
else:
# Fallback to best individual model
final_pipeline.fit(X, y)
best_model = final_pipeline
else:
final_pipeline.fit(X, y)
best_model = final_pipeline
# Extract feature information if using enhanced features
feature_analysis = {}
if self.use_enhanced_features and hasattr(best_model, 'named_steps'):
feature_engineer = best_model.named_steps.get('enhanced_features')
if feature_engineer and hasattr(feature_engineer, 'get_feature_metadata'):
try:
feature_analysis = {
'feature_metadata': feature_engineer.get_feature_metadata(),
'feature_importance': feature_engineer.get_feature_importance(top_k=20) if hasattr(feature_engineer, 'get_feature_importance') else {},
'total_features': len(feature_engineer.get_feature_names()) if hasattr(feature_engineer, 'get_feature_names') else 0
}
logger.info(f"Enhanced features extracted: {feature_analysis.get('total_features', 0)} total features")
except Exception as e:
logger.warning(f"Could not extract feature analysis: {e}")
# Perform final CV evaluation on the selected model
cv_results = self.cv_comparator.perform_model_cv_evaluation(best_model, X, y)
# Combine results
evaluation_results = {
'cross_validation': cv_results,
'feature_analysis': feature_analysis,
'feature_type': candidate_feature_type,
'training_samples': len(X),
'test_samples': len(X_test),
'model_selection': {
'selected_model': best_model_name,
'selection_reason': f"Best {best_model_name} based on CV F1 score",
'all_results': {k: v for k, v in results.items() if 'error' not in v}
}
}
# Save candidate model
joblib.dump(best_model, self.candidate_pipeline_path)
if hasattr(best_model, 'named_steps'):
if 'model' in best_model.named_steps:
joblib.dump(best_model.named_steps['model'], self.candidate_model_path)
# Save enhanced features or vectorizer
if 'enhanced_features' in best_model.named_steps:
feature_engineer = best_model.named_steps['enhanced_features']
if hasattr(feature_engineer, 'save_pipeline'):
feature_engineer.save_pipeline(self.candidate_feature_engineer_path)
# Save reference as vectorizer for compatibility
enhanced_ref = {
'type': 'enhanced_features',
'feature_engineer_path': str(self.candidate_feature_engineer_path),
'metadata': feature_analysis.get('feature_metadata', {})
}
joblib.dump(enhanced_ref, self.candidate_vectorizer_path)
elif 'vectorize' in best_model.named_steps:
joblib.dump(best_model.named_steps['vectorize'], self.candidate_vectorizer_path)
elif best_model_name == 'ensemble':
# Save ensemble directly
joblib.dump(best_model, self.candidate_model_path)
# Create dummy vectorizer reference for ensemble
ensemble_ref = {'type': 'ensemble', 'model_type': best_model_name}
joblib.dump(ensemble_ref, self.candidate_vectorizer_path)
# Log results
if 'test_scores' in cv_results and 'f1' in cv_results['test_scores']:
cv_f1_mean = cv_results['test_scores']['f1']['mean']
cv_f1_std = cv_results['test_scores']['f1']['std']
logger.info(f"Candidate model ({best_model_name}) CV F1: {cv_f1_mean:.4f} (Β±{cv_f1_std:.4f})")
logger.info(f"Candidate model training completed with {candidate_feature_type} features")
return True, best_model, evaluation_results
except Exception as e:
error_msg = f"Candidate model training failed: {str(e)}"
logger.error(error_msg)
return False, None, {'error': error_msg}
def compare_models_with_enhanced_cv_validation(self, prod_model, candidate_model, X, y) -> Dict:
"""Compare models using comprehensive cross-validation with enhanced feature awareness"""
logger.info("Performing comprehensive model comparison with enhanced CV...")
try:
# Use the enhanced CV comparator for detailed analysis
comparison_results = self.cv_comparator.compare_models_with_cv(
prod_model, candidate_model, X, y, "Production", "Candidate"
)
if 'error' in comparison_results:
return comparison_results
# Additional legacy format for backward compatibility
legacy_comparison = {
'production_cv_results': comparison_results['model1_cv_results'],
'candidate_cv_results': comparison_results['model2_cv_results'],
'statistical_tests': comparison_results['statistical_tests'],
'promotion_decision': comparison_results['promotion_decision']
}
# Extract key metrics for legacy format
prod_cv = comparison_results['model1_cv_results']
cand_cv = comparison_results['model2_cv_results']
if 'test_scores' in prod_cv and 'test_scores' in cand_cv:
if 'accuracy' in prod_cv['test_scores'] and 'accuracy' in cand_cv['test_scores']:
legacy_comparison.update({
'production_accuracy': prod_cv['test_scores']['accuracy']['mean'],
'candidate_accuracy': cand_cv['test_scores']['accuracy']['mean'],
'absolute_improvement': (cand_cv['test_scores']['accuracy']['mean'] -
prod_cv['test_scores']['accuracy']['mean']),
'relative_improvement': ((cand_cv['test_scores']['accuracy']['mean'] -
prod_cv['test_scores']['accuracy']['mean']) /
prod_cv['test_scores']['accuracy']['mean'] * 100)
})
# Merge detailed and legacy formats
final_results = {**comparison_results, **legacy_comparison}
# Log summary with enhanced feature information
f1_comp = comparison_results.get('metric_comparisons', {}).get('f1', {})
feature_comp = comparison_results.get('feature_engineering_comparison', {})
if f1_comp:
logger.info(f"F1 improvement: {f1_comp.get('improvement', 0):.4f}")
logger.info(f"Significant improvement: {f1_comp.get('significant_improvement', False)}")
if feature_comp:
feature_upgrade = feature_comp.get('feature_upgrade', {})
logger.info(f"Feature engineering: {feature_upgrade.get('description', 'No change')}")
promotion_decision = comparison_results.get('promotion_decision', {})
logger.info(f"Promotion recommendation: {promotion_decision.get('promote_candidate', False)}")
logger.info(f"Reason: {promotion_decision.get('reason', 'Unknown')}")
return final_results
except Exception as e:
logger.error(f"Enhanced model comparison failed: {str(e)}")
return {'error': str(e)}
def create_backup(self) -> bool:
"""Create backup of current production model with enhanced features"""
try:
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
backup_dir = self.backup_dir / f"backup_{timestamp}"
backup_dir.mkdir(parents=True, exist_ok=True)
# Backup files
files_to_backup = [
(self.prod_model_path, backup_dir / "model.pkl"),
(self.prod_vectorizer_path, backup_dir / "vectorizer.pkl"),
(self.prod_pipeline_path, backup_dir / "pipeline.pkl"),
(self.metadata_path, backup_dir / "metadata.json"),
(self.prod_feature_engineer_path, backup_dir / "feature_engineer.pkl") # Enhanced features
]
for source, dest in files_to_backup:
if source.exists():
shutil.copy2(source, dest)
logger.info(f"Backup created: {backup_dir}")
return True
except Exception as e:
logger.error(f"Backup creation failed: {str(e)}")
return False
def promote_candidate_model(self, candidate_model, candidate_metrics: Dict, comparison_results: Dict) -> bool:
"""Promote candidate model to production with enhanced metadata and feature support"""
try:
logger.info("Promoting candidate model to production with enhanced features...")
# Create backup first
if not self.create_backup():
logger.error("Backup creation failed, aborting promotion")
return False
# Copy candidate files to production
shutil.copy2(self.candidate_model_path, self.prod_model_path)
shutil.copy2(self.candidate_vectorizer_path, self.prod_vectorizer_path)
shutil.copy2(self.candidate_pipeline_path, self.prod_pipeline_path)
# Copy enhanced feature engineer if it exists
if self.candidate_feature_engineer_path.exists():
shutil.copy2(self.candidate_feature_engineer_path, self.prod_feature_engineer_path)
logger.info("Enhanced feature engineer promoted to production")
# Update metadata with comprehensive enhanced feature information
metadata = self.load_existing_metadata() or {}
# Increment version
old_version = metadata.get('model_version', 'v1.0')
if old_version.startswith('v'):
try:
major, minor = map(int, old_version[1:].split('.'))
new_version = f"v{major}.{minor + 1}"
except:
new_version = f"v1.{int(datetime.now().timestamp()) % 1000}"
else:
new_version = f"v1.{int(datetime.now().timestamp()) % 1000}"
# Extract metrics from candidate evaluation
cv_results = candidate_metrics.get('cross_validation', {})
feature_analysis = candidate_metrics.get('feature_analysis', {})
model_selection = candidate_metrics.get('model_selection', {})
# Update metadata with comprehensive information
metadata.update({
'model_version': new_version,
'model_type': 'enhanced_retrained_pipeline_cv_ensemble',
'previous_version': old_version,
'promotion_timestamp': datetime.now().isoformat(),
'retrain_trigger': 'enhanced_cv_validated_retrain_with_lightgbm_ensemble',
'training_samples': candidate_metrics.get('training_samples', 'Unknown'),
'test_samples': candidate_metrics.get('test_samples', 'Unknown'),
'selected_model': model_selection.get('selected_model', 'unknown')
})
# Enhanced feature engineering metadata
feature_type = candidate_metrics.get('feature_type', 'unknown')
metadata['feature_engineering'] = {
'type': feature_type,
'enhanced_features_available': ENHANCED_FEATURES_AVAILABLE,
'enhanced_features_used': feature_type == 'enhanced',
'feature_upgrade': comparison_results.get('feature_engineering_comparison', {}).get('feature_upgrade', {})
}
# Add feature analysis if available
if feature_analysis:
feature_metadata = feature_analysis.get('feature_metadata', {})
if feature_metadata:
metadata['enhanced_features'] = {
'total_features': feature_analysis.get('total_features', 0),
'feature_types': feature_metadata.get('feature_types', {}),
'configuration': feature_metadata.get('configuration', {})
}
# Add top features
top_features = feature_analysis.get('feature_importance', {})
if top_features:
metadata['top_features'] = dict(list(top_features.items())[:10])
# Save detailed feature analysis
try:
feature_analysis_data = {
'top_features': top_features,
'feature_metadata': feature_metadata,
'model_version': new_version,
'timestamp': datetime.now().isoformat(),
'feature_type': feature_type
}
with open(self.feature_analysis_log_path, 'w') as f:
json.dump(feature_analysis_data, f, indent=2)
logger.info(f"Feature analysis saved to {self.feature_analysis_log_path}")
except Exception as e:
logger.warning(f"Could not save feature analysis: {e}")
# Add comprehensive CV results
if cv_results and 'test_scores' in cv_results:
metadata['cross_validation'] = {
'n_splits': cv_results.get('n_splits', self.cv_folds),
'test_scores': cv_results['test_scores'],
'train_scores': cv_results.get('train_scores', {}),
'overfitting_score': cv_results.get('overfitting_score', 'Unknown'),
'stability_score': cv_results.get('stability_score', 'Unknown'),
'individual_fold_results': cv_results.get('fold_results', []),
'feature_engineering_type': cv_results.get('feature_engineering_type', feature_type)
}
# Add CV summary statistics
if 'f1' in cv_results['test_scores']:
metadata.update({
'cv_f1_mean': cv_results['test_scores']['f1']['mean'],
'cv_f1_std': cv_results['test_scores']['f1']['std'],
'cv_f1_min': cv_results['test_scores']['f1']['min'],
'cv_f1_max': cv_results['test_scores']['f1']['max'],
'test_f1': cv_results['test_scores']['f1']['mean'], # For compatibility
'test_accuracy': cv_results['test_scores'].get('accuracy', {}).get('mean', 'Unknown')
})
# Add enhanced model comparison results
promotion_decision = comparison_results.get('promotion_decision', {})
metadata['promotion_validation'] = {
'decision_confidence': promotion_decision.get('confidence', 'Unknown'),
'promotion_reason': promotion_decision.get('reason', 'Unknown'),
'comparison_method': 'enhanced_cv_statistical_tests_with_lightgbm_ensemble',
'feature_engineering_factor': promotion_decision.get('feature_engineering_factor', False),
'feature_upgrade_details': promotion_decision.get('feature_upgrade_details', {})
}
# Add enhanced statistical test results
metric_comparisons = comparison_results.get('metric_comparisons', {})
if metric_comparisons:
metadata['statistical_validation'] = {}
for metric, comparison in metric_comparisons.items():
if isinstance(comparison, dict):
metadata['statistical_validation'][metric] = {
'improvement': comparison.get('improvement', 0),
'significant_improvement': comparison.get('significant_improvement', False),
'effect_size': comparison.get('effect_size', 0),
'tests': comparison.get('tests', {})
}
# Add model selection information
metadata['model_selection_details'] = model_selection
metadata['ensemble_enabled'] = self.enable_ensemble
metadata['models_trained'] = list(self.models.keys())
# Save updated metadata
with open(self.metadata_path, 'w') as f:
json.dump(metadata, f, indent=2)
# Log promotion summary
feature_info = ""
if feature_type == 'enhanced':
total_features = feature_analysis.get('total_features', 0)
feature_info = f" with {total_features} enhanced features"
selected_model = model_selection.get('selected_model', 'unknown')
logger.info(f"Model promoted successfully to {new_version} (selected: {selected_model}){feature_info}")
logger.info(f"Promotion reason: {promotion_decision.get('reason', 'Enhanced CV validation passed')}")
return True
except Exception as e:
logger.error(f"Enhanced model promotion failed: {str(e)}")
return False
def log_retraining_session(self, results: Dict):
"""Log comprehensive retraining session results with enhanced feature information"""
try:
log_entry = {
'timestamp': datetime.now().isoformat(),
'results': results,
'session_id': hashlib.md5(str(datetime.now()).encode()).hexdigest()[:8],
'retraining_type': 'enhanced_cv_features_lightgbm_ensemble',
'enhanced_features_used': self.use_enhanced_features,
'enhanced_features_available': ENHANCED_FEATURES_AVAILABLE,
'ensemble_enabled': self.enable_ensemble
}
# Load existing logs
logs = []
if self.retraining_log_path.exists():
try:
with open(self.retraining_log_path, 'r') as f:
logs = json.load(f)
except:
logs = []
# Add new log
logs.append(log_entry)
# Keep only last 100 entries
if len(logs) > 100:
logs = logs[-100:]
# Save logs
with open(self.retraining_log_path, 'w') as f:
json.dump(logs, f, indent=2)
# Also save detailed comparison results
if 'comparison_results' in results:
comparison_logs = []
if self.comparison_log_path.exists():
try:
with open(self.comparison_log_path, 'r') as f:
comparison_logs = json.load(f)
except:
comparison_logs = []
comparison_entry = {
'timestamp': datetime.now().isoformat(),
'session_id': log_entry['session_id'],
'comparison_details': results['comparison_results'],
'enhanced_features_info': {
'used': self.use_enhanced_features,
'available': ENHANCED_FEATURES_AVAILABLE,
'feature_comparison': results['comparison_results'].get('feature_engineering_comparison', {}),
'ensemble_enabled': self.enable_ensemble
}
}
comparison_logs.append(comparison_entry)
if len(comparison_logs) > 50:
comparison_logs = comparison_logs[-50:]
with open(self.comparison_log_path, 'w') as f:
json.dump(comparison_logs, f, indent=2)
except Exception as e:
logger.error(f"Failed to log enhanced retraining session: {str(e)}")
def retrain_model(self) -> Tuple[bool, str]:
"""Main retraining function with enhanced feature engineering, LightGBM, and ensemble voting"""
try:
logger.info("Starting enhanced model retraining with LightGBM and ensemble capabilities...")
# Load existing metadata
existing_metadata = self.load_existing_metadata()
# Load production model
prod_success, prod_model, prod_msg = self.load_production_model()
if not prod_success:
logger.warning(f"No production model found: {prod_msg}")
# Fall back to initial training
try:
from train import main as train_main
train_main()
return True, "Initial enhanced training completed"
except ImportError:
return False, "No production model and cannot import training module"
# Load new data
data_success, df, data_msg = self.load_new_data()
if not data_success:
return False, data_msg
# Check if we have enough new data
if len(df) < self.min_new_samples:
return False, f"Insufficient new data: {len(df)} < {self.min_new_samples}"
# Determine optimal feature engineering strategy
prod_feature_type = self.detect_production_feature_type()
candidate_feature_type = 'enhanced' if self.use_enhanced_features else 'standard'
logger.info(f"Retraining strategy: {prod_feature_type} -> {candidate_feature_type}")
logger.info(f"Models to train: {list(self.models.keys())}")
logger.info(f"Ensemble enabled: {self.enable_ensemble}")
# Train candidate model with enhanced features, LightGBM, and ensemble
candidate_success, candidate_model, candidate_metrics = self.train_candidate_model(df)
if not candidate_success:
return False, f"Enhanced candidate training failed: {candidate_metrics.get('error', 'Unknown error')}"
# Prepare data for model comparison
X = df['text'].values
y = df['label'].values
# Comprehensive model comparison with enhanced CV
comparison_results = self.compare_models_with_enhanced_cv_validation(
prod_model, candidate_model, X, y
)
# Log results with enhanced information
session_results = {
'candidate_metrics': candidate_metrics,
'comparison_results': comparison_results,
'data_size': len(df),
'cv_folds': self.cv_folds,
'retraining_method': 'enhanced_cv_features_lightgbm_ensemble',
'feature_engineering': {
'production_type': prod_feature_type,
'candidate_type': candidate_feature_type,
'feature_upgrade': comparison_results.get('feature_engineering_comparison', {})
},
'models_trained': list(self.models.keys()),
'ensemble_enabled': self.enable_ensemble,
'selected_model': candidate_metrics.get('model_selection', {}).get('selected_model', 'unknown')
}
self.log_retraining_session(session_results)
# Enhanced decision based on CV comparison
promotion_decision = comparison_results.get('promotion_decision', {})
should_promote = promotion_decision.get('promote_candidate', False)
if should_promote:
# Promote candidate model
promotion_success = self.promote_candidate_model(
candidate_model, candidate_metrics, comparison_results
)
if promotion_success:
# Extract improvement information
f1_comp = comparison_results.get('metric_comparisons', {}).get('f1', {})
improvement = f1_comp.get('improvement', 0)
confidence = promotion_decision.get('confidence', 0)
feature_upgrade = promotion_decision.get('feature_engineering_factor', False)
selected_model = candidate_metrics.get('model_selection', {}).get('selected_model', 'unknown')
feature_info = ""
if feature_upgrade:
feature_info = " with enhanced feature engineering upgrade"
elif candidate_feature_type == 'enhanced':
feature_info = " using enhanced features"
model_info = f" (selected: {selected_model})"
if self.enable_ensemble and selected_model == 'ensemble':
model_info += " - ensemble model with LightGBM"
success_msg = (
f"Enhanced model promoted successfully{feature_info}{model_info}! "
f"F1 improvement: {improvement:.4f}, "
f"Confidence: {confidence:.2f}, "
f"Reason: {promotion_decision.get('reason', 'Enhanced CV validation passed')}"
)
logger.info(success_msg)
return True, success_msg
else:
return False, "Enhanced model promotion failed"
else:
# Keep current model
reason = promotion_decision.get('reason', 'No significant improvement detected')
confidence = promotion_decision.get('confidence', 0)
selected_model = candidate_metrics.get('model_selection', {}).get('selected_model', 'unknown')
keep_msg = (
f"Keeping current model based on enhanced CV analysis. "
f"Candidate was {selected_model}, "
f"Reason: {reason}, "
f"Confidence: {confidence:.2f}"
)
logger.info(keep_msg)
return True, keep_msg
except Exception as e:
error_msg = f"Enhanced model retraining failed: {str(e)}"
logger.error(error_msg)
return False, error_msg
def automated_retrain_with_validation(self) -> Tuple[bool, str]:
"""Automated retraining with enhanced validation and feature engineering"""
try:
logger.info("Starting automated enhanced retraining with validation...")
# Use the main enhanced retraining method
success, message = self.retrain_model()
if success:
logger.info("Automated enhanced retraining completed successfully")
return True, f"Enhanced automated retraining: {message}"
else:
logger.error(f"Automated enhanced retraining failed: {message}")
return False, f"Enhanced automated retraining failed: {message}"
except Exception as e:
logger.error(f"Automated enhanced retraining failed: {e}")
return False, f"Automated enhanced retraining failed: {str(e)}"
# Simplified AutomatedRetrainingManager for brevity - keeping core functionality
class AutomatedRetrainingManager:
"""Manages automated retraining triggers and scheduling with enhanced features"""
def __init__(self, base_dir: Path = None):
self.base_dir = base_dir or Path("/tmp")
self.setup_automation_paths()
self.drift_monitor = AdvancedDriftMonitor()
self.retraining_active = False
self.enhanced_features_available = ENHANCED_FEATURES_AVAILABLE
logger.info(f"Automated retraining manager initialized with enhanced features: {self.enhanced_features_available}")
def setup_automation_paths(self):
"""Setup automation-specific paths"""
self.automation_dir = self.base_dir / "automation"
self.automation_dir.mkdir(parents=True, exist_ok=True)
self.automation_log_path = self.automation_dir / "automation_log.json"
def trigger_manual_retraining(self, reason: str = "manual_trigger", use_enhanced: bool = None) -> Dict:
"""Manually trigger retraining with enhanced feature options"""
try:
if use_enhanced is None:
use_enhanced = self.enhanced_features_available
retrainer = EnhancedModelRetrainer()
retrainer.use_enhanced_features = use_enhanced and ENHANCED_FEATURES_AVAILABLE
success, result = retrainer.automated_retrain_with_validation()
feature_info = " with enhanced features" if use_enhanced else " with standard features"
if success:
return {
'success': True,
'message': f'Manual enhanced retraining completed{feature_info}: {result}',
'enhanced_features': use_enhanced
}
else:
return {
'success': False,
'message': f'Manual enhanced retraining failed{feature_info}: {result}',
'enhanced_features': use_enhanced
}
except Exception as e:
logger.error(f"Manual enhanced retraining trigger failed: {e}")
return {'success': False, 'error': str(e)}
def main():
"""Main execution function with enhanced CV, LightGBM, and ensemble support"""
retrainer = EnhancedModelRetrainer()
success, message = retrainer.retrain_model()
if success:
print(f"β
{message}")
else:
print(f"β {message}")
exit(1)
if __name__ == "__main__":
main() |