File size: 73,309 Bytes
0908ace
ead9c37
ca89c11
 
 
 
 
 
 
 
 
 
 
 
ead9c37
ca89c11
0908ace
ca89c11
 
0908ace
83527bc
310a651
83527bc
310a651
83527bc
310a651
83527bc
719d51e
 
 
 
ead9c37
310a651
c29bcf3
0908ace
310a651
83527bc
8a926b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52d71b1
310a651
 
52d71b1
310a651
52d71b1
310a651
 
 
 
83527bc
ca89c11
ed2e413
 
 
 
 
 
 
c29bcf3
ed2e413
 
c29bcf3
ed2e413
 
c29bcf3
ed2e413
 
 
 
c29bcf3
ed2e413
 
 
 
 
 
 
 
 
 
 
 
 
 
c29bcf3
63682de
ed2e413
 
 
 
 
 
 
 
 
719d51e
ed2e413
 
 
 
 
719d51e
ed2e413
 
719d51e
ed2e413
 
 
 
 
 
719d51e
ed2e413
 
 
 
 
 
719d51e
ed2e413
 
 
 
 
 
 
 
719d51e
ed2e413
 
 
 
 
 
 
 
 
63682de
ed2e413
ead9c37
ed2e413
 
 
 
ead9c37
ed2e413
 
 
 
 
 
 
0908ace
ed2e413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0908ace
ed2e413
 
 
0908ace
ed2e413
 
0908ace
 
 
ed2e413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0908ace
ed2e413
 
 
 
 
 
 
 
0908ace
 
 
 
 
ed2e413
 
 
 
0908ace
ed2e413
0908ace
 
ed2e413
 
 
 
 
 
 
 
 
0908ace
 
ed2e413
 
 
 
 
 
 
 
 
 
ead9c37
ed2e413
 
 
 
 
 
ead9c37
ed2e413
 
 
ead9c37
ed2e413
 
ead9c37
ed2e413
ead9c37
ed2e413
ead9c37
ed2e413
 
 
 
 
 
 
 
63682de
ed2e413
 
63682de
ed2e413
63682de
ed2e413
 
 
1a7ba9f
 
 
ed2e413
 
63682de
ed2e413
 
 
 
 
 
 
0908ace
ed2e413
 
6c49982
a028318
6c49982
 
 
 
 
ead9c37
ed2e413
 
 
 
 
 
 
63682de
ed2e413
 
 
 
63682de
ed2e413
 
 
 
 
 
 
 
 
63682de
ed2e413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63682de
 
ed2e413
 
 
63682de
ed2e413
 
 
 
 
 
ead9c37
ed2e413
 
 
 
 
63682de
ed2e413
 
 
 
 
a028318
 
 
 
 
 
 
 
6c49982
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63682de
ed2e413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ead9c37
 
ed2e413
 
ead9c37
ed2e413
 
ead9c37
ed2e413
 
ead9c37
ed2e413
 
 
 
 
 
 
 
 
 
 
 
 
 
ead9c37
ed2e413
ead9c37
ed2e413
 
 
52d71b1
 
0908ace
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed2e413
0908ace
52d71b1
0908ace
ed2e413
 
 
 
 
 
0908ace
ed2e413
 
 
 
 
0908ace
ed2e413
 
 
 
ca89c11
ed2e413
 
 
 
 
 
 
63682de
ed2e413
 
 
 
 
 
 
 
63682de
ed2e413
 
 
 
 
 
 
 
 
 
 
63682de
ed2e413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca89c11
ed2e413
0908ace
ed2e413
 
 
 
 
 
0908ace
ed2e413
 
 
 
 
 
 
 
0908ace
ed2e413
 
0908ace
ed2e413
 
 
 
 
0908ace
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed2e413
 
ca89c11
310a651
52d71b1
310a651
52d71b1
719d51e
 
ca89c11
52d71b1
 
ca89c11
310a651
52d71b1
 
 
 
 
 
 
 
 
 
 
 
ca89c11
52d71b1
 
ca89c11
52d71b1
 
 
 
 
 
 
 
 
 
 
ead9c37
8a926b4
ead9c37
 
 
 
ca89c11
52d71b1
310a651
52d71b1
 
 
 
 
 
 
310a651
ca89c11
52d71b1
ca89c11
310a651
 
 
 
ca89c11
8a926b4
 
 
 
 
719d51e
 
8a926b4
 
c29bcf3
8a926b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca89c11
8a926b4
 
 
 
 
 
 
 
 
 
ca89c11
8a926b4
 
 
 
 
ca89c11
8a926b4
 
 
 
 
 
 
0fffa64
52d71b1
ca89c11
 
8a926b4
719d51e
 
 
 
52d71b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ead9c37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a926b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
719d51e
52d71b1
310a651
52d71b1
 
 
 
 
310a651
52d71b1
 
 
ca89c11
ead9c37
 
719d51e
 
8a926b4
 
ca89c11
310a651
 
 
ca89c11
34841ba
 
 
 
ead9c37
 
 
 
34841ba
 
ead9c37
34841ba
ead9c37
34841ba
 
 
310a651
 
ca89c11
ead9c37
 
34841ba
ead9c37
310a651
 
 
ead9c37
310a651
0908ace
ead9c37
 
310a651
ca89c11
310a651
ead9c37
310a651
ca89c11
ead9c37
 
 
 
 
 
310a651
 
 
 
 
ead9c37
 
 
310a651
 
ead9c37
52d71b1
310a651
 
ca89c11
310a651
ead9c37
310a651
ead9c37
 
 
 
 
ca89c11
310a651
ca89c11
310a651
34841ba
310a651
34841ba
 
 
ead9c37
 
 
 
 
 
 
 
 
34841ba
 
 
ca89c11
310a651
0908ace
719d51e
310a651
0908ace
ca89c11
310a651
8a926b4
ca89c11
310a651
8a926b4
310a651
ca89c11
ead9c37
 
310a651
 
ca89c11
ead9c37
310a651
 
 
ca89c11
310a651
 
 
 
 
8a926b4
 
310a651
ca89c11
0908ace
 
 
ead9c37
 
 
 
 
 
 
 
 
ca89c11
310a651
52d71b1
310a651
ca89c11
0908ace
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310a651
ca89c11
ed2e413
0908ace
63682de
ed2e413
 
ca89c11
ed2e413
 
 
 
ca89c11
0908ace
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed2e413
 
 
 
0908ace
ed2e413
 
 
 
 
52d71b1
ed2e413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57b1cee
 
6041335
57b1cee
 
 
 
 
ed2e413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ead9c37
ed2e413
 
 
 
0908ace
ed2e413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0908ace
 
ed2e413
52d71b1
ead9c37
ed2e413
 
 
 
 
 
 
 
8a926b4
 
ed2e413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a926b4
ed2e413
 
 
 
 
 
 
 
 
ead9c37
 
ed2e413
 
 
 
 
 
ead9c37
ed2e413
 
 
8a926b4
0908ace
 
 
 
 
 
 
 
 
 
 
 
ed2e413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0908ace
 
 
 
ed2e413
 
 
 
 
 
 
 
 
 
 
 
 
 
0908ace
 
ed2e413
0908ace
ed2e413
 
 
 
 
719d51e
0908ace
 
 
ed2e413
0908ace
 
ed2e413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0908ace
 
ed2e413
34841ba
ed2e413
 
 
 
0908ace
 
ed2e413
 
 
 
 
 
0908ace
ed2e413
 
0908ace
 
ed2e413
 
 
 
 
 
 
 
34841ba
ed2e413
 
 
 
 
 
 
 
 
 
34841ba
ed2e413
 
 
 
 
 
ca89c11
ed2e413
 
 
 
 
 
 
ca89c11
0908ace
ed2e413
 
0908ace
ed2e413
 
 
 
 
 
 
 
 
0908ace
ed2e413
 
 
 
 
 
 
 
 
 
 
 
 
 
0908ace
 
 
 
 
ed2e413
 
0908ace
ed2e413
 
 
 
 
 
 
 
 
 
0908ace
ed2e413
 
83527bc
ca89c11
83527bc
0908ace
719d51e
 
 
0908ace
719d51e
3a989cc
ead9c37
8a926b4
 
0908ace
 
719d51e
 
8a926b4
 
 
 
 
 
 
 
 
 
 
0908ace
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a989cc
ead9c37
 
 
 
 
3a989cc
 
 
 
 
 
 
 
 
ead9c37
3a989cc
 
 
8a926b4
 
 
 
0908ace
 
 
 
3a989cc
 
 
 
 
 
 
 
 
8a926b4
 
 
0908ace
 
3a989cc
 
 
 
719d51e
ca89c11
52d71b1
 
8a926b4
 
 
 
 
 
 
 
 
 
 
0908ace
 
 
 
 
 
 
 
ca89c11
52d71b1
 
ca89c11
83527bc
 
c29bcf3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
# Enhanced version with LightGBM, ensemble voting, and statistical validation

import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.feature_selection import SelectKBest, chi2
from sklearn.preprocessing import FunctionTransformer
from sklearn.pipeline import Pipeline
from sklearn.metrics import (
    accuracy_score, precision_score, recall_score, f1_score,
    roc_auc_score, confusion_matrix, classification_report,
    precision_recall_curve, roc_curve
)
from sklearn.model_selection import (
    train_test_split, cross_val_score, GridSearchCV,
    StratifiedKFold, validation_curve, cross_validate
)
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.feature_extraction.text import TfidfVectorizer
import lightgbm as lgb
import pandas as pd
import numpy as np
from pathlib import Path
import logging
import json
import joblib
import hashlib
import sys
import os
import time
from datetime import datetime, timedelta
from typing import Dict, Tuple, Optional, Any, List
import warnings
import re
from scipy import stats
warnings.filterwarnings('ignore')

# Import enhanced feature engineering components
try:
    from features.feature_engineer import AdvancedFeatureEngineer, create_enhanced_pipeline, analyze_feature_importance
    from features.sentiment_analyzer import SentimentAnalyzer
    from features.readability_analyzer import ReadabilityAnalyzer
    from features.entity_analyzer import EntityAnalyzer
    from features.linguistic_analyzer import LinguisticAnalyzer
    ENHANCED_FEATURES_AVAILABLE = True
    logger = logging.getLogger(__name__)
    logger.info("Enhanced feature engineering components loaded successfully")
except ImportError as e:
    ENHANCED_FEATURES_AVAILABLE = False
    logger = logging.getLogger(__name__)
    logger.warning(f"Enhanced features not available, falling back to basic TF-IDF: {e}")

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler('/tmp/model_training.log'),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)


def preprocess_text_function(texts):
    """
    Standalone function for text preprocessing - pickle-safe
    """
    def clean_single_text(text):
        # Convert to string
        text = str(text)
        
        # Remove URLs
        text = re.sub(r'http\S+|www\S+|https\S+', '', text)
        
        # Remove email addresses
        text = re.sub(r'\S+@\S+', '', text)
        
        # Remove excessive punctuation
        text = re.sub(r'[!]{2,}', '!', text)
        text = re.sub(r'[?]{2,}', '?', text)
        text = re.sub(r'[.]{3,}', '...', text)
        
        # Remove non-alphabetic characters except spaces and basic punctuation
        text = re.sub(r'[^a-zA-Z\s.!?]', '', text)
        
        # Remove excessive whitespace
        text = re.sub(r'\s+', ' ', text)
        
        return text.strip().lower()
    
    # Process all texts
    processed = []
    for text in texts:
        processed.append(clean_single_text(text))
    
    return processed


class ProgressTracker:
    """Progress tracking with time estimation"""
    
    def __init__(self, total_steps: int, description: str = "Training"):
        self.total_steps = total_steps
        self.current_step = 0
        self.start_time = time.time()
        self.description = description
        self.step_times = []
        
    def update(self, step_name: str = ""):
        """Update progress and print status"""
        self.current_step += 1
        current_time = time.time()
        elapsed = current_time - self.start_time
        
        # Calculate progress percentage
        progress_pct = (self.current_step / self.total_steps) * 100
        
        # Estimate remaining time
        if self.current_step > 0:
            avg_time_per_step = elapsed / self.current_step
            remaining_steps = self.total_steps - self.current_step
            eta_seconds = avg_time_per_step * remaining_steps
            eta = timedelta(seconds=int(eta_seconds))
        else:
            eta = "calculating..."
            
        # Create progress bar
        bar_length = 30
        filled_length = int(bar_length * self.current_step // self.total_steps)
        bar = 'β–ˆ' * filled_length + 'β–’' * (bar_length - filled_length)
        
        # Print progress (this will be visible in Streamlit logs)
        status_msg = f"\r{self.description}: [{bar}] {progress_pct:.1f}% | Step {self.current_step}/{self.total_steps}"
        if step_name:
            status_msg += f" | {step_name}"
        if eta != "calculating...":
            status_msg += f" | ETA: {eta}"
            
        print(status_msg, end='', flush=True)
        
        # Also output JSON for Streamlit parsing (if needed)
        progress_json = {
            "type": "progress",
            "step": self.current_step,
            "total": self.total_steps,
            "percentage": progress_pct,
            "eta": str(eta) if eta != "calculating..." else None,
            "step_name": step_name,
            "elapsed": elapsed
        }
        print(f"\nPROGRESS_JSON: {json.dumps(progress_json)}")
        
        # Store step time for better estimation
        if len(self.step_times) >= 3:  # Keep last 3 step times for moving average
            self.step_times.pop(0)
        self.step_times.append(current_time - (self.start_time + sum(self.step_times)))
        
    def finish(self):
        """Complete progress tracking"""
        total_time = time.time() - self.start_time
        print(f"\n{self.description} completed in {timedelta(seconds=int(total_time))}")


def estimate_training_time(dataset_size: int, enable_tuning: bool = True, cv_folds: int = 5, 
                          use_enhanced_features: bool = False, enable_ensemble: bool = True) -> Dict:
    """Estimate training time based on dataset characteristics and feature complexity"""
    
    # Base time estimates (in seconds) based on empirical testing
    base_times = {
        'preprocessing': max(0.1, dataset_size * 0.001),  # ~1ms per sample
        'vectorization': max(0.5, dataset_size * 0.01),   # ~10ms per sample
        'feature_selection': max(0.2, dataset_size * 0.005), # ~5ms per sample
        'simple_training': max(1.0, dataset_size * 0.02),  # ~20ms per sample
        'evaluation': max(0.5, dataset_size * 0.01),       # ~10ms per sample
    }
    
    # Enhanced feature engineering time multipliers
    if use_enhanced_features:
        base_times['preprocessing'] *= 2.5  # More complex preprocessing
        base_times['vectorization'] *= 1.5  # Additional feature extraction
        base_times['feature_selection'] *= 2.0  # More features to select from
        base_times['enhanced_feature_extraction'] = max(2.0, dataset_size * 0.05)  # New step
    
    # Hyperparameter tuning multipliers with LightGBM
    tuning_multipliers = {
        'logistic_regression': 8 if enable_tuning else 1,  # 8 param combinations
        'random_forest': 12 if enable_tuning else 1,       # 12 param combinations
        'lightgbm': 6 if enable_tuning else 1,             # 6 param combinations (CPU optimized)
    }
    
    # Ensemble multiplier
    ensemble_multiplier = 1.3 if enable_ensemble else 1.0  # 30% overhead for ensemble
    
    # Cross-validation multiplier
    cv_multiplier = cv_folds if dataset_size > 100 else 1
    
    # Calculate estimates
    estimates = {}
    
    # Preprocessing steps
    estimates['data_loading'] = 0.5
    estimates['preprocessing'] = base_times['preprocessing']
    estimates['vectorization'] = base_times['vectorization']
    
    if use_enhanced_features:
        estimates['enhanced_feature_extraction'] = base_times['enhanced_feature_extraction']
    
    estimates['feature_selection'] = base_times['feature_selection']
    
    # Model training (now includes CV and LightGBM)
    for model_name, multiplier in tuning_multipliers.items():
        model_time = base_times['simple_training'] * multiplier * cv_multiplier
        estimates[f'{model_name}_training'] = model_time
        estimates[f'{model_name}_evaluation'] = base_times['evaluation']
    
    # Cross-validation overhead
    estimates['cross_validation'] = base_times['simple_training'] * cv_folds * 0.5
    
    # Ensemble training and validation
    if enable_ensemble:
        estimates['ensemble_training'] = base_times['simple_training'] * 0.5
        estimates['ensemble_validation'] = base_times['evaluation'] * 2
    
    # Model saving
    estimates['model_saving'] = 1.0
    
    # Total estimate
    total_estimate = sum(estimates.values()) * ensemble_multiplier
    
    # Add buffer for overhead (more for enhanced features and ensemble)
    buffer_multiplier = 1.5 if (use_enhanced_features and enable_ensemble) else 1.4 if use_enhanced_features else 1.2
    total_estimate *= buffer_multiplier
    
    return {
        'detailed_estimates': estimates,
        'total_seconds': total_estimate,
        'total_formatted': str(timedelta(seconds=int(total_estimate))),
        'dataset_size': dataset_size,
        'enable_tuning': enable_tuning,
        'cv_folds': cv_folds,
        'use_enhanced_features': use_enhanced_features,
        'enable_ensemble': enable_ensemble
    }


class CrossValidationManager:
    """Advanced cross-validation management with comprehensive metrics"""
    
    def __init__(self, cv_folds: int = 5, random_state: int = 42):
        self.cv_folds = cv_folds
        self.random_state = random_state
        self.cv_results = {}
        
    def create_cv_strategy(self, X, y) -> StratifiedKFold:
        """Create appropriate CV strategy based on data characteristics"""
        # Calculate appropriate CV folds for small datasets
        n_samples = len(X)
        min_samples_per_fold = 3  # Minimum samples per fold
        max_folds = n_samples // min_samples_per_fold
        
        # Adjust folds based on data size and class distribution
        unique_classes = np.unique(y)
        min_class_count = min([np.sum(y == cls) for cls in unique_classes])
        
        # Ensure each fold has at least one sample from each class
        max_folds_by_class = min_class_count
        
        actual_folds = max(2, min(self.cv_folds, max_folds, max_folds_by_class))
        
        logger.info(f"Using {actual_folds} CV folds (requested: {self.cv_folds})")
        
        return StratifiedKFold(
            n_splits=actual_folds,
            shuffle=True,
            random_state=self.random_state
        )
    
    def perform_cross_validation(self, pipeline, X, y, cv_strategy=None) -> Dict:
        """Perform comprehensive cross-validation with multiple metrics"""
        
        if cv_strategy is None:
            cv_strategy = self.create_cv_strategy(X, y)
        
        logger.info(f"Starting cross-validation with {cv_strategy.n_splits} folds...")
        
        # Define scoring metrics
        scoring_metrics = {
            'accuracy': 'accuracy',
            'precision': 'precision_macro',
            'recall': 'recall_macro',
            'f1': 'f1_macro',
            'roc_auc': 'roc_auc'
        }
        
        try:
            # Perform cross-validation
            cv_scores = cross_validate(
                pipeline, X, y,
                cv=cv_strategy,
                scoring=scoring_metrics,
                return_train_score=True,
                n_jobs=1,  # Use single job for stability on HFS
                verbose=0
            )


            # Debugging cross-validation scores
            logger.info(f"CV scores keys: {list(cv_scores.keys())}")
            for key in cv_scores.keys():
                if key.startswith('train_'):
                    logger.info(f"Found train score: {key}")
            
            # Process results
            cv_results = {
                'n_splits': cv_strategy.n_splits,
                'test_scores': {},
                'train_scores': {},
                'fold_results': []
            }
            
            # Calculate statistics for each metric
            for metric_name in scoring_metrics.keys():
                test_key = f'test_{metric_name}'
                train_key = f'train_{metric_name}'
                
                if test_key in cv_scores:
                    test_scores = cv_scores[test_key]
                    cv_results['test_scores'][metric_name] = {
                        'mean': float(np.mean(test_scores)),
                        'std': float(np.std(test_scores)),
                        'min': float(np.min(test_scores)),
                        'max': float(np.max(test_scores)),
                        'scores': test_scores.tolist()
                    }
                
                if train_key in cv_scores:
                    train_scores = cv_scores[train_key]
                    cv_results['train_scores'][metric_name] = {
                        'mean': float(np.mean(train_scores)),
                        'std': float(np.std(train_scores)),
                        'min': float(np.min(train_scores)),
                        'max': float(np.max(train_scores)),
                        'scores': train_scores.tolist()
                    }
            
            # Store individual fold results
            for fold_idx in range(cv_strategy.n_splits):
                fold_result = {
                    'fold': fold_idx + 1,
                    'test_scores': {},
                    'train_scores': {}
                }
                
                for metric_name in scoring_metrics.keys():
                    test_key = f'test_{metric_name}'
                    train_key = f'train_{metric_name}'
                    
                    if test_key in cv_scores:
                        fold_result['test_scores'][metric_name] = float(cv_scores[test_key][fold_idx])
                    if train_key in cv_scores:
                        fold_result['train_scores'][metric_name] = float(cv_scores[train_key][fold_idx])
                
                cv_results['fold_results'].append(fold_result)
            
            # Calculate overfitting indicators
            if 'accuracy' in cv_results['test_scores'] and 'accuracy' in cv_results['train_scores']:
                train_mean = cv_results['train_scores']['accuracy']['mean']
                test_mean = cv_results['test_scores']['accuracy']['mean']
                cv_results['overfitting_score'] = float(train_mean - test_mean)
            
            # Calculate stability metrics
            if 'accuracy' in cv_results['test_scores']:
                test_std = cv_results['test_scores']['accuracy']['std']
                test_mean = cv_results['test_scores']['accuracy']['mean']
                cv_results['stability_score'] = float(1 - (test_std / test_mean)) if test_mean > 0 else 0
            
            # Force calculate indicators if missing (FALLBACK)
            if cv_results.get('overfitting_score') is None and 'accuracy' in cv_results['test_scores']:
                test_std = cv_results['test_scores']['accuracy']['std']
                test_mean = cv_results['test_scores']['accuracy']['mean']
                cv_results['overfitting_score'] = float(test_std)  # Use variance as proxy
                cv_results['stability_score'] = float(1 - (test_std / test_mean)) if test_mean > 0 else 0
                logger.info(f"Calculated fallback indicators: overfitting={cv_results['overfitting_score']:.4f}, stability={cv_results['stability_score']:.4f}")


            # Add fallback overfitting detection when train scores are missing
            if cv_results.get('overfitting_score') is None and 'accuracy' in cv_results['test_scores']:
                # Use coefficient of variation as stability proxy
                test_scores = cv_results['test_scores']['accuracy']['scores']
                cv_scores_array = np.array(test_scores)
                cv_results['overfitting_score'] = float(np.std(cv_scores_array))  # High std indicates instability
                logger.info(f"Using fallback overfitting detection: {cv_results['overfitting_score']:.4f}")
            
            # Ensure stability score is calculated
            if cv_results.get('stability_score') is None and 'accuracy' in cv_results['test_scores']:
                test_std = cv_results['test_scores']['accuracy']['std']
                test_mean = cv_results['test_scores']['accuracy']['mean']
                cv_results['stability_score'] = float(1 - (test_std / test_mean)) if test_mean > 0 else 0
                logger.info(f"Calculated stability score: {cv_results['stability_score']:.4f}")
            
            logger.info(f"Cross-validation completed successfully")
            logger.info(f"Mean test accuracy: {cv_results['test_scores'].get('accuracy', {}).get('mean', 'N/A'):.4f}")
            logger.info(f"Mean test F1: {cv_results['test_scores'].get('f1', {}).get('mean', 'N/A'):.4f}")
            
            return cv_results
            
        except Exception as e:
            logger.error(f"Cross-validation failed: {e}")
            return {
                'error': str(e),
                'n_splits': cv_strategy.n_splits if cv_strategy else self.cv_folds,
                'fallback': True
            }
    
    def compare_cv_results(self, results1: Dict, results2: Dict, metric: str = 'f1') -> Dict:
        """Compare cross-validation results between two models"""
        
        try:
            if 'error' in results1 or 'error' in results2:
                return {'error': 'Cannot compare results with errors'}
            
            scores1 = results1['test_scores'][metric]['scores']
            scores2 = results2['test_scores'][metric]['scores']
            
            # Paired t-test
            t_stat, p_value = stats.ttest_rel(scores1, scores2)
            
            comparison = {
                'metric': metric,
                'model1_mean': results1['test_scores'][metric]['mean'],
                'model2_mean': results2['test_scores'][metric]['mean'],
                'model1_std': results1['test_scores'][metric]['std'],
                'model2_std': results2['test_scores'][metric]['std'],
                'difference': results2['test_scores'][metric]['mean'] - results1['test_scores'][metric]['mean'],
                'paired_ttest': {
                    't_statistic': float(t_stat),
                    'p_value': float(p_value),
                    'significant': p_value < 0.05
                },
                'effect_size': float(abs(t_stat) / np.sqrt(len(scores1))) if len(scores1) > 0 else 0
            }
            
            return comparison
            
        except Exception as e:
            logger.error(f"CV comparison failed: {e}")
            return {'error': str(e)}


class EnsembleManager:
    """Manage ensemble model creation and validation"""
    
    def __init__(self, random_state: int = 42):
        self.random_state = random_state
        
    def create_ensemble(self, individual_models: Dict[str, Any], 
                       voting: str = 'soft') -> VotingClassifier:
        """Create ensemble from individual models"""
        
        estimators = [(name, model) for name, model in individual_models.items()]
        
        ensemble = VotingClassifier(
            estimators=estimators,
            voting=voting,
            n_jobs=1  # CPU optimization for HFS
        )
        
        logger.info(f"Created {voting} voting ensemble with {len(estimators)} models")
        return ensemble
    
    def evaluate_ensemble_vs_individuals(self, ensemble, individual_models: Dict,
                                       X_test, y_test) -> Dict:
        """Compare ensemble performance against individual models"""
        
        results = {}
        
        # Evaluate individual models
        for name, model in individual_models.items():
            y_pred = model.predict(X_test)
            y_pred_proba = model.predict_proba(X_test)[:, 1]
            
            results[name] = {
                'accuracy': float(accuracy_score(y_test, y_pred)),
                'precision': float(precision_score(y_test, y_pred, average='weighted')),
                'recall': float(recall_score(y_test, y_pred, average='weighted')),
                'f1': float(f1_score(y_test, y_pred, average='weighted')),
                'roc_auc': float(roc_auc_score(y_test, y_pred_proba))
            }
        
        # Evaluate ensemble
        y_pred_ensemble = ensemble.predict(X_test)
        y_pred_proba_ensemble = ensemble.predict_proba(X_test)[:, 1]
        
        results['ensemble'] = {
            'accuracy': float(accuracy_score(y_test, y_pred_ensemble)),
            'precision': float(precision_score(y_test, y_pred_ensemble, average='weighted')),
            'recall': float(recall_score(y_test, y_pred_ensemble, average='weighted')),
            'f1': float(f1_score(y_test, y_pred_ensemble, average='weighted')),
            'roc_auc': float(roc_auc_score(y_test, y_pred_proba_ensemble))
        }
        
        # Calculate improvement over best individual model
        best_individual_f1 = max(results[name]['f1'] for name in individual_models.keys())
        ensemble_f1 = results['ensemble']['f1']
        improvement = ensemble_f1 - best_individual_f1
        
        results['ensemble_analysis'] = {
            'best_individual_f1': best_individual_f1,
            'ensemble_f1': ensemble_f1,
            'improvement': improvement,
            'improvement_percentage': (improvement / best_individual_f1) * 100 if best_individual_f1 > 0 else 0,
            'is_better': improvement > 0
        }
        
        return results
    
    def statistical_ensemble_comparison(self, ensemble, individual_models: Dict,
                                      X, y, cv_manager: CrossValidationManager) -> Dict:
        """Perform statistical comparison between ensemble and individual models"""
        
        cv_strategy = cv_manager.create_cv_strategy(X, y)
        
        results = {}
        
        # Get CV results for ensemble
        ensemble_cv = cv_manager.perform_cross_validation(ensemble, X, y, cv_strategy)
        results['ensemble'] = ensemble_cv
        
        # Get CV results for individual models
        individual_cv_results = {}
        for name, model in individual_models.items():
            model_cv = cv_manager.perform_cross_validation(model, X, y, cv_strategy)
            individual_cv_results[name] = model_cv
            results[name] = model_cv
        
        # Compare ensemble with each individual model
        comparisons = {}
        for name, model_cv in individual_cv_results.items():
            comparison = cv_manager.compare_cv_results(model_cv, ensemble_cv)
            comparisons[f'ensemble_vs_{name}'] = comparison
        
        results['statistical_comparisons'] = comparisons
        
        # Determine if ensemble should be used
        ensemble_f1_scores = ensemble_cv.get('test_scores', {}).get('f1', {}).get('scores', [])
        
        significantly_better_count = 0
        for comparison in comparisons.values():
            if comparison.get('paired_ttest', {}).get('significant', False) and comparison.get('difference', 0) > 0:
                significantly_better_count += 1
        
        results['ensemble_recommendation'] = {
            'use_ensemble': significantly_better_count > 0,
            'significantly_better_than': significantly_better_count,
            'total_comparisons': len(comparisons),
            'confidence': significantly_better_count / len(comparisons) if comparisons else 0
        }
        
        return results


class EnhancedModelTrainer:
    """Production-ready model trainer with LightGBM, enhanced features, and ensemble voting"""

    def __init__(self, use_enhanced_features: bool = None, enable_ensemble: bool = True):
        # Auto-detect enhanced features if not specified
        if use_enhanced_features is None:
            self.use_enhanced_features = ENHANCED_FEATURES_AVAILABLE
        else:
            self.use_enhanced_features = use_enhanced_features and ENHANCED_FEATURES_AVAILABLE
        
        self.enable_ensemble = enable_ensemble
        self.setup_paths()
        self.setup_training_config()
        self.setup_models()
        self.progress_tracker = None
        self.cv_manager = CrossValidationManager()
        self.ensemble_manager = EnsembleManager()
        
        # Enhanced feature tracking
        self.feature_engineer = None
        self.feature_importance_results = {}

    def setup_paths(self):
        """Setup all necessary paths with proper permissions"""
        self.base_dir = Path("/tmp")
        self.data_dir = self.base_dir / "data"
        self.model_dir = self.base_dir / "model"
        self.results_dir = self.base_dir / "results"
        self.features_dir = self.base_dir / "features"  # New for enhanced features

        # Create directories with proper permissions
        for dir_path in [self.data_dir, self.model_dir, self.results_dir, self.features_dir]:
            dir_path.mkdir(parents=True, exist_ok=True)
            # Ensure write permissions
            try:
                dir_path.chmod(0o755)
            except:
                pass

        # File paths
        self.data_path = self.data_dir / "combined_dataset.csv"
        self.model_path = Path("/tmp/model.pkl")
        self.vectorizer_path = Path("/tmp/vectorizer.pkl")
        self.pipeline_path = Path("/tmp/pipeline.pkl")
        self.metadata_path = Path("/tmp/metadata.json")
        self.evaluation_path = self.results_dir / "evaluation_results.json"
        
        # Enhanced feature paths
        self.feature_engineer_path = Path("/tmp/feature_engineer.pkl")
        self.feature_importance_path = self.results_dir / "feature_importance.json"

    def setup_training_config(self):
        """Setup training configuration with enhanced feature parameters"""
        self.test_size = 0.2
        self.validation_size = 0.1
        self.random_state = 42
        self.cv_folds = 5
        
        # Enhanced feature configuration
        if self.use_enhanced_features:
            self.max_features = 7500  # Increased for enhanced features
            self.feature_selection_k = 3000  # More features to select from
            logger.info("Using enhanced feature engineering pipeline")
        else:
            self.max_features = 5000  # Standard TF-IDF
            self.feature_selection_k = 2000
            logger.info("Using standard TF-IDF feature pipeline")
        
        # Common parameters
        self.min_df = 1
        self.max_df = 0.95
        self.ngram_range = (1, 2)
        self.max_iter = 500
        self.class_weight = 'balanced'

    def setup_models(self):
        """Setup model configurations including LightGBM for comparison"""
        self.models = {
            'logistic_regression': {
                'model': LogisticRegression(
                    max_iter=self.max_iter,
                    class_weight=self.class_weight,
                    random_state=self.random_state,
                    n_jobs=1  # CPU optimization
                ),
                'param_grid': {
                    'model__C': [0.1, 1, 10],
                    'model__penalty': ['l2']
                }
            },
            'random_forest': {
                'model': RandomForestClassifier(
                    n_estimators=50,  # Reduced for CPU efficiency
                    class_weight=self.class_weight,
                    random_state=self.random_state,
                    n_jobs=1  # CPU optimization
                ),
                'param_grid': {
                    'model__n_estimators': [50, 100],
                    'model__max_depth': [10, None]
                }
            },
            'lightgbm': {
                'model': lgb.LGBMClassifier(
                    objective='binary',
                    boosting_type='gbdt',
                    num_leaves=31,
                    max_depth=10,
                    learning_rate=0.1,
                    n_estimators=100,
                    class_weight=self.class_weight,
                    random_state=self.random_state,
                    n_jobs=1,  # CPU optimization
                    verbose=-1  # Suppress LightGBM output
                ),
                'param_grid': {
                    'model__n_estimators': [50, 100],
                    'model__learning_rate': [0.05, 0.1],
                    'model__num_leaves': [15, 31]
                }
            }
        }

    def load_and_validate_data(self) -> Tuple[bool, Optional[pd.DataFrame], str]:
        """Load and validate training data"""
        try:
            logger.info("Loading training data...")
            if self.progress_tracker:
                self.progress_tracker.update("Loading data")

            if not self.data_path.exists():
                return False, None, f"Data file not found: {self.data_path}"

            # Load data
            df = pd.read_csv(self.data_path)

            # Basic validation
            if df.empty:
                return False, None, "Dataset is empty"

            required_columns = ['text', 'label']
            missing_columns = [
                col for col in required_columns if col not in df.columns]
            if missing_columns:
                return False, None, f"Missing required columns: {missing_columns}"

            # Remove missing values
            initial_count = len(df)
            df = df.dropna(subset=required_columns)
            if len(df) < initial_count:
                logger.warning(
                    f"Removed {initial_count - len(df)} rows with missing values")

            # Validate text content
            df = df[df['text'].astype(str).str.len() > 10]

            # Validate labels
            unique_labels = df['label'].unique()
            if len(unique_labels) < 2:
                return False, None, f"Need at least 2 classes, found: {unique_labels}"

            # Check minimum sample size for CV
            min_samples_for_cv = self.cv_folds * 2
            if len(df) < min_samples_for_cv:
                logger.warning(f"Dataset size ({len(df)}) is small for {self.cv_folds}-fold CV")
                self.cv_manager.cv_folds = max(2, len(df) // 3)
                logger.info(f"Adjusted CV folds to {self.cv_manager.cv_folds}")

            # Check class balance
            label_counts = df['label'].value_counts()
            min_class_ratio = label_counts.min() / label_counts.max()
            if min_class_ratio < 0.1:
                logger.warning(
                    f"Severe class imbalance detected: {min_class_ratio:.3f}")

            logger.info(
                f"Data validation successful: {len(df)} samples, {len(unique_labels)} classes")
            logger.info(f"Class distribution: {label_counts.to_dict()}")

            return True, df, "Data loaded successfully"

        except Exception as e:
            error_msg = f"Error loading data: {str(e)}"
            logger.error(error_msg)
            return False, None, error_msg

    def create_preprocessing_pipeline(self, use_enhanced: bool = None) -> Pipeline:
        """Create preprocessing pipeline with optional enhanced features"""
        
        if use_enhanced is None:
            use_enhanced = self.use_enhanced_features
        
        if self.progress_tracker:
            feature_type = "enhanced" if use_enhanced else "standard"
            self.progress_tracker.update(f"Creating {feature_type} pipeline")
        
        if use_enhanced and ENHANCED_FEATURES_AVAILABLE:
            logger.info("Creating enhanced feature engineering pipeline...")
            
            # Create enhanced feature engineer
            feature_engineer = AdvancedFeatureEngineer(
                enable_sentiment=True,
                enable_readability=True,
                enable_entities=True,
                enable_linguistic=True,
                feature_selection_k=self.feature_selection_k,
                tfidf_max_features=self.max_features,
                ngram_range=self.ngram_range,
                min_df=self.min_df,
                max_df=self.max_df
            )
            
            # Create pipeline with enhanced features
            pipeline = Pipeline([
                ('enhanced_features', feature_engineer),
                ('model', None)  # Will be set during training
            ])
            
            # Store reference for later use
            self.feature_engineer = feature_engineer
            
        else:
            logger.info("Creating standard TF-IDF pipeline...")
            
            # Use the standalone function instead of lambda
            text_preprocessor = FunctionTransformer(
                func=preprocess_text_function,
                validate=False
            )

            # TF-IDF vectorization with optimized parameters
            vectorizer = TfidfVectorizer(
                max_features=self.max_features,
                min_df=self.min_df,
                max_df=self.max_df,
                ngram_range=self.ngram_range,
                stop_words='english',
                sublinear_tf=True,
                norm='l2'
            )

            # Feature selection
            feature_selector = SelectKBest(
                score_func=chi2,
                k=min(self.feature_selection_k, self.max_features)
            )

            # Create standard pipeline
            pipeline = Pipeline([
                ('preprocess', text_preprocessor),
                ('vectorize', vectorizer),
                ('feature_select', feature_selector),
                ('model', None)  # Will be set during training
            ])

        return pipeline

    def comprehensive_evaluation(self, model, X_test, y_test, X_train=None, y_train=None) -> Dict:
        """Comprehensive model evaluation with enhanced feature analysis"""
        
        if self.progress_tracker:
            self.progress_tracker.update("Evaluating model")
            
        # Predictions
        y_pred = model.predict(X_test)
        y_pred_proba = model.predict_proba(X_test)[:, 1]

        # Basic metrics
        metrics = {
            'accuracy': float(accuracy_score(y_test, y_pred)),
            'precision': float(precision_score(y_test, y_pred, average='weighted')),
            'recall': float(recall_score(y_test, y_pred, average='weighted')),
            'f1': float(f1_score(y_test, y_pred, average='weighted')),
            'roc_auc': float(roc_auc_score(y_test, y_pred_proba))
        }

        # Confusion matrix
        cm = confusion_matrix(y_test, y_pred)
        metrics['confusion_matrix'] = cm.tolist()

        # Cross-validation on full dataset
        if X_train is not None and y_train is not None:
            # Combine train and test for full dataset CV
            X_full = np.concatenate([X_train, X_test])
            y_full = np.concatenate([y_train, y_test])
            
            logger.info("Performing cross-validation on full dataset...")
            cv_results = self.cv_manager.perform_cross_validation(model, X_full, y_full)
            metrics['cross_validation'] = cv_results
            
            # Log CV results
            if 'test_scores' in cv_results and 'f1' in cv_results['test_scores']:
                cv_f1_mean = cv_results['test_scores']['f1']['mean']
                cv_f1_std = cv_results['test_scores']['f1']['std']
                logger.info(f"CV F1 Score: {cv_f1_mean:.4f} (Β±{cv_f1_std:.4f})")
        
        # Enhanced feature analysis
        if self.use_enhanced_features and self.feature_engineer is not None:
            try:
                # Get feature importance if available
                if hasattr(self.feature_engineer, 'get_feature_importance'):
                    feature_importance = self.feature_engineer.get_feature_importance(top_k=20)
                    metrics['top_features'] = feature_importance
                
                # Get feature metadata
                if hasattr(self.feature_engineer, 'get_feature_metadata'):
                    feature_metadata = self.feature_engineer.get_feature_metadata()
                    metrics['feature_metadata'] = feature_metadata
                    
                    logger.info(f"Enhanced features used: {feature_metadata['total_features']}")
                    logger.info(f"Feature breakdown: {feature_metadata['feature_types']}")
                
            except Exception as e:
                logger.warning(f"Enhanced feature analysis failed: {e}")
        
        # Training accuracy for overfitting detection
        try:
            if X_train is not None and y_train is not None:
                y_train_pred = model.predict(X_train)
                train_accuracy = accuracy_score(y_train, y_train_pred)
                metrics['train_accuracy'] = float(train_accuracy)
                metrics['overfitting_score'] = float(
                    train_accuracy - metrics['accuracy'])
        except Exception as e:
            logger.warning(f"Overfitting detection failed: {e}")

        return metrics

    def hyperparameter_tuning_with_cv(self, pipeline, X_train, y_train, model_name: str) -> Tuple[Any, Dict]:
        """Perform hyperparameter tuning with nested cross-validation"""
        
        if self.progress_tracker:
            feature_type = "enhanced" if self.use_enhanced_features else "standard"
            self.progress_tracker.update(f"Tuning {model_name} with {feature_type} features")

        try:
            # Set the model in the pipeline
            pipeline.set_params(model=self.models[model_name]['model'])

            # Skip hyperparameter tuning for very small datasets
            if len(X_train) < 20:
                logger.info(f"Skipping hyperparameter tuning for {model_name} due to small dataset")
                pipeline.fit(X_train, y_train)
                
                # Still perform CV evaluation
                cv_results = self.cv_manager.perform_cross_validation(pipeline, X_train, y_train)
                
                return pipeline, {
                    'best_params': 'default_parameters',
                    'best_score': cv_results.get('test_scores', {}).get('f1', {}).get('mean', 'not_calculated'),
                    'best_estimator': pipeline,
                    'cross_validation': cv_results,
                    'note': 'Hyperparameter tuning skipped for small dataset'
                }

            # Get parameter grid
            param_grid = self.models[model_name]['param_grid']

            # Create CV strategy
            cv_strategy = self.cv_manager.create_cv_strategy(X_train, y_train)
            
            # Create GridSearchCV with nested cross-validation
            grid_search = GridSearchCV(
                pipeline,
                param_grid,
                cv=cv_strategy,
                scoring='f1_weighted',
                n_jobs=1,  # Single job for CPU optimization
                verbose=0,  # Reduce verbosity for speed
                return_train_score=True  # For overfitting analysis
            )

            # Fit grid search
            logger.info(f"Starting hyperparameter tuning for {model_name}...")
            grid_search.fit(X_train, y_train)

            # Perform additional CV on best model
            logger.info(f"Performing final CV evaluation for {model_name}...")
            best_cv_results = self.cv_manager.perform_cross_validation(
                grid_search.best_estimator_, X_train, y_train, cv_strategy
            )

            # Extract results
            tuning_results = {
                'best_params': grid_search.best_params_,
                'best_score': float(grid_search.best_score_),
                'best_estimator': grid_search.best_estimator_,
                'cv_folds_used': cv_strategy.n_splits,
                'cross_validation': best_cv_results,
                'grid_search_results': {
                    'mean_test_scores': grid_search.cv_results_['mean_test_score'].tolist(),
                    'std_test_scores': grid_search.cv_results_['std_test_score'].tolist(),
                    'mean_train_scores': grid_search.cv_results_.get('mean_train_score', []).tolist() if 'mean_train_score' in grid_search.cv_results_ else [],
                    'params': grid_search.cv_results_['params']
                }
            }

            logger.info(f"Hyperparameter tuning completed for {model_name}")
            logger.info(f"Best CV score: {grid_search.best_score_:.4f}")
            logger.info(f"Best params: {grid_search.best_params_}")
            
            if 'test_scores' in best_cv_results and 'f1' in best_cv_results['test_scores']:
                final_f1 = best_cv_results['test_scores']['f1']['mean']
                final_f1_std = best_cv_results['test_scores']['f1']['std']
                logger.info(f"Final CV F1: {final_f1:.4f} (Β±{final_f1_std:.4f})")

            return grid_search.best_estimator_, tuning_results

        except Exception as e:
            logger.error(f"Hyperparameter tuning failed for {model_name}: {str(e)}")
            # Return basic model if tuning fails
            try:
                pipeline.set_params(model=self.models[model_name]['model'])
                pipeline.fit(X_train, y_train)
                
                # Perform basic CV
                cv_results = self.cv_manager.perform_cross_validation(pipeline, X_train, y_train)
                
                return pipeline, {
                    'error': str(e), 
                    'fallback': 'simple_training',
                    'cross_validation': cv_results
                }
            except Exception as e2:
                logger.error(f"Fallback training also failed for {model_name}: {str(e2)}")
                raise Exception(f"Both hyperparameter tuning and fallback training failed: {str(e)} | {str(e2)}")

    def train_and_evaluate_models(self, X_train, X_test, y_train, y_test) -> Dict:
        """Train and evaluate multiple models including LightGBM with enhanced features and comprehensive CV"""
        
        results = {}
        individual_models = {}

        for model_name in self.models.keys():
            logger.info(f"Training {model_name} with {'enhanced' if self.use_enhanced_features else 'standard'} features...")

            try:
                # Create pipeline (enhanced or standard)
                pipeline = self.create_preprocessing_pipeline()

                # Hyperparameter tuning with CV
                best_model, tuning_results = self.hyperparameter_tuning_with_cv(
                    pipeline, X_train, y_train, model_name
                )

                # Comprehensive evaluation (includes additional CV)
                evaluation_metrics = self.comprehensive_evaluation(
                    best_model, X_test, y_test, X_train, y_train
                )

                # Store results
                results[model_name] = {
                    'model': best_model,
                    'tuning_results': tuning_results,
                    'evaluation_metrics': evaluation_metrics,
                    'training_time': datetime.now().isoformat(),
                    'feature_type': 'enhanced' if self.use_enhanced_features else 'standard'
                }

                # Store for ensemble creation
                individual_models[model_name] = best_model

                # Log results
                test_f1 = evaluation_metrics['f1']
                cv_results = evaluation_metrics.get('cross_validation', {})
                cv_f1_mean = cv_results.get('test_scores', {}).get('f1', {}).get('mean', 'N/A')
                cv_f1_std = cv_results.get('test_scores', {}).get('f1', {}).get('std', 'N/A')
                
                logger.info(f"Model {model_name} - Test F1: {test_f1:.4f}, "
                            f"CV F1: {cv_f1_mean:.4f if cv_f1_mean != 'N/A' else cv_f1_mean} "
                            f"(Β±{cv_f1_std:.4f if cv_f1_std != 'N/A' else cv_f1_std})")

            except Exception as e:
                logger.error(f"Training failed for {model_name}: {str(e)}")
                results[model_name] = {'error': str(e)}

        # Create and evaluate ensemble if enabled and we have multiple successful models
        if self.enable_ensemble and len(individual_models) >= 2:
            logger.info("Creating ensemble model...")
            
            try:
                # Create ensemble
                ensemble = self.ensemble_manager.create_ensemble(individual_models, voting='soft')
                
                # Fit ensemble
                X_full_train = np.concatenate([X_train, X_test])
                y_full_train = np.concatenate([y_train, y_test])
                
                ensemble.fit(X_train, y_train)
                
                # Evaluate ensemble
                ensemble_metrics = self.comprehensive_evaluation(
                    ensemble, X_test, y_test, X_train, y_train
                )
                
                # Compare ensemble with individual models
                ensemble_comparison = self.ensemble_manager.evaluate_ensemble_vs_individuals(
                    ensemble, individual_models, X_test, y_test
                )
                
                # Statistical comparison
                statistical_comparison = self.ensemble_manager.statistical_ensemble_comparison(
                    ensemble, individual_models, X_full_train, y_full_train, self.cv_manager
                )
                
                # Store ensemble results
                results['ensemble'] = {
                    'model': ensemble,
                    'evaluation_metrics': ensemble_metrics,
                    'ensemble_comparison': ensemble_comparison,
                    'statistical_comparison': statistical_comparison,
                    'training_time': datetime.now().isoformat(),
                    'feature_type': 'enhanced' if self.use_enhanced_features else 'standard'
                }
                
                # Add ensemble to individual models for selection
                individual_models['ensemble'] = ensemble
                
                # Log ensemble results
                ensemble_f1 = ensemble_metrics['f1']
                ensemble_improvement = ensemble_comparison.get('ensemble_analysis', {}).get('improvement', 0)
                logger.info(f"Ensemble F1: {ensemble_f1:.4f}, Improvement: {ensemble_improvement:.4f}")
                
                # Log recommendation
                recommendation = statistical_comparison.get('ensemble_recommendation', {})
                if recommendation.get('use_ensemble', False):
                    logger.info(f"βœ… Ensemble recommended (confidence: {recommendation.get('confidence', 0):.2f})")
                else:
                    logger.info(f"❌ Ensemble not recommended")
                
            except Exception as e:
                logger.error(f"Ensemble creation failed: {str(e)}")
                results['ensemble'] = {'error': str(e)}

        return results

    def select_best_model(self, results: Dict) -> Tuple[str, Any, Dict]:
        """Select the best performing model based on CV results with ensemble consideration"""
        
        if self.progress_tracker:
            self.progress_tracker.update("Selecting best model")

        best_model_name = None
        best_model = None
        best_score = -1
        best_metrics = None

        # Consider ensemble first if it exists and is recommended
        if 'ensemble' in results and 'error' not in results['ensemble']:
            ensemble_result = results['ensemble']
            statistical_comparison = ensemble_result.get('statistical_comparison', {})
            recommendation = statistical_comparison.get('ensemble_recommendation', {})
            
            if recommendation.get('use_ensemble', False):
                ensemble_metrics = ensemble_result['evaluation_metrics']
                cv_results = ensemble_metrics.get('cross_validation', {})
                
                if 'test_scores' in cv_results and 'f1' in cv_results['test_scores']:
                    f1_score = cv_results['test_scores']['f1']['mean']
                    if f1_score > best_score:
                        best_score = f1_score
                        best_model_name = 'ensemble'
                        best_model = ensemble_result['model']
                        best_metrics = ensemble_metrics
                        logger.info("βœ… Ensemble selected as best model")

        # If ensemble not selected, choose best individual model
        if best_model_name is None:
            for model_name, result in results.items():
                if 'error' in result or model_name == 'ensemble':
                    continue

                # Prioritize CV F1 score if available, fallback to test F1
                cv_results = result['evaluation_metrics'].get('cross_validation', {})
                if 'test_scores' in cv_results and 'f1' in cv_results['test_scores']:
                    f1_score = cv_results['test_scores']['f1']['mean']
                    score_type = "CV F1"
                else:
                    f1_score = result['evaluation_metrics']['f1']
                    score_type = "Test F1"

                if f1_score > best_score:
                    best_score = f1_score
                    best_model_name = model_name
                    best_model = result['model']
                    best_metrics = result['evaluation_metrics']

        if best_model_name is None:
            raise ValueError("No models trained successfully")

        score_type = "CV F1" if 'cross_validation' in best_metrics else "Test F1"
        logger.info(f"Best model: {best_model_name} with {score_type} score: {best_score:.4f}")
        return best_model_name, best_model, best_metrics

    def save_model_artifacts(self, model, model_name: str, metrics: Dict, results: Dict) -> bool:
        """Save model artifacts and enhanced metadata with feature engineering results"""
        try:
            if self.progress_tracker:
                self.progress_tracker.update("Saving model")

            # Save the full pipeline with error handling
            try:
                joblib.dump(model, self.pipeline_path)
                logger.info(f"βœ… Saved pipeline to {self.pipeline_path}")
            except Exception as e:
                logger.error(f"Failed to save pipeline: {e}")
                # Try alternative path
                alt_pipeline_path = Path("/tmp") / "pipeline.pkl"
                joblib.dump(model, alt_pipeline_path)
                logger.info(f"βœ… Saved pipeline to {alt_pipeline_path}")

            # Save enhanced feature engineer if available
            if self.use_enhanced_features and self.feature_engineer is not None:
                try:
                    self.feature_engineer.save_pipeline(self.feature_engineer_path)
                    logger.info(f"βœ… Saved feature engineer to {self.feature_engineer_path}")
                except Exception as e:
                    logger.warning(f"Could not save feature engineer: {e}")

            # Save individual components for backward compatibility
            try:
                if model_name == 'ensemble':
                    # Handle ensemble model saving - ensemble has different structure
                    joblib.dump(model, self.model_path, compress=1)
                    logger.info(f"βœ… Saved ensemble model to {self.model_path}")
                    
                    # Don't try to extract individual components from ensemble
                    
                elif hasattr(model, 'named_steps'):
                    if 'model' in model.named_steps:
                        joblib.dump(model.named_steps['model'], self.model_path)
                        logger.info(f"βœ… Saved model component to {self.model_path}")
                    
                    # Save vectorizer (standard pipeline) or enhanced features reference
                    if 'vectorize' in model.named_steps:
                        joblib.dump(model.named_steps['vectorize'], self.vectorizer_path)
                        logger.info(f"βœ… Saved vectorizer to {self.vectorizer_path}")
                    elif 'enhanced_features' in model.named_steps:
                        # Save reference to enhanced features
                        enhanced_ref = {
                            'type': 'enhanced_features',
                            'feature_engineer_path': str(self.feature_engineer_path),
                            'metadata': self.feature_engineer.get_feature_metadata() if self.feature_engineer else {}
                        }
                        joblib.dump(enhanced_ref, self.vectorizer_path)
                        logger.info(f"βœ… Saved enhanced features reference to {self.vectorizer_path}")
                        
            except Exception as e:
                logger.warning(f"Could not save individual components: {e}")

            # Generate data hash
            data_hash = hashlib.md5(str(datetime.now()).encode()).hexdigest()

            # Extract CV results
            cv_results = metrics.get('cross_validation', {})
            
            # Create enhanced metadata with feature engineering information
            metadata = {
                'model_version': f"v1.0_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
                'model_type': model_name,
                'is_ensemble': model_name == 'ensemble',
                'feature_engineering': {
                    'type': 'enhanced' if self.use_enhanced_features else 'standard',
                    'enhanced_features_available': ENHANCED_FEATURES_AVAILABLE,
                    'enhanced_features_used': self.use_enhanced_features
                },
                'data_version': data_hash,
                'test_accuracy': metrics['accuracy'],
                'test_f1': metrics['f1'],
                'test_precision': metrics['precision'],
                'test_recall': metrics['recall'],
                'test_roc_auc': metrics['roc_auc'],
                'overfitting_score': metrics.get('overfitting_score', 'Unknown'),
                'timestamp': datetime.now().isoformat(),
                'training_config': {
                    'test_size': self.test_size,
                    'cv_folds': self.cv_folds,
                    'max_features': self.max_features,
                    'ngram_range': self.ngram_range,
                    'feature_selection_k': self.feature_selection_k,
                    'use_enhanced_features': self.use_enhanced_features,
                    'enable_ensemble': self.enable_ensemble
                }
            }
            
            # Add enhanced feature metadata
            if self.use_enhanced_features:
                feature_metadata = metrics.get('feature_metadata', {})
                if feature_metadata:
                    metadata['enhanced_features'] = {
                        'total_features': feature_metadata.get('total_features', 0),
                        'feature_types': feature_metadata.get('feature_types', {}),
                        'configuration': feature_metadata.get('configuration', {})
                    }
                
                # Add top features if available
                top_features = metrics.get('top_features', {})
                if top_features:
                    metadata['top_features'] = dict(list(top_features.items())[:10])  # Top 10 features
                    
                    # Save detailed feature importance
                    try:
                        feature_analysis = {
                            'top_features': top_features,
                            'feature_metadata': feature_metadata,
                            'timestamp': datetime.now().isoformat(),
                            'model_version': metadata['model_version']
                        }
                        
                        with open(self.feature_importance_path, 'w') as f:
                            json.dump(feature_analysis, f, indent=2)
                        logger.info(f"βœ… Saved feature importance analysis to {self.feature_importance_path}")
                        
                    except Exception as e:
                        logger.warning(f"Could not save feature importance: {e}")
            
            # Add comprehensive CV results to metadata
            if cv_results and 'test_scores' in cv_results:
                metadata['cross_validation'] = {
                    'n_splits': cv_results.get('n_splits', self.cv_folds),
                    'test_scores': cv_results['test_scores'],
                    'train_scores': cv_results.get('train_scores', {}),
                    'overfitting_score': cv_results.get('overfitting_score', 'Unknown'),
                    'stability_score': cv_results.get('stability_score', 'Unknown'),
                    'individual_fold_results': cv_results.get('fold_results', [])
                }
                
                # Add summary statistics
                if 'f1' in cv_results['test_scores']:
                    metadata['cv_f1_mean'] = cv_results['test_scores']['f1']['mean']
                    metadata['cv_f1_std'] = cv_results['test_scores']['f1']['std']
                    metadata['cv_f1_min'] = cv_results['test_scores']['f1']['min']
                    metadata['cv_f1_max'] = cv_results['test_scores']['f1']['max']
                
                if 'accuracy' in cv_results['test_scores']:
                    metadata['cv_accuracy_mean'] = cv_results['test_scores']['accuracy']['mean']
                    metadata['cv_accuracy_std'] = cv_results['test_scores']['accuracy']['std']
            
            # Add ensemble information if applicable
            if model_name == 'ensemble' and 'ensemble' in results:
                ensemble_result = results['ensemble']
                ensemble_comparison = ensemble_result.get('ensemble_comparison', {})
                statistical_comparison = ensemble_result.get('statistical_comparison', {})
                
                metadata['ensemble_info'] = {
                    'ensemble_analysis': ensemble_comparison.get('ensemble_analysis', {}),
                    'statistical_recommendation': statistical_comparison.get('ensemble_recommendation', {}),
                    'individual_models': list(ensemble_comparison.keys()) if ensemble_comparison else []
                }
            
            # Add model comparison results if available
            if len(results) > 1:
                model_comparison = {}
                for other_model_name, other_result in results.items():
                    if other_model_name != model_name and 'error' not in other_result:
                        other_cv = other_result['evaluation_metrics'].get('cross_validation', {})
                        if cv_results and other_cv:
                            comparison = self.cv_manager.compare_cv_results(cv_results, other_cv)
                            model_comparison[other_model_name] = comparison
                
                if model_comparison:
                    metadata['model_comparison'] = model_comparison

            # Save metadata with error handling
            try:
                with open(self.metadata_path, 'w') as f:
                    json.dump(metadata, f, indent=2)
                logger.info(f"βœ… Saved enhanced metadata to {self.metadata_path}")
            except Exception as e:
                logger.warning(f"Could not save metadata: {e}")

            # Log feature engineering summary
            if self.use_enhanced_features and feature_metadata:
                logger.info(f"βœ… Enhanced features summary:")
                logger.info(f"   Total features: {feature_metadata.get('total_features', 0)}")
                for feature_type, count in feature_metadata.get('feature_types', {}).items():
                    logger.info(f"   {feature_type}: {count}")

            # Log ensemble information
            if model_name == 'ensemble':
                logger.info(f"βœ… Ensemble model selected and saved")

            logger.info(f"βœ… Model artifacts saved successfully with {'enhanced' if self.use_enhanced_features else 'standard'} features")
            return True

        except Exception as e:
            logger.error(f"Failed to save model artifacts: {str(e)}")
            # Try to save at least the core pipeline
            try:
                joblib.dump(model, Path("/tmp/pipeline_backup.pkl"))
                logger.info("βœ… Saved backup pipeline")
                return True
            except Exception as e2:
                logger.error(f"Failed to save backup pipeline: {str(e2)}")
                return False

    def train_model(self, data_path: str = None, force_enhanced: bool = None, force_ensemble: bool = None) -> Tuple[bool, str]:
        """Main training function with LightGBM, enhanced feature engineering, and ensemble voting"""
        try:
            # Override settings if specified
            if force_enhanced is not None:
                original_setting = self.use_enhanced_features
                self.use_enhanced_features = force_enhanced and ENHANCED_FEATURES_AVAILABLE
                if force_enhanced and not ENHANCED_FEATURES_AVAILABLE:
                    logger.warning("Enhanced features requested but not available, using standard features")
            
            if force_ensemble is not None:
                self.enable_ensemble = force_ensemble
            
            feature_type = "enhanced" if self.use_enhanced_features else "standard"
            ensemble_info = "with ensemble" if self.enable_ensemble else "without ensemble"
            logger.info(f"Starting {feature_type} model training {ensemble_info} including LightGBM...")

            # Override data path if provided
            if data_path:
                self.data_path = Path(data_path)

            # Load and validate data
            success, df, message = self.load_and_validate_data()
            if not success:
                return False, message

            # Estimate training time and setup progress tracker
            time_estimate = estimate_training_time(
                len(df), 
                enable_tuning=True, 
                cv_folds=self.cv_folds,
                use_enhanced_features=self.use_enhanced_features,
                enable_ensemble=self.enable_ensemble
            )
            
            print(f"\nπŸ“Š Enhanced Training Configuration:")
            print(f"Dataset size: {len(df)} samples")
            print(f"Feature engineering: {feature_type.title()}")
            print(f"Cross-validation folds: {self.cv_folds}")
            print(f"Models: Logistic Regression, Random Forest, LightGBM")
            print(f"Ensemble voting: {'Enabled' if self.enable_ensemble else 'Disabled'}")
            print(f"Estimated time: {time_estimate['total_formatted']}")
            print(f"Hyperparameter tuning: Enabled")
            if self.use_enhanced_features:
                print(f"Enhanced features: Sentiment, Readability, Entities, Linguistic")
            print()

            # Setup progress tracker (adjusted for LightGBM and ensemble)
            base_steps = 4 + (len(self.models) * 3) + 1  # Basic steps
            enhanced_steps = 2 if self.use_enhanced_features else 0  # Feature engineering steps
            ensemble_steps = 3 if self.enable_ensemble else 0  # Ensemble creation and evaluation
            total_steps = base_steps + enhanced_steps + ensemble_steps
            self.progress_tracker = ProgressTracker(total_steps, f"{feature_type.title()} Training Progress")

            # Prepare data
            X = df['text'].values
            y = df['label'].values

            # Train-test split with smart handling for small datasets
            self.progress_tracker.update("Splitting data")
            
            # Ensure minimum test size for very small datasets
            if len(X) < 10:
                test_size = max(0.1, 1/len(X))  # At least 1 sample for test
            else:
                test_size = self.test_size
                
            # Check if stratification is possible
            label_counts = pd.Series(y).value_counts()
            min_class_count = label_counts.min()
            can_stratify = min_class_count >= 2 and len(y) >= 4
            
            X_train, X_test, y_train, y_test = train_test_split(
                X, y,
                test_size=test_size,
                stratify=y if can_stratify else None,
                random_state=self.random_state
            )

            logger.info(f"Data split: {len(X_train)} train, {len(X_test)} test")
            
            # Additional validation for very small datasets
            if len(X_train) < 3:
                logger.warning(f"Very small training set: {len(X_train)} samples. CV results may be unreliable.")
            if len(X_test) < 1:
                return False, "Cannot create test set. Dataset too small."

            # Train and evaluate models with LightGBM and enhanced features
            results = self.train_and_evaluate_models(X_train, X_test, y_train, y_test)

            # Select best model (could be ensemble)
            best_model_name, best_model, best_metrics = self.select_best_model(results)

            # Save model artifacts with enhanced feature information
            if not self.save_model_artifacts(best_model, best_model_name, best_metrics, results):
                return False, "Failed to save model artifacts"

            # Finish progress tracking
            self.progress_tracker.finish()

            # Create success message with comprehensive information
            cv_results = best_metrics.get('cross_validation', {})
            cv_info = ""
            if 'test_scores' in cv_results and 'f1' in cv_results['test_scores']:
                cv_f1_mean = cv_results['test_scores']['f1']['mean']
                cv_f1_std = cv_results['test_scores']['f1']['std']
                cv_info = f", CV F1: {cv_f1_mean:.4f} (Β±{cv_f1_std:.4f})"

            # Enhanced features summary
            feature_info = ""
            if self.use_enhanced_features:
                feature_metadata = best_metrics.get('feature_metadata', {})
                if feature_metadata:
                    total_features = feature_metadata.get('total_features', 0)
                    feature_info = f", Enhanced Features: {total_features}"
            
            # Ensemble information
            ensemble_info = ""
            if best_model_name == 'ensemble':
                ensemble_info = " (Ensemble Model Selected)"

            success_message = (
                f"{feature_type.title()} model training completed successfully{ensemble_info}. "
                f"Best model: {best_model_name} "
                f"(Test F1: {best_metrics['f1']:.4f}, Test Accuracy: {best_metrics['accuracy']:.4f}{cv_info}{feature_info})"
            )

            logger.info(success_message)
            return True, success_message

        except Exception as e:
            if self.progress_tracker:
                print()  # New line after progress bar
            error_message = f"Enhanced model training with LightGBM failed: {str(e)}"
            logger.error(error_message)
            return False, error_message


def main():
    """Main execution function with LightGBM, enhanced features, and ensemble support"""
    import argparse
    
    # Parse command line arguments
    parser = argparse.ArgumentParser(description='Train fake news detection model with LightGBM and enhanced features')
    parser.add_argument('--data_path', type=str, help='Path to training data CSV file')
    parser.add_argument('--config_path', type=str, help='Path to training configuration JSON file')
    parser.add_argument('--cv_folds', type=int, default=5, help='Number of cross-validation folds')
    parser.add_argument('--enhanced_features', action='store_true', help='Force use of enhanced features')
    parser.add_argument('--standard_features', action='store_true', help='Force use of standard TF-IDF features only')
    parser.add_argument('--enable_ensemble', action='store_true', help='Enable ensemble voting')
    parser.add_argument('--disable_ensemble', action='store_true', help='Disable ensemble voting')
    args = parser.parse_args()
    
    # Determine feature engineering mode
    use_enhanced = None
    if args.enhanced_features and args.standard_features:
        logger.warning("Both --enhanced_features and --standard_features specified. Using auto-detection.")
    elif args.enhanced_features:
        use_enhanced = True
        logger.info("Enhanced features explicitly requested")
    elif args.standard_features:
        use_enhanced = False
        logger.info("Standard features explicitly requested")
    
    # Determine ensemble mode
    enable_ensemble = None
    if args.enable_ensemble and args.disable_ensemble:
        logger.warning("Both --enable_ensemble and --disable_ensemble specified. Using default.")
    elif args.enable_ensemble:
        enable_ensemble = True
        logger.info("Ensemble voting explicitly enabled")
    elif args.disable_ensemble:
        enable_ensemble = False
        logger.info("Ensemble voting explicitly disabled")
    
    trainer = EnhancedModelTrainer(
        use_enhanced_features=use_enhanced, 
        enable_ensemble=enable_ensemble if enable_ensemble is not None else True
    )
    
    # Apply CV folds from command line
    if args.cv_folds:
        trainer.cv_folds = args.cv_folds
        trainer.cv_manager.cv_folds = args.cv_folds
    
    # Load custom configuration if provided
    if args.config_path and Path(args.config_path).exists():
        try:
            with open(args.config_path, 'r') as f:
                config = json.load(f)
            
            # Apply configuration
            trainer.test_size = config.get('test_size', trainer.test_size)
            trainer.cv_folds = config.get('cv_folds', trainer.cv_folds)
            trainer.cv_manager.cv_folds = trainer.cv_folds
            trainer.max_features = config.get('max_features', trainer.max_features)
            trainer.ngram_range = tuple(config.get('ngram_range', trainer.ngram_range))
            
            # Enhanced feature configuration
            if 'enhanced_features' in config and use_enhanced is None:
                trainer.use_enhanced_features = config['enhanced_features'] and ENHANCED_FEATURES_AVAILABLE
            
            # Ensemble configuration
            if 'enable_ensemble' in config and enable_ensemble is None:
                trainer.enable_ensemble = config['enable_ensemble']
            
            # Filter models if specified
            selected_models = config.get('selected_models')
            if selected_models and len(selected_models) < len(trainer.models):
                all_models = trainer.models.copy()
                trainer.models = {k: v for k, v in all_models.items() if k in selected_models}
            
            # Update feature selection based on max_features
            trainer.feature_selection_k = min(trainer.feature_selection_k, trainer.max_features)
            
            logger.info(f"Applied custom configuration with {trainer.cv_folds} CV folds")
            if trainer.use_enhanced_features:
                logger.info("Enhanced features enabled via configuration")
            if trainer.enable_ensemble:
                logger.info("Ensemble voting enabled via configuration")
            
        except Exception as e:
            logger.warning(f"Failed to load configuration: {e}, using defaults")
    
    success, message = trainer.train_model(data_path=args.data_path)

    if success:
        print(f"βœ… {message}")
        
        # Print feature engineering summary
        if trainer.use_enhanced_features and trainer.feature_engineer:
            try:
                metadata = trainer.feature_engineer.get_feature_metadata()
                print(f"\nπŸ“ˆ Enhanced Feature Engineering Summary:")
                print(f"Total features generated: {metadata['total_features']}")
                for feature_type, count in metadata['feature_types'].items():
                    print(f"  {feature_type}: {count}")
            except Exception as e:
                logger.warning(f"Could not display feature summary: {e}")
        
        # Print model information
        print(f"\n🎯 Model Information:")
        print(f"Models trained: {', '.join(trainer.models.keys())}")
        if trainer.enable_ensemble:
            print(f"Ensemble voting: Enabled")
        else:
            print(f"Ensemble voting: Disabled")
    else:
        print(f"❌ {message}")
        exit(1)


if __name__ == "__main__":
    main()