File size: 25,124 Bytes
2998089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
import json
import time
import smtplib
import logging
import numpy as np
from pathlib import Path
from email.mime.text import MIMEText
from datetime import datetime, timedelta
from dataclasses import dataclass, asdict
from collections import defaultdict, deque
from email.mime.multipart import MIMEMultipart
from typing import Dict, List, Optional, Any, Callable

logger = logging.getLogger(__name__)

@dataclass
class Alert:
    """Alert data structure"""
    id: str
    timestamp: str
    type: str  # 'info', 'warning', 'critical'
    category: str  # 'system', 'api', 'model', 'prediction'
    title: str
    message: str
    source: str
    severity_score: float
    metadata: Dict[str, Any]
    acknowledged: bool = False
    resolved: bool = False
    resolution_time: Optional[str] = None

@dataclass
class AlertRule:
    """Alert rule configuration"""
    id: str
    name: str
    category: str
    condition: Dict[str, Any]
    threshold: float
    severity: str
    cooldown_minutes: int
    enabled: bool = True

class AlertSystem:
    """Comprehensive alerting and notification system"""
    
    def __init__(self, base_dir: Path):
        self.base_dir = Path(base_dir)
        self.monitor_dir = self.base_dir / "monitor"
        self.monitor_dir.mkdir(parents=True, exist_ok=True)
        
        # Storage paths
        self.alerts_log_path = self.monitor_dir / "alerts.json"
        self.alert_rules_path = self.monitor_dir / "alert_rules.json"
        self.alert_config_path = self.monitor_dir / "alert_config.json"
        
        # In-memory storage
        self.active_alerts = {}  # alert_id -> Alert
        self.alert_history = deque(maxlen=10000)
        self.alert_rules = {}  # rule_id -> AlertRule
        self.alert_cooldowns = defaultdict(float)  # rule_id -> last_triggered_time
        
        # Notification channels
        self.notification_handlers = {}
        
        # Alert statistics
        self.alert_stats = {
            'total_alerts': 0,
            'alerts_by_type': defaultdict(int),
            'alerts_by_category': defaultdict(int),
            'resolution_times': []
        }
        
        # Load configuration and rules
        self.load_alert_configuration()
        self.load_alert_rules()
        self.load_alert_history()
    
    def add_notification_handler(self, name: str, handler: Callable):
        """Add a custom notification handler"""
        self.notification_handlers[name] = handler
        logger.info(f"Added notification handler: {name}")
    
    def create_alert(self, 
                    alert_type: str,
                    category: str,
                    title: str,
                    message: str,
                    source: str,
                    metadata: Dict[str, Any] = None,
                    severity_score: float = 0.5) -> str:
        """Create a new alert"""
        
        alert_id = self._generate_alert_id(category, title)
        
        # Check if similar alert already exists
        if self._is_duplicate_alert(alert_id, category, title):
            logger.debug(f"Duplicate alert suppressed: {title}")
            return alert_id
        
        alert = Alert(
            id=alert_id,
            timestamp=datetime.now().isoformat(),
            type=alert_type,
            category=category,
            title=title,
            message=message,
            source=source,
            severity_score=severity_score,
            metadata=metadata or {},
            acknowledged=False,
            resolved=False
        )
        
        # Store alert
        self.active_alerts[alert_id] = alert
        self.alert_history.append(alert)
        
        # Update statistics
        self.alert_stats['total_alerts'] += 1
        self.alert_stats['alerts_by_type'][alert_type] += 1
        self.alert_stats['alerts_by_category'][category] += 1
        
        # Save to log
        self._append_to_log(self.alerts_log_path, asdict(alert))
        
        # Send notifications
        self._send_notifications(alert)
        
        logger.info(f"Created {alert_type} alert: {title}")
        return alert_id
    
    def acknowledge_alert(self, alert_id: str, acknowledger: str = "system") -> bool:
        """Acknowledge an alert"""
        if alert_id in self.active_alerts:
            alert = self.active_alerts[alert_id]
            alert.acknowledged = True
            alert.metadata['acknowledged_by'] = acknowledger
            alert.metadata['acknowledged_at'] = datetime.now().isoformat()
            
            self._append_to_log(self.alerts_log_path, {
                'action': 'acknowledge',
                'alert_id': alert_id,
                'acknowledger': acknowledger,
                'timestamp': datetime.now().isoformat()
            })
            
            logger.info(f"Alert acknowledged: {alert_id} by {acknowledger}")
            return True
        
        return False
    
    def resolve_alert(self, alert_id: str, resolver: str = "system", resolution_note: str = "") -> bool:
        """Resolve an alert"""
        if alert_id in self.active_alerts:
            alert = self.active_alerts[alert_id]
            alert.resolved = True
            alert.resolution_time = datetime.now().isoformat()
            alert.metadata['resolved_by'] = resolver
            alert.metadata['resolution_note'] = resolution_note
            
            # Calculate resolution time
            alert_time = datetime.fromisoformat(alert.timestamp)
            resolution_time = datetime.now()
            resolution_duration = (resolution_time - alert_time).total_seconds() / 60  # minutes
            
            self.alert_stats['resolution_times'].append(resolution_duration)
            
            # Remove from active alerts
            del self.active_alerts[alert_id]
            
            self._append_to_log(self.alerts_log_path, {
                'action': 'resolve',
                'alert_id': alert_id,
                'resolver': resolver,
                'resolution_note': resolution_note,
                'resolution_duration_minutes': resolution_duration,
                'timestamp': datetime.now().isoformat()
            })
            
            logger.info(f"Alert resolved: {alert_id} by {resolver}")
            return True
        
        return False
    
    def check_metric_thresholds(self, metrics: Dict[str, Any]):
        """Check metrics against alert rules"""
        for rule_id, rule in self.alert_rules.items():
            if not rule.enabled:
                continue
            
            # Check cooldown
            if self._is_in_cooldown(rule_id, rule.cooldown_minutes):
                continue
            
            # Evaluate rule condition
            if self._evaluate_rule_condition(rule, metrics):
                self._trigger_rule_alert(rule, metrics)
    
    def check_anomaly_detection(self, 
                               current_metrics: Dict[str, Any],
                               historical_metrics: List[Dict[str, Any]]):
        """Check for anomalies using statistical methods"""
        
        if len(historical_metrics) < 10:  # Need sufficient history
            return
        
        # Define metrics to monitor for anomalies
        anomaly_metrics = {
            'response_time': 'api.avg_response_time',
            'error_rate': 'api.error_rate',
            'cpu_usage': 'system.cpu_percent',
            'memory_usage': 'system.memory_percent',
            'confidence': 'model.avg_confidence'
        }
        
        for metric_name, metric_path in anomaly_metrics.items():
            try:
                # Extract historical values
                historical_values = []
                for hist_metric in historical_metrics:
                    value = self._get_nested_value(hist_metric, metric_path)
                    if value is not None:
                        historical_values.append(value)
                
                if len(historical_values) < 5:
                    continue
                
                # Get current value
                current_value = self._get_nested_value(current_metrics, metric_path)
                if current_value is None:
                    continue
                
                # Statistical anomaly detection
                mean_val = np.mean(historical_values)
                std_val = np.std(historical_values)
                
                # Z-score based detection
                if std_val > 0:
                    z_score = abs(current_value - mean_val) / std_val
                    
                    if z_score > 3:  # 3 sigma threshold
                        self.create_alert(
                            alert_type='warning',
                            category='anomaly',
                            title=f'Anomaly Detected: {metric_name}',
                            message=f'{metric_name} value {current_value:.2f} is {z_score:.1f} standard deviations from normal',
                            source='anomaly_detection',
                            metadata={
                                'metric_name': metric_name,
                                'current_value': current_value,
                                'historical_mean': mean_val,
                                'historical_std': std_val,
                                'z_score': z_score
                            },
                            severity_score=min(z_score / 5, 1.0)
                        )
                
            except Exception as e:
                logger.error(f"Error in anomaly detection for {metric_name}: {e}")
    
    def get_active_alerts(self) -> List[Alert]:
        """Get all active alerts"""
        return list(self.active_alerts.values())
    
    def get_alerts_by_category(self, category: str, hours: int = 24) -> List[Alert]:
        """Get alerts by category within time period"""
        cutoff_time = datetime.now() - timedelta(hours=hours)
        
        return [
            alert for alert in self.alert_history
            if (alert.category == category and 
                datetime.fromisoformat(alert.timestamp) > cutoff_time)
        ]
    
    def get_alert_statistics(self) -> Dict[str, Any]:
        """Get alert statistics and metrics"""
        active_count = len(self.active_alerts)
        
        # Recent alerts (last 24 hours)
        recent_alerts = self.get_recent_alerts(hours=24)
        
        # Resolution time statistics
        resolution_times = self.alert_stats['resolution_times']
        resolution_stats = {}
        if resolution_times:
            resolution_stats = {
                'avg_resolution_time_minutes': float(np.mean(resolution_times)),
                'median_resolution_time_minutes': float(np.median(resolution_times)),
                'max_resolution_time_minutes': float(np.max(resolution_times)),
                'min_resolution_time_minutes': float(np.min(resolution_times))
            }
        
        return {
            'active_alerts': active_count,
            'total_alerts_24h': len(recent_alerts),
            'alerts_by_type': dict(self.alert_stats['alerts_by_type']),
            'alerts_by_category': dict(self.alert_stats['alerts_by_category']),
            'resolution_statistics': resolution_stats,
            'alert_rate_per_hour': len(recent_alerts) / 24.0,
            'critical_alerts_active': len([a for a in self.active_alerts.values() if a.type == 'critical']),
            'unacknowledged_alerts': len([a for a in self.active_alerts.values() if not a.acknowledged])
        }
    
    def get_recent_alerts(self, hours: int = 24) -> List[Alert]:
        """Get recent alerts within time period"""
        cutoff_time = datetime.now() - timedelta(hours=hours)
        
        return [
            alert for alert in self.alert_history
            if datetime.fromisoformat(alert.timestamp) > cutoff_time
        ]
    
    def create_default_alert_rules(self):
        """Create default alert rules"""
        default_rules = [
            {
                'id': 'high_response_time',
                'name': 'High Response Time',
                'category': 'api',
                'condition': {'metric': 'avg_response_time', 'operator': '>', 'value': 5.0},
                'threshold': 5.0,
                'severity': 'warning',
                'cooldown_minutes': 5
            },
            {
                'id': 'critical_response_time',
                'name': 'Critical Response Time',
                'category': 'api',
                'condition': {'metric': 'avg_response_time', 'operator': '>', 'value': 10.0},
                'threshold': 10.0,
                'severity': 'critical',
                'cooldown_minutes': 2
            },
            {
                'id': 'high_error_rate',
                'name': 'High Error Rate',
                'category': 'api',
                'condition': {'metric': 'error_rate', 'operator': '>', 'value': 0.05},
                'threshold': 0.05,
                'severity': 'warning',
                'cooldown_minutes': 5
            },
            {
                'id': 'critical_error_rate',
                'name': 'Critical Error Rate',
                'category': 'api',
                'condition': {'metric': 'error_rate', 'operator': '>', 'value': 0.1},
                'threshold': 0.1,
                'severity': 'critical',
                'cooldown_minutes': 2
            },
            {
                'id': 'high_cpu_usage',
                'name': 'High CPU Usage',
                'category': 'system',
                'condition': {'metric': 'cpu_percent', 'operator': '>', 'value': 80.0},
                'threshold': 80.0,
                'severity': 'warning',
                'cooldown_minutes': 10
            },
            {
                'id': 'critical_cpu_usage',
                'name': 'Critical CPU Usage',
                'category': 'system',
                'condition': {'metric': 'cpu_percent', 'operator': '>', 'value': 95.0},
                'threshold': 95.0,
                'severity': 'critical',
                'cooldown_minutes': 5
            },
            {
                'id': 'high_memory_usage',
                'name': 'High Memory Usage',
                'category': 'system',
                'condition': {'metric': 'memory_percent', 'operator': '>', 'value': 85.0},
                'threshold': 85.0,
                'severity': 'warning',
                'cooldown_minutes': 10
            },
            {
                'id': 'low_model_confidence',
                'name': 'Low Model Confidence',
                'category': 'model',
                'condition': {'metric': 'avg_confidence', 'operator': '<', 'value': 0.6},
                'threshold': 0.6,
                'severity': 'warning',
                'cooldown_minutes': 15
            }
        ]
        
        for rule_data in default_rules:
            rule = AlertRule(**rule_data)
            self.alert_rules[rule.id] = rule
        
        self.save_alert_rules()
        logger.info(f"Created {len(default_rules)} default alert rules")
    
    def _generate_alert_id(self, category: str, title: str) -> str:
        """Generate unique alert ID"""
        import hashlib
        content = f"{category}_{title}_{datetime.now().isoformat()}"
        return hashlib.md5(content.encode()).hexdigest()[:12]
    
    def _is_duplicate_alert(self, alert_id: str, category: str, title: str, window_minutes: int = 10) -> bool:
        """Check if similar alert exists within time window"""
        cutoff_time = datetime.now() - timedelta(minutes=window_minutes)
        
        for alert in self.alert_history:
            if (alert.category == category and 
                alert.title == title and 
                datetime.fromisoformat(alert.timestamp) > cutoff_time and
                not alert.resolved):
                return True
        
        return False
    
    def _is_in_cooldown(self, rule_id: str, cooldown_minutes: int) -> bool:
        """Check if rule is in cooldown period"""
        if rule_id not in self.alert_cooldowns:
            return False
        
        last_triggered = self.alert_cooldowns[rule_id]
        cooldown_period = cooldown_minutes * 60  # Convert to seconds
        
        return (time.time() - last_triggered) < cooldown_period
    
    def _evaluate_rule_condition(self, rule: AlertRule, metrics: Dict[str, Any]) -> bool:
        """Evaluate if rule condition is met"""
        try:
            condition = rule.condition
            metric_value = self._get_nested_value(metrics, condition['metric'])
            
            if metric_value is None:
                return False
            
            operator = condition['operator']
            threshold_value = condition['value']
            
            if operator == '>':
                return metric_value > threshold_value
            elif operator == '<':
                return metric_value < threshold_value
            elif operator == '>=':
                return metric_value >= threshold_value
            elif operator == '<=':
                return metric_value <= threshold_value
            elif operator == '==':
                return metric_value == threshold_value
            elif operator == '!=':
                return metric_value != threshold_value
            
            return False
            
        except Exception as e:
            logger.error(f"Error evaluating rule condition for {rule.id}: {e}")
            return False
    
    def _trigger_rule_alert(self, rule: AlertRule, metrics: Dict[str, Any]):
        """Trigger alert based on rule"""
        metric_value = self._get_nested_value(metrics, rule.condition['metric'])
        
        alert_id = self.create_alert(
            alert_type=rule.severity,
            category=rule.category,
            title=rule.name,
            message=f"{rule.name}: {rule.condition['metric']} = {metric_value} (threshold: {rule.threshold})",
            source=f"rule_{rule.id}",
            metadata={
                'rule_id': rule.id,
                'metric_name': rule.condition['metric'],
                'metric_value': metric_value,
                'threshold': rule.threshold,
                'operator': rule.condition['operator']
            }
        )
        
        # Set cooldown
        self.alert_cooldowns[rule.id] = time.time()
        
        logger.info(f"Rule alert triggered: {rule.name} (ID: {alert_id})")
    
    def _get_nested_value(self, data: Dict, path: str):
        """Get nested value from dictionary using dot notation"""
        try:
            keys = path.split('.')
            value = data
            for key in keys:
                if isinstance(value, dict) and key in value:
                    value = value[key]
                else:
                    return None
            return value
        except Exception:
            return None
    
    def _send_notifications(self, alert: Alert):
        """Send notifications for alert"""
        for handler_name, handler in self.notification_handlers.items():
            try:
                handler(alert)
            except Exception as e:
                logger.error(f"Error in notification handler {handler_name}: {e}")
    
    def _append_to_log(self, log_path: Path, data: Dict):
        """Append data to log file"""
        try:
            with open(log_path, 'a') as f:
                f.write(json.dumps(data) + '\n')
        except Exception as e:
            logger.error(f"Failed to write to log {log_path}: {e}")
    
    def load_alert_configuration(self):
        """Load alert system configuration"""
        try:
            if self.alert_config_path.exists():
                with open(self.alert_config_path, 'r') as f:
                    config = json.load(f)
                
                # Update notification settings, thresholds, etc.
                logger.info("Loaded alert configuration")
            else:
                # Create default configuration
                default_config = {
                    'notification_channels': ['console'],
                    'alert_retention_days': 30,
                    'auto_resolve_after_hours': 24,
                    'duplicate_suppression_minutes': 10
                }
                
                with open(self.alert_config_path, 'w') as f:
                    json.dump(default_config, f, indent=2)
                
                logger.info("Created default alert configuration")
                
        except Exception as e:
            logger.error(f"Failed to load alert configuration: {e}")
    
    def load_alert_rules(self):
        """Load alert rules from file"""
        try:
            if self.alert_rules_path.exists():
                with open(self.alert_rules_path, 'r') as f:
                    rules_data = json.load(f)
                
                for rule_id, rule_data in rules_data.items():
                    rule = AlertRule(**rule_data)
                    self.alert_rules[rule_id] = rule
                
                logger.info(f"Loaded {len(self.alert_rules)} alert rules")
            else:
                # Create default rules
                self.create_default_alert_rules()
                
        except Exception as e:
            logger.error(f"Failed to load alert rules: {e}")
            # Create default rules as fallback
            self.create_default_alert_rules()
    
    def save_alert_rules(self):
        """Save alert rules to file"""
        try:
            rules_data = {}
            for rule_id, rule in self.alert_rules.items():
                rules_data[rule_id] = asdict(rule)
            
            with open(self.alert_rules_path, 'w') as f:
                json.dump(rules_data, f, indent=2)
            
            logger.info(f"Saved {len(self.alert_rules)} alert rules")
            
        except Exception as e:
            logger.error(f"Failed to save alert rules: {e}")
    
    def load_alert_history(self):
        """Load recent alert history"""
        try:
            if self.alerts_log_path.exists():
                cutoff_time = datetime.now() - timedelta(days=7)  # Last 7 days
                
                with open(self.alerts_log_path, 'r') as f:
                    for line in f:
                        try:
                            data = json.loads(line.strip())
                            
                            # Skip action logs
                            if 'action' in data:
                                continue
                            
                            alert = Alert(**data)
                            
                            # Only load recent alerts
                            if datetime.fromisoformat(alert.timestamp) > cutoff_time:
                                self.alert_history.append(alert)
                                
                                # Add to active alerts if not resolved
                                if not alert.resolved:
                                    self.active_alerts[alert.id] = alert
                        
                        except Exception:
                            continue
                
                logger.info(f"Loaded {len(self.alert_history)} recent alerts, "
                           f"{len(self.active_alerts)} active")
                
        except Exception as e:
            logger.error(f"Failed to load alert history: {e}")

# Default notification handlers
def console_notification_handler(alert: Alert):
    """Simple console notification handler"""
    icon = "πŸ”΄" if alert.type == "critical" else "🟑" if alert.type == "warning" else "πŸ”΅"
    print(f"{icon} [{alert.type.upper()}] {alert.title}: {alert.message}")

def email_notification_handler(alert: Alert, 
                              smtp_server: str,
                              smtp_port: int,
                              username: str,
                              password: str,
                              recipients: List[str]):
    """Email notification handler"""
    try:
        msg = MIMEMultipart()
        msg['From'] = username
        msg['To'] = ', '.join(recipients)
        msg['Subject'] = f"[{alert.type.upper()}] {alert.title}"
        
        body = f"""
Alert Details:
- Type: {alert.type}
- Category: {alert.category}
- Timestamp: {alert.timestamp}
- Source: {alert.source}
- Message: {alert.message}

Metadata:
{json.dumps(alert.metadata, indent=2)}
        """
        
        msg.attach(MIMEText(body, 'plain'))
        
        server = smtplib.SMTP(smtp_server, smtp_port)
        server.starttls()
        server.login(username, password)
        text = msg.as_string()
        server.sendmail(username, recipients, text)
        server.quit()
        
        logger.info(f"Email notification sent for alert: {alert.id}")
        
    except Exception as e:
        logger.error(f"Failed to send email notification: {e}")