File size: 30,053 Bytes
e397da1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
import json
import time
import psutil
import logging
import numpy as np
from pathlib import Path
from datetime import datetime, timedelta
from dataclasses import dataclass, asdict
from collections import defaultdict, deque
from typing import Dict, List, Optional, Any
logger = logging.getLogger(__name__)
@dataclass
class SystemMetrics:
"""System resource metrics"""
timestamp: str
cpu_percent: float
memory_percent: float
memory_used_mb: float
memory_total_mb: float
disk_usage_percent: float
disk_free_gb: float
load_average: Optional[float] = None
@dataclass
class APIMetrics:
"""API performance metrics"""
timestamp: str
total_requests: int
requests_per_minute: float
avg_response_time: float
error_count: int
error_rate: float
active_connections: int
endpoint_stats: Dict[str, Dict[str, Any]]
@dataclass
class ModelMetrics:
"""Model performance metrics"""
timestamp: str
model_version: str
predictions_made: int
avg_confidence: float
confidence_distribution: Dict[str, int]
prediction_distribution: Dict[str, int]
processing_time_stats: Dict[str, float]
model_health_score: float
class MetricsCollector:
"""Comprehensive metrics collection and aggregation system"""
def __init__(self, base_dir: Path):
self.base_dir = Path(base_dir)
self.monitor_dir = self.base_dir / "monitor"
self.monitor_dir.mkdir(parents=True, exist_ok=True)
# Storage paths
self.system_metrics_path = self.monitor_dir / "system_metrics.json"
self.api_metrics_path = self.monitor_dir / "api_metrics.json"
self.model_metrics_path = self.monitor_dir / "model_metrics.json"
self.aggregated_metrics_path = self.monitor_dir / "aggregated_metrics.json"
# In-memory storage
self.system_metrics_history = deque(maxlen=1440) # 24 hours
self.api_metrics_history = deque(maxlen=1440)
self.model_metrics_history = deque(maxlen=1440)
# Request tracking
self.request_tracker = defaultdict(list)
self.endpoint_stats = defaultdict(lambda: {
'count': 0,
'total_time': 0.0,
'errors': 0,
'last_request': None
})
# Performance baselines
self.baselines = {
'response_time': 2.0,
'cpu_usage': 70.0,
'memory_usage': 80.0,
'error_rate': 0.05
}
self.load_historical_metrics()
def collect_system_metrics(self) -> SystemMetrics:
"""Collect current system resource metrics"""
try:
# CPU and memory
cpu_percent = psutil.cpu_percent(interval=1)
memory = psutil.virtual_memory()
# Disk usage
disk = psutil.disk_usage('/')
# Load average (Unix systems)
load_avg = None
try:
load_avg = psutil.getloadavg()[0] # 1-minute load average
except AttributeError:
# Windows doesn't have getloadavg
pass
metrics = SystemMetrics(
timestamp=datetime.now().isoformat(),
cpu_percent=cpu_percent,
memory_percent=memory.percent,
memory_used_mb=memory.used / (1024 * 1024),
memory_total_mb=memory.total / (1024 * 1024),
disk_usage_percent=(disk.used / disk.total) * 100,
disk_free_gb=disk.free / (1024 * 1024 * 1024),
load_average=load_avg
)
# Store in history
self.system_metrics_history.append(metrics)
self._append_to_log(self.system_metrics_path, asdict(metrics))
return metrics
except Exception as e:
logger.error(f"Failed to collect system metrics: {e}")
return SystemMetrics(
timestamp=datetime.now().isoformat(),
cpu_percent=0.0,
memory_percent=0.0,
memory_used_mb=0.0,
memory_total_mb=0.0,
disk_usage_percent=0.0,
disk_free_gb=0.0
)
def record_api_request(self,
endpoint: str,
method: str,
response_time: float,
status_code: int,
client_ip: Optional[str] = None):
"""Record an API request"""
timestamp = datetime.now()
# Track request
request_data = {
'timestamp': timestamp.isoformat(),
'endpoint': endpoint,
'method': method,
'response_time': response_time,
'status_code': status_code,
'client_ip': client_ip
}
# Add to request tracker for rate calculation
self.request_tracker[timestamp.minute].append(request_data)
# Update endpoint statistics
endpoint_key = f"{method} {endpoint}"
stats = self.endpoint_stats[endpoint_key]
stats['count'] += 1
stats['total_time'] += response_time
stats['last_request'] = timestamp.isoformat()
if status_code >= 400:
stats['errors'] += 1
# Clean old request data (keep last 5 minutes)
cutoff_minute = (timestamp - timedelta(minutes=5)).minute
keys_to_remove = [k for k in self.request_tracker.keys() if k < cutoff_minute]
for key in keys_to_remove:
del self.request_tracker[key]
def collect_api_metrics(self) -> APIMetrics:
"""Collect current API performance metrics"""
now = datetime.now()
# Calculate requests in last minute
current_minute_requests = self.request_tracker.get(now.minute, [])
last_minute_requests = self.request_tracker.get((now - timedelta(minutes=1)).minute, [])
recent_requests = current_minute_requests + last_minute_requests
# Calculate metrics
total_requests = sum(len(requests) for requests in self.request_tracker.values())
requests_per_minute = len(recent_requests)
if recent_requests:
avg_response_time = np.mean([r['response_time'] for r in recent_requests])
error_count = len([r for r in recent_requests if r['status_code'] >= 400])
error_rate = error_count / len(recent_requests)
else:
avg_response_time = 0.0
error_count = 0
error_rate = 0.0
# Endpoint statistics
endpoint_stats = {}
for endpoint, stats in self.endpoint_stats.items():
if stats['count'] > 0:
endpoint_stats[endpoint] = {
'count': stats['count'],
'avg_response_time': stats['total_time'] / stats['count'],
'error_count': stats['errors'],
'error_rate': stats['errors'] / stats['count'],
'last_request': stats['last_request']
}
metrics = APIMetrics(
timestamp=now.isoformat(),
total_requests=total_requests,
requests_per_minute=requests_per_minute,
avg_response_time=avg_response_time,
error_count=error_count,
error_rate=error_rate,
active_connections=0, # This would need actual connection tracking
endpoint_stats=endpoint_stats
)
# Store in history
self.api_metrics_history.append(metrics)
self._append_to_log(self.api_metrics_path, asdict(metrics))
return metrics
def collect_model_metrics(self, prediction_monitor) -> ModelMetrics:
"""Collect model performance metrics"""
try:
current_metrics = prediction_monitor.get_current_metrics()
recent_predictions = prediction_monitor._get_recent_predictions(minutes=60)
if recent_predictions:
processing_times = [p.processing_time for p in recent_predictions]
processing_time_stats = {
'mean': float(np.mean(processing_times)),
'std': float(np.std(processing_times)),
'min': float(np.min(processing_times)),
'max': float(np.max(processing_times)),
'p95': float(np.percentile(processing_times, 95))
}
# Calculate model health score
health_score = self._calculate_model_health_score(current_metrics, processing_time_stats)
model_version = recent_predictions[0].model_version if recent_predictions else "unknown"
else:
processing_time_stats = {}
health_score = 0.0
model_version = "unknown"
metrics = ModelMetrics(
timestamp=datetime.now().isoformat(),
model_version=model_version,
predictions_made=current_metrics.total_predictions,
avg_confidence=current_metrics.avg_confidence,
confidence_distribution=current_metrics.confidence_distribution,
prediction_distribution=current_metrics.prediction_distribution,
processing_time_stats=processing_time_stats,
model_health_score=health_score
)
# Store in history
self.model_metrics_history.append(metrics)
self._append_to_log(self.model_metrics_path, asdict(metrics))
return metrics
except Exception as e:
logger.error(f"Failed to collect model metrics: {e}")
return ModelMetrics(
timestamp=datetime.now().isoformat(),
model_version="unknown",
predictions_made=0,
avg_confidence=0.0,
confidence_distribution={},
prediction_distribution={},
processing_time_stats={},
model_health_score=0.0
)
def get_aggregated_metrics(self, hours: int = 1) -> Dict[str, Any]:
"""Get aggregated metrics for specified time period"""
cutoff_time = datetime.now() - timedelta(hours=hours)
# Filter recent metrics
recent_system = [m for m in self.system_metrics_history
if datetime.fromisoformat(m.timestamp) > cutoff_time]
recent_api = [m for m in self.api_metrics_history
if datetime.fromisoformat(m.timestamp) > cutoff_time]
recent_model = [m for m in self.model_metrics_history
if datetime.fromisoformat(m.timestamp) > cutoff_time]
aggregated = {
'timestamp': datetime.now().isoformat(),
'time_period_hours': hours,
'system_metrics': self._aggregate_system_metrics(recent_system),
'api_metrics': self._aggregate_api_metrics(recent_api),
'model_metrics': self._aggregate_model_metrics(recent_model),
'overall_health_score': 0.0,
'alerts': self._generate_metric_alerts(recent_system, recent_api, recent_model)
}
# Calculate overall health score
aggregated['overall_health_score'] = self._calculate_overall_health_score(aggregated)
# Save aggregated metrics
self._append_to_log(self.aggregated_metrics_path, aggregated)
return aggregated
def get_performance_trends(self, hours: int = 24) -> Dict[str, Any]:
"""Analyze performance trends over time"""
cutoff_time = datetime.now() - timedelta(hours=hours)
# Get historical data
recent_system = [m for m in self.system_metrics_history
if datetime.fromisoformat(m.timestamp) > cutoff_time]
recent_api = [m for m in self.api_metrics_history
if datetime.fromisoformat(m.timestamp) > cutoff_time]
recent_model = [m for m in self.model_metrics_history
if datetime.fromisoformat(m.timestamp) > cutoff_time]
trends = {
'timestamp': datetime.now().isoformat(),
'analysis_period_hours': hours,
'system_trends': self._analyze_system_trends(recent_system),
'api_trends': self._analyze_api_trends(recent_api),
'model_trends': self._analyze_model_trends(recent_model),
'correlation_analysis': self._analyze_correlations(recent_system, recent_api, recent_model)
}
return trends
def get_real_time_dashboard_data(self) -> Dict[str, Any]:
"""Get current data for real-time dashboard"""
try:
# Get latest metrics
latest_system = self.system_metrics_history[-1] if self.system_metrics_history else None
latest_api = self.api_metrics_history[-1] if self.api_metrics_history else None
latest_model = self.model_metrics_history[-1] if self.model_metrics_history else None
# Get recent trends (last hour)
recent_aggregated = self.get_aggregated_metrics(hours=1)
dashboard_data = {
'timestamp': datetime.now().isoformat(),
'status': self._determine_system_status(latest_system, latest_api, latest_model),
'current_metrics': {
'system': asdict(latest_system) if latest_system else None,
'api': asdict(latest_api) if latest_api else None,
'model': asdict(latest_model) if latest_model else None
},
'hourly_summary': recent_aggregated,
'active_alerts': self._get_active_alerts(),
'key_indicators': self._get_key_indicators(latest_system, latest_api, latest_model)
}
return dashboard_data
except Exception as e:
logger.error(f"Failed to get dashboard data: {e}")
return {
'timestamp': datetime.now().isoformat(),
'status': 'unknown',
'error': str(e)
}
def _calculate_model_health_score(self, metrics, processing_stats: Dict) -> float:
"""Calculate overall model health score (0-1)"""
scores = []
# Confidence score
if metrics.avg_confidence > 0:
confidence_score = min(metrics.avg_confidence / 0.8, 1.0) # Target: 80%+
scores.append(confidence_score)
# Processing time score
if processing_stats and 'mean' in processing_stats:
processing_score = max(0, 1.0 - (processing_stats['mean'] / 10.0)) # Target: <10s
scores.append(processing_score)
# Error rate score
error_score = max(0, 1.0 - (metrics.error_rate / 0.1)) # Target: <10%
scores.append(error_score)
# Prediction rate score (activity indicator)
if metrics.predictions_per_minute > 0:
activity_score = min(metrics.predictions_per_minute / 10.0, 1.0) # Normalize to 10 req/min
scores.append(activity_score)
return float(np.mean(scores)) if scores else 0.0
def _aggregate_system_metrics(self, metrics: List[SystemMetrics]) -> Dict[str, Any]:
"""Aggregate system metrics"""
if not metrics:
return {}
cpu_values = [m.cpu_percent for m in metrics]
memory_values = [m.memory_percent for m in metrics]
disk_values = [m.disk_usage_percent for m in metrics]
return {
'cpu_usage': {
'avg': float(np.mean(cpu_values)),
'max': float(np.max(cpu_values)),
'min': float(np.min(cpu_values)),
'current': cpu_values[-1]
},
'memory_usage': {
'avg': float(np.mean(memory_values)),
'max': float(np.max(memory_values)),
'min': float(np.min(memory_values)),
'current': memory_values[-1]
},
'disk_usage': {
'avg': float(np.mean(disk_values)),
'max': float(np.max(disk_values)),
'min': float(np.min(disk_values)),
'current': disk_values[-1]
},
'sample_count': len(metrics)
}
def _aggregate_api_metrics(self, metrics: List[APIMetrics]) -> Dict[str, Any]:
"""Aggregate API metrics"""
if not metrics:
return {}
response_times = [m.avg_response_time for m in metrics]
error_rates = [m.error_rate for m in metrics]
request_rates = [m.requests_per_minute for m in metrics]
return {
'response_time': {
'avg': float(np.mean(response_times)),
'max': float(np.max(response_times)),
'min': float(np.min(response_times)),
'p95': float(np.percentile(response_times, 95))
},
'error_rate': {
'avg': float(np.mean(error_rates)),
'max': float(np.max(error_rates)),
'current': error_rates[-1]
},
'request_rate': {
'avg': float(np.mean(request_rates)),
'max': float(np.max(request_rates)),
'current': request_rates[-1]
},
'total_requests': sum(m.total_requests for m in metrics),
'sample_count': len(metrics)
}
def _aggregate_model_metrics(self, metrics: List[ModelMetrics]) -> Dict[str, Any]:
"""Aggregate model metrics"""
if not metrics:
return {}
confidences = [m.avg_confidence for m in metrics]
health_scores = [m.model_health_score for m in metrics]
return {
'confidence': {
'avg': float(np.mean(confidences)),
'min': float(np.min(confidences)),
'max': float(np.max(confidences)),
'current': confidences[-1]
},
'health_score': {
'avg': float(np.mean(health_scores)),
'min': float(np.min(health_scores)),
'current': health_scores[-1]
},
'total_predictions': sum(m.predictions_made for m in metrics),
'sample_count': len(metrics)
}
def _analyze_system_trends(self, metrics: List[SystemMetrics]) -> Dict[str, Any]:
"""Analyze system metric trends"""
if len(metrics) < 2:
return {}
cpu_values = [m.cpu_percent for m in metrics]
memory_values = [m.memory_percent for m in metrics]
return {
'cpu_trend': self._calculate_trend(cpu_values),
'memory_trend': self._calculate_trend(memory_values),
'stability_score': self._calculate_stability_score(cpu_values, memory_values)
}
def _analyze_api_trends(self, metrics: List[APIMetrics]) -> Dict[str, Any]:
"""Analyze API metric trends"""
if len(metrics) < 2:
return {}
response_times = [m.avg_response_time for m in metrics]
error_rates = [m.error_rate for m in metrics]
return {
'response_time_trend': self._calculate_trend(response_times),
'error_rate_trend': self._calculate_trend(error_rates),
'performance_score': self._calculate_performance_score(response_times, error_rates)
}
def _analyze_model_trends(self, metrics: List[ModelMetrics]) -> Dict[str, Any]:
"""Analyze model metric trends"""
if len(metrics) < 2:
return {}
confidences = [m.avg_confidence for m in metrics]
health_scores = [m.model_health_score for m in metrics]
return {
'confidence_trend': self._calculate_trend(confidences),
'health_trend': self._calculate_trend(health_scores),
'model_stability': self._calculate_model_stability(confidences)
}
def _calculate_trend(self, values: List[float]) -> str:
"""Calculate trend direction"""
if len(values) < 2:
return 'stable'
recent_avg = np.mean(values[-5:]) # Last 5 values
older_avg = np.mean(values[:-5]) if len(values) > 5 else np.mean(values[:-2])
change_percent = ((recent_avg - older_avg) / older_avg) * 100 if older_avg != 0 else 0
if change_percent > 5:
return 'increasing'
elif change_percent < -5:
return 'decreasing'
else:
return 'stable'
def _calculate_stability_score(self, *value_lists) -> float:
"""Calculate stability score based on coefficient of variation"""
scores = []
for values in value_lists:
if values and len(values) > 1:
cv = np.std(values) / np.mean(values) if np.mean(values) > 0 else 1
stability = max(0, 1 - cv)
scores.append(stability)
return float(np.mean(scores)) if scores else 0.0
def _calculate_performance_score(self, response_times: List[float], error_rates: List[float]) -> float:
"""Calculate overall performance score"""
scores = []
# Response time score
if response_times:
avg_response_time = np.mean(response_times)
response_score = max(0, 1 - (avg_response_time / self.baselines['response_time']))
scores.append(response_score)
# Error rate score
if error_rates:
avg_error_rate = np.mean(error_rates)
error_score = max(0, 1 - (avg_error_rate / self.baselines['error_rate']))
scores.append(error_score)
return float(np.mean(scores)) if scores else 0.0
def _calculate_model_stability(self, confidences: List[float]) -> float:
"""Calculate model stability based on confidence consistency"""
if not confidences or len(confidences) < 2:
return 0.0
cv = np.std(confidences) / np.mean(confidences) if np.mean(confidences) > 0 else 1
return float(max(0, 1 - cv))
def _analyze_correlations(self, system_metrics, api_metrics, model_metrics) -> Dict[str, Any]:
"""Analyze correlations between different metric types"""
correlations = {}
try:
if system_metrics and api_metrics:
cpu_values = [m.cpu_percent for m in system_metrics]
response_times = [m.avg_response_time for m in api_metrics]
if len(cpu_values) == len(response_times) and len(cpu_values) > 1:
correlation = np.corrcoef(cpu_values, response_times)[0, 1]
correlations['cpu_response_time'] = float(correlation)
# Add more correlation analyses as needed
except Exception as e:
logger.error(f"Error calculating correlations: {e}")
return correlations
def _calculate_overall_health_score(self, aggregated: Dict) -> float:
"""Calculate overall system health score"""
scores = []
# System health
system_metrics = aggregated.get('system_metrics', {})
if system_metrics:
cpu_score = max(0, 1 - (system_metrics['cpu_usage']['current'] / 100))
memory_score = max(0, 1 - (system_metrics['memory_usage']['current'] / 100))
scores.extend([cpu_score, memory_score])
# API health
api_metrics = aggregated.get('api_metrics', {})
if api_metrics:
response_score = max(0, 1 - (api_metrics['response_time']['current'] / 10))
error_score = max(0, 1 - api_metrics['error_rate']['current'])
scores.extend([response_score, error_score])
# Model health
model_metrics = aggregated.get('model_metrics', {})
if model_metrics:
model_score = model_metrics['health_score']['current']
scores.append(model_score)
return float(np.mean(scores)) if scores else 0.0
def _generate_metric_alerts(self, system_metrics, api_metrics, model_metrics) -> List[Dict]:
"""Generate alerts based on metric thresholds"""
alerts = []
# System alerts
if system_metrics:
latest_system = system_metrics[-1]
if latest_system.cpu_percent > self.baselines['cpu_usage']:
alerts.append({
'type': 'warning',
'category': 'system',
'message': f"High CPU usage: {latest_system.cpu_percent:.1f}%",
'timestamp': latest_system.timestamp
})
if latest_system.memory_percent > self.baselines['memory_usage']:
alerts.append({
'type': 'warning',
'category': 'system',
'message': f"High memory usage: {latest_system.memory_percent:.1f}%",
'timestamp': latest_system.timestamp
})
# API alerts
if api_metrics:
latest_api = api_metrics[-1]
if latest_api.avg_response_time > self.baselines['response_time']:
alerts.append({
'type': 'warning',
'category': 'api',
'message': f"Slow response time: {latest_api.avg_response_time:.2f}s",
'timestamp': latest_api.timestamp
})
if latest_api.error_rate > self.baselines['error_rate']:
alerts.append({
'type': 'critical',
'category': 'api',
'message': f"High error rate: {latest_api.error_rate:.2%}",
'timestamp': latest_api.timestamp
})
return alerts
def _determine_system_status(self, system_metrics, api_metrics, model_metrics) -> str:
"""Determine overall system status"""
if not system_metrics or not api_metrics or not model_metrics:
return 'unknown'
# Check for critical issues
if (system_metrics.cpu_percent > 90 or
system_metrics.memory_percent > 95 or
api_metrics.error_rate > 0.1 or
api_metrics.avg_response_time > 10):
return 'critical'
# Check for warnings
if (system_metrics.cpu_percent > 70 or
system_metrics.memory_percent > 80 or
api_metrics.error_rate > 0.05 or
api_metrics.avg_response_time > 5 or
model_metrics.avg_confidence < 0.6):
return 'warning'
return 'healthy'
def _get_active_alerts(self) -> List[Dict]:
"""Get currently active alerts"""
# This would typically read from alerts log and filter recent alerts
return []
def _get_key_indicators(self, system_metrics, api_metrics, model_metrics) -> Dict[str, Any]:
"""Get key performance indicators"""
indicators = {}
if system_metrics:
indicators['cpu_usage'] = system_metrics.cpu_percent
indicators['memory_usage'] = system_metrics.memory_percent
if api_metrics:
indicators['response_time'] = api_metrics.avg_response_time
indicators['requests_per_minute'] = api_metrics.requests_per_minute
if model_metrics:
indicators['model_confidence'] = model_metrics.avg_confidence
indicators['model_health'] = model_metrics.model_health_score
return indicators
def _append_to_log(self, log_path: Path, data: Dict):
"""Append data to log file"""
try:
with open(log_path, 'a') as f:
f.write(json.dumps(data) + '\n')
except Exception as e:
logger.error(f"Failed to write to log {log_path}: {e}")
def load_historical_metrics(self):
"""Load historical metrics on startup"""
try:
# Load recent metrics (last 24 hours)
cutoff_time = datetime.now() - timedelta(hours=24)
for log_path, history_deque, metric_class in [
(self.system_metrics_path, self.system_metrics_history, SystemMetrics),
(self.api_metrics_path, self.api_metrics_history, APIMetrics),
(self.model_metrics_path, self.model_metrics_history, ModelMetrics)
]:
if log_path.exists():
with open(log_path, 'r') as f:
for line in f:
try:
data = json.loads(line.strip())
if datetime.fromisoformat(data['timestamp']) > cutoff_time:
metric = metric_class(**data)
history_deque.append(metric)
except Exception:
continue
logger.info(f"Loaded historical metrics: {len(self.system_metrics_history)} system, "
f"{len(self.api_metrics_history)} API, {len(self.model_metrics_history)} model")
except Exception as e:
logger.error(f"Failed to load historical metrics: {e}") |