File size: 49,584 Bytes
901cc08
 
 
0df715f
901cc08
0df715f
 
901cc08
0df715f
 
59c71e7
0df715f
 
 
 
 
 
 
 
 
 
901cc08
0df715f
 
 
 
 
 
 
 
 
 
901cc08
0df715f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
901cc08
aff6c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
901cc08
0df715f
 
 
901cc08
0df715f
 
 
 
 
 
 
901cc08
0df715f
 
901cc08
0df715f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
import pandas as pd
import numpy as np
import json
import logging
from pathlib import Path
from datetime import datetime, timedelta
from typing import Dict, List, Tuple, Optional, Any
import joblib
import warnings
warnings.filterwarnings('ignore')

# Statistical imports
from scipy.spatial.distance import jensenshannon
from scipy import stats
from scipy.stats import ks_2samp, chi2_contingency
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score
from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import seaborn as sns

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler('/tmp/drift_monitoring.log'),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)

class AdvancedDriftMonitor:
    """Advanced drift detection with multiple statistical methods and comprehensive monitoring"""
    
    def __init__(self):
        self.setup_paths()
        self.setup_drift_config()
        self.setup_drift_methods()
        self.historical_data = self.load_historical_data()
    
    def setup_paths(self):
        """Setup all necessary paths"""
        self.base_dir = Path("/tmp")
        self.data_dir = self.base_dir / "data"
        self.model_dir = self.base_dir / "model"
        self.logs_dir = self.base_dir / "logs"
        self.results_dir = self.base_dir / "drift_results"
        
        # Create directories
        for dir_path in [self.data_dir, self.model_dir, self.logs_dir, self.results_dir]:
            dir_path.mkdir(parents=True, exist_ok=True)
        
        # Data files
        self.reference_data_path = self.data_dir / "combined_dataset.csv"
        self.current_data_path = self.data_dir / "scraped_real.csv"
        self.generated_data_path = self.data_dir / "generated_fake.csv"
        
        # Model files
        self.vectorizer_path = self.model_dir / "vectorizer.pkl"
        self.model_path = self.model_dir / "model.pkl"
        self.pipeline_path = self.model_dir / "pipeline.pkl"
        
        # Monitoring files
        self.drift_log_path = self.logs_dir / "monitoring_log.json"
        self.drift_history_path = self.logs_dir / "drift_history.json"
        self.alert_log_path = self.logs_dir / "drift_alerts.json"
    
    def setup_drift_config(self):
        """Setup drift detection configuration"""
        self.drift_thresholds = {
            'jensen_shannon': 0.1,
            'kolmogorov_smirnov': 0.05,
            'population_stability_index': 0.2,
            'performance_degradation': 0.05,
            'feature_drift': 0.1
        }
        
        self.alert_thresholds = {
            'high_drift': 0.3,
            'medium_drift': 0.15,
            'low_drift': 0.05
        }
        
        self.monitoring_config = {
            'min_samples': 100,
            'max_samples': 1000,
            'lookback_days': 30,
            'min_monitoring_interval': timedelta(hours=1),
            'confidence_level': 0.95
        }
    
    def setup_drift_methods(self):
        """Setup drift detection methods"""
        self.drift_methods = {
            'jensen_shannon': self.jensen_shannon_drift,
            'kolmogorov_smirnov': self.kolmogorov_smirnov_drift,
            'population_stability_index': self.population_stability_index_drift,
            'performance_drift': self.performance_drift,
            'feature_importance_drift': self.feature_importance_drift,
            'statistical_distance': self.statistical_distance_drift
        }
    
    def load_historical_data(self) -> Dict:
        """Load historical drift monitoring data"""
        try:
            if self.drift_history_path.exists():
                with open(self.drift_history_path, 'r') as f:
                    return json.load(f)
            return {'baseline_statistics': {}, 'historical_scores': []}
        except Exception as e:
            logger.warning(f"Failed to load historical data: {e}")
            return {'baseline_statistics': {}, 'historical_scores': []}
    
    def load_vectorizer(self) -> Optional[Any]:
        """Load the trained vectorizer"""
        try:
            # Try pipeline first
            if self.pipeline_path.exists():
                pipeline = joblib.load(self.pipeline_path)
                return pipeline.named_steps.get('vectorize') or pipeline.named_steps.get('vectorizer')
            
            # Fallback to individual vectorizer
            if self.vectorizer_path.exists():
                return joblib.load(self.vectorizer_path)
            
            logger.error("No vectorizer found")
            return None
            
        except Exception as e:
            logger.error(f"Failed to load vectorizer: {e}")
            return None
    
    def load_model(self) -> Optional[Any]:
        """Load the trained model"""
        try:
            # Try pipeline first
            if self.pipeline_path.exists():
                return joblib.load(self.pipeline_path)
            
            # Fallback to individual model
            if self.model_path.exists():
                return joblib.load(self.model_path)
            
            logger.error("No model found")
            return None
            
        except Exception as e:
            logger.error(f"Failed to load model: {e}")
            return None
    
    def load_and_prepare_data(self) -> Tuple[Optional[pd.DataFrame], Optional[pd.DataFrame]]:
        """Load and prepare reference and current data"""
        try:
            # Load reference data
            reference_df = None
            if self.reference_data_path.exists():
                reference_df = pd.read_csv(self.reference_data_path)
                logger.info(f"Loaded reference data: {len(reference_df)} samples")
            
            # Load current data
            current_dfs = []
            
            if self.current_data_path.exists():
                df_current = pd.read_csv(self.current_data_path)
                current_dfs.append(df_current)
                logger.info(f"Loaded current scraped data: {len(df_current)} samples")
            
            if self.generated_data_path.exists():
                df_generated = pd.read_csv(self.generated_data_path)
                current_dfs.append(df_generated)
                logger.info(f"Loaded generated data: {len(df_generated)} samples")
            
            current_df = None
            if current_dfs:
                current_df = pd.concat(current_dfs, ignore_index=True)
                logger.info(f"Combined current data: {len(current_df)} samples")
            
            return reference_df, current_df
            
        except Exception as e:
            logger.error(f"Failed to load data: {e}")
            return None, None
    
    def preprocess_data_for_comparison(self, df: pd.DataFrame, sample_size: int = None) -> pd.DataFrame:
        """Preprocess data for drift comparison"""
        if df is None or df.empty:
            return df
        
        # Remove null values
        df = df.dropna(subset=['text'])
        
        # Sample data if too large
        if sample_size and len(df) > sample_size:
            df = df.sample(n=sample_size, random_state=42)
        
        return df
    
    def jensen_shannon_drift(self, reference_features: np.ndarray, current_features: np.ndarray) -> Dict:
        """Calculate Jensen-Shannon divergence for drift detection"""
        try:
            # Compute mean feature vectors
            ref_mean = np.mean(reference_features, axis=0)
            cur_mean = np.mean(current_features, axis=0)
            
            # Normalize to probability distributions
            ref_dist = ref_mean / np.sum(ref_mean) if np.sum(ref_mean) > 0 else ref_mean
            cur_dist = cur_mean / np.sum(cur_mean) if np.sum(cur_mean) > 0 else cur_mean
            
            # Add small epsilon to avoid log(0)
            epsilon = 1e-10
            ref_dist = ref_dist + epsilon
            cur_dist = cur_dist + epsilon
            
            # Calculate JS divergence
            js_distance = jensenshannon(ref_dist, cur_dist)
            
            return {
                'method': 'jensen_shannon',
                'distance': float(js_distance),
                'threshold': self.drift_thresholds['jensen_shannon'],
                'drift_detected': js_distance > self.drift_thresholds['jensen_shannon'],
                'severity': self.classify_drift_severity(js_distance, 'jensen_shannon')
            }
            
        except Exception as e:
            logger.error(f"Jensen-Shannon drift calculation failed: {e}")
            return {'method': 'jensen_shannon', 'error': str(e)}
    
    def kolmogorov_smirnov_drift(self, reference_features: np.ndarray, current_features: np.ndarray) -> Dict:
        """Kolmogorov-Smirnov test for drift detection"""
        try:
            # Flatten arrays for KS test
            ref_flat = reference_features.flatten()
            cur_flat = current_features.flatten()
            
            # Sample if too large
            if len(ref_flat) > 10000:
                ref_flat = np.random.choice(ref_flat, 10000, replace=False)
            if len(cur_flat) > 10000:
                cur_flat = np.random.choice(cur_flat, 10000, replace=False)
            
            # Perform KS test
            ks_statistic, p_value = ks_2samp(ref_flat, cur_flat)
            
            return {
                'method': 'kolmogorov_smirnov',
                'ks_statistic': float(ks_statistic),
                'p_value': float(p_value),
                'threshold': self.drift_thresholds['kolmogorov_smirnov'],
                'drift_detected': p_value < self.drift_thresholds['kolmogorov_smirnov'],
                'severity': self.classify_drift_severity(ks_statistic, 'kolmogorov_smirnov')
            }
            
        except Exception as e:
            logger.error(f"Kolmogorov-Smirnov drift calculation failed: {e}")
            return {'method': 'kolmogorov_smirnov', 'error': str(e)}
    
    def population_stability_index_drift(self, reference_features: np.ndarray, current_features: np.ndarray) -> Dict:
        """Population Stability Index for drift detection"""
        try:
            # Create bins based on reference data
            n_bins = 10
            
            # Use first feature for binning (or create composite feature)
            ref_values = reference_features[:, 0] if reference_features.ndim > 1 else reference_features
            cur_values = current_features[:, 0] if current_features.ndim > 1 else current_features
            
            # Create bins
            _, bin_edges = np.histogram(ref_values, bins=n_bins)
            
            # Calculate distributions
            ref_dist, _ = np.histogram(ref_values, bins=bin_edges)
            cur_dist, _ = np.histogram(cur_values, bins=bin_edges)
            
            # Convert to proportions
            ref_prop = ref_dist / np.sum(ref_dist)
            cur_prop = cur_dist / np.sum(cur_dist)
            
            # Add small epsilon to avoid log(0)
            epsilon = 1e-10
            ref_prop = ref_prop + epsilon
            cur_prop = cur_prop + epsilon
            
            # Calculate PSI
            psi = np.sum((cur_prop - ref_prop) * np.log(cur_prop / ref_prop))
            
            return {
                'method': 'population_stability_index',
                'psi_score': float(psi),
                'threshold': self.drift_thresholds['population_stability_index'],
                'drift_detected': psi > self.drift_thresholds['population_stability_index'],
                'severity': self.classify_drift_severity(psi, 'population_stability_index')
            }
            
        except Exception as e:
            logger.error(f"PSI drift calculation failed: {e}")
            return {'method': 'population_stability_index', 'error': str(e)}
    
    def performance_drift(self, model, reference_df: pd.DataFrame, current_df: pd.DataFrame) -> Dict:
        """Detect performance drift by comparing model performance"""
        try:
            # Prepare data
            ref_X = reference_df['text'].values
            ref_y = reference_df['label'].values
            cur_X = current_df['text'].values
            cur_y = current_df['label'].values if 'label' in current_df.columns else None
            
            # Get predictions
            ref_pred = model.predict(ref_X)
            cur_pred = model.predict(cur_X)
            
            # Calculate performance metrics
            ref_accuracy = accuracy_score(ref_y, ref_pred)
            
            performance_metrics = {
                'reference_accuracy': float(ref_accuracy),
                'reference_samples': len(ref_X)
            }
            
            # If current data has labels, compare performance
            if cur_y is not None:
                cur_accuracy = accuracy_score(cur_y, cur_pred)
                performance_drop = ref_accuracy - cur_accuracy
                
                performance_metrics.update({
                    'current_accuracy': float(cur_accuracy),
                    'performance_drop': float(performance_drop),
                    'drift_detected': performance_drop > self.drift_thresholds['performance_degradation'],
                    'severity': self.classify_drift_severity(performance_drop, 'performance_degradation')
                })
            else:
                # Use prediction confidence as proxy
                ref_confidence = np.max(model.predict_proba(ref_X), axis=1)
                cur_confidence = np.max(model.predict_proba(cur_X), axis=1)
                
                confidence_drop = np.mean(ref_confidence) - np.mean(cur_confidence)
                
                performance_metrics.update({
                    'reference_confidence': float(np.mean(ref_confidence)),
                    'current_confidence': float(np.mean(cur_confidence)),
                    'confidence_drop': float(confidence_drop),
                    'drift_detected': confidence_drop > self.drift_thresholds['performance_degradation'],
                    'severity': self.classify_drift_severity(confidence_drop, 'performance_degradation')
                })
            
            return {
                'method': 'performance_drift',
                'threshold': self.drift_thresholds['performance_degradation'],
                **performance_metrics
            }
            
        except Exception as e:
            logger.error(f"Performance drift calculation failed: {e}")
            return {'method': 'performance_drift', 'error': str(e)}
    
    def feature_importance_drift(self, model, reference_features: np.ndarray, current_features: np.ndarray) -> Dict:
        """Detect drift in feature importance"""
        try:
            # This is a simplified version - in practice, you'd compare feature importance
            # over time or use more sophisticated methods
            
            # Calculate feature statistics
            ref_mean = np.mean(reference_features, axis=0)
            cur_mean = np.mean(current_features, axis=0)
            
            # Calculate feature drift for each feature
            feature_drifts = np.abs(ref_mean - cur_mean) / (np.abs(ref_mean) + 1e-10)
            
            # Overall drift score
            overall_drift = np.mean(feature_drifts)
            max_drift = np.max(feature_drifts)
            
            return {
                'method': 'feature_importance_drift',
                'overall_drift': float(overall_drift),
                'max_feature_drift': float(max_drift),
                'threshold': self.drift_thresholds['feature_drift'],
                'drift_detected': overall_drift > self.drift_thresholds['feature_drift'],
                'severity': self.classify_drift_severity(overall_drift, 'feature_drift')
            }
            
        except Exception as e:
            logger.error(f"Feature importance drift calculation failed: {e}")
            return {'method': 'feature_importance_drift', 'error': str(e)}
    
    def statistical_distance_drift(self, reference_features: np.ndarray, current_features: np.ndarray) -> Dict:
        """Calculate various statistical distances for drift detection"""
        try:
            # Calculate means and covariances
            ref_mean = np.mean(reference_features, axis=0)
            cur_mean = np.mean(current_features, axis=0)
            
            # Euclidean distance between means
            euclidean_distance = np.linalg.norm(ref_mean - cur_mean)
            
            # Cosine similarity
            cosine_similarity = np.dot(ref_mean, cur_mean) / (np.linalg.norm(ref_mean) * np.linalg.norm(cur_mean))
            
            # Bhattacharyya distance (simplified)
            bhattacharyya_distance = -np.log(np.sum(np.sqrt(ref_mean * cur_mean)))
            
            return {
                'method': 'statistical_distance',
                'euclidean_distance': float(euclidean_distance),
                'cosine_similarity': float(cosine_similarity),
                'bhattacharyya_distance': float(bhattacharyya_distance),
                'drift_detected': euclidean_distance > self.drift_thresholds['feature_drift'],
                'severity': self.classify_drift_severity(euclidean_distance, 'feature_drift')
            }
            
        except Exception as e:
            logger.error(f"Statistical distance drift calculation failed: {e}")
            return {'method': 'statistical_distance', 'error': str(e)}
    
    def classify_drift_severity(self, score: float, method: str) -> str:
        """Classify drift severity based on score"""
        if score > self.alert_thresholds['high_drift']:
            return 'high'
        elif score > self.alert_thresholds['medium_drift']:
            return 'medium'
        elif score > self.alert_thresholds['low_drift']:
            return 'low'
        else:
            return 'none'
    
    def comprehensive_drift_detection(self, reference_df: pd.DataFrame, current_df: pd.DataFrame) -> Dict:
        """Perform comprehensive drift detection using multiple methods"""
        try:
            logger.info("Starting comprehensive drift detection...")
            
            # Load vectorizer and model
            vectorizer = self.load_vectorizer()
            model = self.load_model()
            
            if vectorizer is None:
                return {'error': 'Vectorizer not available'}
            
            # Prepare data
            reference_df = self.preprocess_data_for_comparison(reference_df, self.monitoring_config['max_samples'])
            current_df = self.preprocess_data_for_comparison(current_df, self.monitoring_config['max_samples'])
            
            if reference_df is None or current_df is None or len(reference_df) == 0 or len(current_df) == 0:
                return {'error': 'Insufficient data for drift detection'}
            
            # Vectorize text data
            ref_texts = reference_df['text'].tolist()
            cur_texts = current_df['text'].tolist()
            
            # Handle different vectorizer types
            if hasattr(vectorizer, 'transform'):
                ref_features = vectorizer.transform(ref_texts).toarray()
                cur_features = vectorizer.transform(cur_texts).toarray()
            else:
                return {'error': 'Vectorizer does not support transform method'}
            
            # Run all drift detection methods
            drift_results = {}
            
            # Feature-based drift detection
            for method_name in ['jensen_shannon', 'kolmogorov_smirnov', 'population_stability_index', 
                               'feature_importance_drift', 'statistical_distance']:
                try:
                    drift_results[method_name] = self.drift_methods[method_name](ref_features, cur_features)
                except Exception as e:
                    logger.error(f"Drift method {method_name} failed: {e}")
                    drift_results[method_name] = {'method': method_name, 'error': str(e)}
            
            # Performance-based drift detection
            if model is not None:
                try:
                    drift_results['performance_drift'] = self.performance_drift(model, reference_df, current_df)
                except Exception as e:
                    logger.error(f"Performance drift detection failed: {e}")
                    drift_results['performance_drift'] = {'method': 'performance_drift', 'error': str(e)}
            
            # Calculate overall drift score
            overall_drift = self.calculate_overall_drift_score(drift_results)
            
            # Create comprehensive report
            comprehensive_report = {
                'timestamp': datetime.now().isoformat(),
                'reference_samples': len(reference_df),
                'current_samples': len(current_df),
                'overall_drift_score': overall_drift['score'],
                'overall_drift_detected': overall_drift['detected'],
                'drift_severity': overall_drift['severity'],
                'individual_methods': drift_results,
                'recommendations': self.generate_drift_recommendations(drift_results, overall_drift)
            }
            
            return comprehensive_report
            
        except Exception as e:
            logger.error(f"Comprehensive drift detection failed: {e}")
            return {'error': str(e)}
    
    def calculate_overall_drift_score(self, drift_results: Dict) -> Dict:
        """Calculate overall drift score from individual methods"""
        valid_scores = []
        detected_count = 0
        
        # Weight different methods
        method_weights = {
            'jensen_shannon': 0.3,
            'kolmogorov_smirnov': 0.2,
            'population_stability_index': 0.2,
            'performance_drift': 0.2,
            'feature_importance_drift': 0.05,
            'statistical_distance': 0.05
        }
        
        weighted_score = 0
        total_weight = 0
        
        for method, result in drift_results.items():
            if 'error' in result:
                continue
                
            # Extract score based on method
            if method == 'jensen_shannon':
                score = result.get('distance', 0)
            elif method == 'kolmogorov_smirnov':
                score = result.get('ks_statistic', 0)
            elif method == 'population_stability_index':
                score = result.get('psi_score', 0)
            elif method == 'performance_drift':
                score = result.get('performance_drop', result.get('confidence_drop', 0))
            else:
                score = result.get('overall_drift', 0)
            
            # Add to weighted score
            weight = method_weights.get(method, 0.1)
            weighted_score += score * weight
            total_weight += weight
            
            # Count detections
            if result.get('drift_detected', False):
                detected_count += 1
        
        # Calculate final score
        final_score = weighted_score / total_weight if total_weight > 0 else 0
        
        # Determine if drift is detected (majority vote with score consideration)
        drift_detected = (detected_count >= len(drift_results) / 2) or (final_score > 0.15)
        
        # Classify severity
        if final_score > 0.3:
            severity = 'high'
        elif final_score > 0.15:
            severity = 'medium'
        elif final_score > 0.05:
            severity = 'low'
        else:
            severity = 'none'
        
        return {
            'score': float(final_score),
            'detected': drift_detected,
            'severity': severity,
            'detection_count': detected_count,
            'total_methods': len(drift_results)
        }
    
    def generate_drift_recommendations(self, drift_results: Dict, overall_drift: Dict) -> List[str]:
        """Generate recommendations based on drift detection results"""
        recommendations = []
        
        if overall_drift['detected']:
            if overall_drift['severity'] == 'high':
                recommendations.extend([
                    "URGENT: High drift detected - immediate model retraining recommended",
                    "Consider switching to emergency backup model if available",
                    "Investigate data quality and collection processes"
                ])
            elif overall_drift['severity'] == 'medium':
                recommendations.extend([
                    "Moderate drift detected - schedule model retraining soon",
                    "Monitor performance metrics closely",
                    "Review recent data sources for quality issues"
                ])
            else:
                recommendations.extend([
                    "Low drift detected - increased monitoring recommended",
                    "Plan for model retraining in next cycle"
                ])
        
        # Method-specific recommendations
        for method, result in drift_results.items():
            if result.get('drift_detected', False):
                if method == 'performance_drift':
                    recommendations.append("Model performance degradation detected - prioritize retraining")
                elif method == 'jensen_shannon':
                    recommendations.append("Feature distribution drift detected - review data preprocessing")
                elif method == 'kolmogorov_smirnov':
                    recommendations.append("Statistical distribution change detected - validate data sources")
        
        return recommendations
    
    def save_drift_results(self, drift_results: Dict):
        """Save drift detection results to logs"""
        try:
            # Load existing logs
            logs = []
            if self.drift_log_path.exists():
                try:
                    with open(self.drift_log_path, 'r') as f:
                        logs = json.load(f)
                except:
                    logs = []
            
            # Add new results
            logs.append(drift_results)
            
            # Keep only last 1000 entries
            if len(logs) > 1000:
                logs = logs[-1000:]
            
            # Save logs
            with open(self.drift_log_path, 'w') as f:
                json.dump(logs, f, indent=2)
            
            logger.info(f"Drift results saved to {self.drift_log_path}")
            
        except Exception as e:
            logger.error(f"Failed to save drift results: {e}")
    
    def monitor_drift(self) -> Optional[float]:
        """Main drift monitoring function"""
        try:
            logger.info("Starting drift monitoring...")
            
            # Load data
            reference_df, current_df = self.load_and_prepare_data()
            
            if reference_df is None or current_df is None:
                logger.warning("Insufficient data for drift monitoring")
                return None
            
            # Perform comprehensive drift detection
            drift_results = self.comprehensive_drift_detection(reference_df, current_df)
            
            if 'error' in drift_results:
                logger.error(f"Drift detection failed: {drift_results['error']}")
                return None
            
            # Save results
            self.save_drift_results(drift_results)
            
            # Log results
            overall_score = drift_results['overall_drift_score']
            severity = drift_results['drift_severity']
            
            logger.info(f"Drift monitoring completed")
            logger.info(f"Overall drift score: {overall_score:.4f}")
            logger.info(f"Drift severity: {severity}")
            
            if drift_results['overall_drift_detected']:
                logger.warning("DRIFT DETECTED!")
                for recommendation in drift_results['recommendations']:
                    logger.warning(f"Recommendation: {recommendation}")
            
            return overall_score
            
        except Exception as e:
            logger.error(f"Drift monitoring failed: {e}")
            return None

    def setup_automation_config(self):
        """Setup automation-specific configuration"""
        self.automation_config = {
            'retraining_thresholds': {
                'drift_score': 0.2,
                'consecutive_detections': 3,
                'performance_drop': 0.05,
                'data_volume_threshold': 1000,
                'time_since_last_training': timedelta(days=7)
            },
            'monitoring_schedule': {
                'check_interval': timedelta(hours=6),
                'force_check_interval': timedelta(days=1),
                'max_monitoring_failures': 5
            },
            'emergency_thresholds': {
                'critical_drift_score': 0.4,
                'critical_performance_drop': 0.15,
                'emergency_action_required': True
            },
            'data_quality_thresholds': {
                'min_samples_for_detection': 100,
                'min_samples_for_retraining': 500,
                'data_freshness_hours': 24
            }
        }
    
    def check_retraining_triggers(self, drift_results: Dict = None) -> Dict:
        """Check if retraining should be triggered based on multiple criteria"""
        try:
            trigger_results = {
                'should_retrain': False,
                'trigger_reason': None,
                'urgency': 'none',
                'triggers_detected': [],
                'data_quality_check': {},
                'recommendations': []
            }
            
            # Perform drift monitoring if not provided
            if drift_results is None:
                reference_df, current_df = self.load_and_prepare_data()
                if reference_df is None or current_df is None:
                    trigger_results['trigger_reason'] = 'insufficient_data'
                    return trigger_results
                
                drift_results = self.comprehensive_drift_detection(reference_df, current_df)
                if 'error' in drift_results:
                    trigger_results['trigger_reason'] = f"drift_detection_error: {drift_results['error']}"
                    return trigger_results
            
            # Check drift-based triggers
            drift_triggers = self.check_drift_triggers(drift_results)
            trigger_results['triggers_detected'].extend(drift_triggers)
            
            # Check data volume triggers
            volume_triggers = self.check_data_volume_triggers()
            trigger_results['triggers_detected'].extend(volume_triggers)
            
            # Check time-based triggers
            time_triggers = self.check_time_based_triggers()
            trigger_results['triggers_detected'].extend(time_triggers)
            
            # Check data quality
            trigger_results['data_quality_check'] = self.check_data_quality()
            
            # Determine if retraining should be triggered
            trigger_results = self.evaluate_retraining_decision(trigger_results, drift_results)
            
            # Save trigger evaluation
            self.save_trigger_evaluation(trigger_results)
            
            return trigger_results
            
        except Exception as e:
            logger.error(f"Retraining trigger check failed: {e}")
            return {
                'should_retrain': False,
                'trigger_reason': f'trigger_check_error: {str(e)}',
                'urgency': 'none',
                'triggers_detected': [],
                'error': str(e)
            }
    
    def check_drift_triggers(self, drift_results: Dict) -> List[Dict]:
        """Check drift-based retraining triggers"""
        triggers = []
        
        # Overall drift score trigger
        overall_score = drift_results.get('overall_drift_score', 0)
        if overall_score > self.automation_config['retraining_thresholds']['drift_score']:
            triggers.append({
                'type': 'drift_score',
                'severity': 'high' if overall_score > self.automation_config['emergency_thresholds']['critical_drift_score'] else 'medium',
                'value': overall_score,
                'threshold': self.automation_config['retraining_thresholds']['drift_score'],
                'message': f"Drift score {overall_score:.3f} exceeds threshold {self.automation_config['retraining_thresholds']['drift_score']}"
            })
        
        # Performance degradation trigger
        perf_results = drift_results.get('individual_methods', {}).get('performance_drift', {})
        if 'performance_drop' in perf_results:
            perf_drop = perf_results['performance_drop']
            if perf_drop > self.automation_config['retraining_thresholds']['performance_drop']:
                triggers.append({
                    'type': 'performance_degradation',
                    'severity': 'critical' if perf_drop > self.automation_config['emergency_thresholds']['critical_performance_drop'] else 'high',
                    'value': perf_drop,
                    'threshold': self.automation_config['retraining_thresholds']['performance_drop'],
                    'message': f"Performance drop {perf_drop:.3f} exceeds threshold"
                })
        
        # Consecutive detection trigger
        consecutive_detections = self.count_consecutive_drift_detections()
        if consecutive_detections >= self.automation_config['retraining_thresholds']['consecutive_detections']:
            triggers.append({
                'type': 'consecutive_detections',
                'severity': 'medium',
                'value': consecutive_detections,
                'threshold': self.automation_config['retraining_thresholds']['consecutive_detections'],
                'message': f"Drift detected in {consecutive_detections} consecutive monitoring cycles"
            })
        
        return triggers
    
    def check_data_volume_triggers(self) -> List[Dict]:
        """Check data volume-based triggers"""
        triggers = []
        
        try:
            # Count new data since last training
            new_data_count = self.count_new_data_since_training()
            
            if new_data_count >= self.automation_config['retraining_thresholds']['data_volume_threshold']:
                triggers.append({
                    'type': 'data_volume',
                    'severity': 'low',
                    'value': new_data_count,
                    'threshold': self.automation_config['retraining_thresholds']['data_volume_threshold'],
                    'message': f"Accumulated {new_data_count} new samples since last training"
                })
            
            return triggers
            
        except Exception as e:
            logger.warning(f"Data volume trigger check failed: {e}")
            return []
    
    def check_time_based_triggers(self) -> List[Dict]:
        """Check time-based retraining triggers"""
        triggers = []
        
        try:
            # Get last training time
            last_training_time = self.get_last_training_time()
            
            if last_training_time:
                time_since_training = datetime.now() - last_training_time
                threshold = self.automation_config['retraining_thresholds']['time_since_last_training']
                
                if time_since_training > threshold:
                    triggers.append({
                        'type': 'time_since_training',
                        'severity': 'low',
                        'value': time_since_training.days,
                        'threshold': threshold.days,
                        'message': f"Last training was {time_since_training.days} days ago"
                    })
            
            return triggers
            
        except Exception as e:
            logger.warning(f"Time-based trigger check failed: {e}")
            return []
    
    def check_data_quality(self) -> Dict:
        """Check data quality for retraining"""
        quality_check = {
            'sufficient_data': False,
            'data_freshness': False,
            'data_balance': False,
            'overall_quality': 'poor',
            'issues': []
        }
        
        try:
            # Load current data
            _, current_df = self.load_and_prepare_data()
            
            if current_df is None or len(current_df) == 0:
                quality_check['issues'].append('No current data available')
                return quality_check
            
            # Check data volume
            min_samples = self.automation_config['data_quality_thresholds']['min_samples_for_retraining']
            if len(current_df) >= min_samples:
                quality_check['sufficient_data'] = True
            else:
                quality_check['issues'].append(f'Insufficient data: {len(current_df)} < {min_samples}')
            
            # Check data freshness
            if 'timestamp' in current_df.columns:
                try:
                    current_df['timestamp'] = pd.to_datetime(current_df['timestamp'])
                    latest_data = current_df['timestamp'].max()
                    freshness_threshold = datetime.now() - timedelta(
                        hours=self.automation_config['data_quality_thresholds']['data_freshness_hours']
                    )
                    
                    if latest_data > freshness_threshold:
                        quality_check['data_freshness'] = True
                    else:
                        quality_check['issues'].append('Data is not fresh enough')
                except:
                    quality_check['issues'].append('Cannot determine data freshness')
            
            # Check data balance if labels available
            if 'label' in current_df.columns:
                label_counts = current_df['label'].value_counts()
                if len(label_counts) > 1:
                    balance_ratio = label_counts.min() / label_counts.max()
                    if balance_ratio > 0.3:  # At least 30% minority class
                        quality_check['data_balance'] = True
                    else:
                        quality_check['issues'].append(f'Data imbalance: ratio {balance_ratio:.2f}')
            
            # Overall quality assessment
            quality_score = sum([
                quality_check['sufficient_data'],
                quality_check['data_freshness'],
                quality_check['data_balance']
            ])
            
            if quality_score >= 3:
                quality_check['overall_quality'] = 'excellent'
            elif quality_score >= 2:
                quality_check['overall_quality'] = 'good'
            elif quality_score >= 1:
                quality_check['overall_quality'] = 'fair'
            else:
                quality_check['overall_quality'] = 'poor'
            
            return quality_check
            
        except Exception as e:
            logger.error(f"Data quality check failed: {e}")
            quality_check['issues'].append(f'Quality check error: {str(e)}')
            return quality_check
    
    def evaluate_retraining_decision(self, trigger_results: Dict, drift_results: Dict) -> Dict:
        """Evaluate whether retraining should be triggered"""
        
        triggers = trigger_results['triggers_detected']
        data_quality = trigger_results['data_quality_check']
        
        # Count trigger types and severities
        critical_triggers = [t for t in triggers if t['severity'] == 'critical']
        high_triggers = [t for t in triggers if t['severity'] == 'high']
        medium_triggers = [t for t in triggers if t['severity'] == 'medium']
        
        # Decision logic
        should_retrain = False
        urgency = 'none'
        reason = None
        recommendations = []
        
        # Critical triggers - immediate retraining
        if critical_triggers:
            should_retrain = True
            urgency = 'critical'
            reason = f"Critical triggers detected: {[t['type'] for t in critical_triggers]}"
            recommendations.extend([
                "URGENT: Critical model degradation detected",
                "Stop current model serving if possible",
                "Initiate emergency retraining immediately"
            ])
        
        # High priority triggers - urgent retraining
        elif high_triggers:
            if data_quality['overall_quality'] in ['good', 'excellent']:
                should_retrain = True
                urgency = 'high'
                reason = f"High priority triggers with good data quality: {[t['type'] for t in high_triggers]}"
                recommendations.extend([
                    "High priority retraining recommended",
                    "Schedule retraining within 24 hours"
                ])
            else:
                recommendations.extend([
                    "High priority triggers detected but data quality insufficient",
                    "Improve data quality before retraining"
                ])
        
        # Medium priority triggers - scheduled retraining
        elif len(medium_triggers) >= 2 or len(triggers) >= 3:
            if data_quality['overall_quality'] in ['good', 'excellent', 'fair']:
                should_retrain = True
                urgency = 'medium'
                reason = f"Multiple triggers detected: {[t['type'] for t in triggers]}"
                recommendations.extend([
                    "Multiple retraining indicators detected",
                    "Schedule retraining within next maintenance window"
                ])
        
        # Single medium or low priority triggers
        elif triggers:
            recommendations.extend([
                "Some retraining indicators detected",
                "Monitor closely and prepare for retraining",
                f"Triggers: {[t['type'] for t in triggers]}"
            ])
        
        # Update results
        trigger_results.update({
            'should_retrain': should_retrain,
            'urgency': urgency,
            'trigger_reason': reason,
            'recommendations': recommendations
        })
        
        return trigger_results
    
    def count_consecutive_drift_detections(self) -> int:
        """Count consecutive drift detections from historical data"""
        try:
            if not self.drift_log_path.exists():
                return 0
            
            with open(self.drift_log_path, 'r') as f:
                logs = json.load(f)
            
            if not logs:
                return 0
            
            # Sort by timestamp and count consecutive detections
            logs_sorted = sorted(logs, key=lambda x: x.get('timestamp', ''))
            consecutive_count = 0
            
            for log_entry in reversed(logs_sorted[-10:]):  # Check last 10 entries
                if log_entry.get('overall_drift_detected', False):
                    consecutive_count += 1
                else:
                    break
            
            return consecutive_count
            
        except Exception as e:
            logger.warning(f"Failed to count consecutive detections: {e}")
            return 0
    
    def count_new_data_since_training(self) -> int:
        """Count new data samples since last training"""
        try:
            last_training_time = self.get_last_training_time()
            if not last_training_time:
                return 0
            
            # Count data from current sources
            total_count = 0
            
            for data_path in [self.current_data_path, self.generated_data_path]:
                if data_path.exists():
                    df = pd.read_csv(data_path)
                    if 'timestamp' in df.columns:
                        df['timestamp'] = pd.to_datetime(df['timestamp'])
                        new_data = df[df['timestamp'] > last_training_time]
                        total_count += len(new_data)
                    else:
                        # If no timestamp, assume all data is new
                        total_count += len(df)
            
            return total_count
            
        except Exception as e:
            logger.warning(f"Failed to count new data: {e}")
            return 0
    
    def get_last_training_time(self) -> Optional[datetime]:
        """Get timestamp of last model training"""
        try:
            # Check model metadata
            metadata_path = self.model_dir / "metadata.json"
            if metadata_path.exists():
                with open(metadata_path, 'r') as f:
                    metadata = json.load(f)
                
                timestamp_str = metadata.get('timestamp')
                if timestamp_str:
                    return datetime.fromisoformat(timestamp_str.replace('Z', '+00:00'))
            
            # Fallback to model file modification time
            for model_path in [self.pipeline_path, self.model_path]:
                if model_path.exists():
                    return datetime.fromtimestamp(model_path.stat().st_mtime)
            
            return None
            
        except Exception as e:
            logger.warning(f"Failed to get last training time: {e}")
            return None
    
    def save_trigger_evaluation(self, trigger_results: Dict):
        """Save trigger evaluation results"""
        try:
            trigger_log_path = self.logs_dir / "retraining_triggers.json"
            
            # Load existing logs
            logs = []
            if trigger_log_path.exists():
                try:
                    with open(trigger_log_path, 'r') as f:
                        logs = json.load(f)
                except:
                    logs = []
            
            # Add timestamp and save
            trigger_results['evaluation_timestamp'] = datetime.now().isoformat()
            logs.append(trigger_results)
            
            # Keep only last 100 evaluations
            if len(logs) > 100:
                logs = logs[-100:]
            
            with open(trigger_log_path, 'w') as f:
                json.dump(logs, f, indent=2)
            
            logger.info(f"Trigger evaluation saved to {trigger_log_path}")
            
        except Exception as e:
            logger.error(f"Failed to save trigger evaluation: {e}")
    
    def get_automation_status(self) -> Dict:
        """Get current automation status and recent trigger evaluations"""
        try:
            status = {
                'automation_active': True,
                'last_drift_check': None,
                'last_trigger_evaluation': None,
                'recent_triggers': [],
                'data_quality_status': {},
                'next_scheduled_check': None
            }
            
            # Get last drift check
            if self.drift_log_path.exists():
                try:
                    with open(self.drift_log_path, 'r') as f:
                        logs = json.load(f)
                    if logs:
                        status['last_drift_check'] = logs[-1].get('timestamp')
                except:
                    pass
            
            # Get recent trigger evaluations
            trigger_log_path = self.logs_dir / "retraining_triggers.json"
            if trigger_log_path.exists():
                try:
                    with open(trigger_log_path, 'r') as f:
                        trigger_logs = json.load(f)
                    
                    if trigger_logs:
                        status['last_trigger_evaluation'] = trigger_logs[-1].get('evaluation_timestamp')
                        status['recent_triggers'] = trigger_logs[-5:]  # Last 5 evaluations
                except:
                    pass
            
            # Get current data quality
            status['data_quality_status'] = self.check_data_quality()
            
            return status
            
        except Exception as e:
            logger.error(f"Failed to get automation status: {e}")
            return {'automation_active': False, 'error': str(e)}
    
    # Add to __init__ method
    def __init__(self):
        self.setup_paths()
        self.setup_drift_config()
        self.setup_automation_config()
        self.setup_drift_methods()
        self.historical_data = self.load_historical_data()

    
def monitor_drift():
    """Main function for external calls"""
    monitor = AdvancedDriftMonitor()
    return monitor.monitor_drift()

def main():
    """Main execution function"""
    monitor = AdvancedDriftMonitor()
    drift_score = monitor.monitor_drift()
    
    if drift_score is not None:
        print(f"βœ… Drift monitoring completed. Score: {drift_score:.4f}")
    else:
        print("❌ Drift monitoring failed")
        exit(1)

if __name__ == "__main__":
    main()