File size: 22,653 Bytes
69713db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 |
import json
import time
import logging
import threading
import numpy as np
from pathlib import Path
from datetime import datetime, timedelta
from dataclasses import dataclass, asdict
from collections import deque, defaultdict
from typing import Dict, List, Optional, Any, Tuple
logger = logging.getLogger(__name__)
@dataclass
class PredictionRecord:
"""Individual prediction record with metadata"""
timestamp: str
text_hash: str
prediction: str
confidence: float
processing_time: float
model_version: str
text_length: int
word_count: int
client_id: Optional[str] = None
user_agent: Optional[str] = None
session_id: Optional[str] = None
@dataclass
class MonitoringMetrics:
"""Aggregated monitoring metrics"""
timestamp: str
total_predictions: int
predictions_per_minute: float
avg_confidence: float
avg_processing_time: float
confidence_distribution: Dict[str, int]
prediction_distribution: Dict[str, int]
error_rate: float
response_time_percentiles: Dict[str, float]
anomaly_score: float
class PredictionMonitor:
"""Real-time prediction monitoring system"""
def __init__(self, base_dir: Path):
self.base_dir = Path(base_dir)
self.monitor_dir = self.base_dir / "monitor"
self.monitor_dir.mkdir(parents=True, exist_ok=True)
# Storage paths
self.predictions_log_path = self.monitor_dir / "predictions.json"
self.metrics_log_path = self.monitor_dir / "metrics.json"
self.alerts_log_path = self.monitor_dir / "alerts.json"
# In-memory storage for real-time analysis
self.recent_predictions = deque(maxlen=10000) # Last 10k predictions
self.prediction_buffer = deque(maxlen=1000) # Buffer for batch processing
# Metrics tracking
self.metrics_history = deque(maxlen=1440) # 24 hours of minute-level metrics
self.error_count = 0
self.total_predictions = 0
# Configuration
self.confidence_thresholds = {
'very_low': 0.5,
'low': 0.7,
'medium': 0.8,
'high': 0.9
}
self.performance_thresholds = {
'response_time_warning': 5.0, # seconds
'response_time_critical': 10.0,
'confidence_warning': 0.6, # average confidence below this
'error_rate_warning': 0.05, # 5% error rate
'error_rate_critical': 0.10 # 10% error rate
}
# Background processing
self.monitoring_active = False
self.monitoring_thread = None
# Load existing data
self.load_historical_data()
def start_monitoring(self):
"""Start background monitoring thread"""
if not self.monitoring_active:
self.monitoring_active = True
self.monitoring_thread = threading.Thread(target=self._monitoring_loop, daemon=True)
self.monitoring_thread.start()
logger.info("Prediction monitoring started")
def stop_monitoring(self):
"""Stop background monitoring"""
self.monitoring_active = False
if self.monitoring_thread:
self.monitoring_thread.join(timeout=5)
logger.info("Prediction monitoring stopped")
def record_prediction(self,
prediction: str,
confidence: float,
processing_time: float,
text: str,
model_version: str = "unknown",
client_id: Optional[str] = None,
user_agent: Optional[str] = None,
session_id: Optional[str] = None) -> str:
"""Record a new prediction with comprehensive metadata"""
# Create prediction record
text_hash = self._hash_text(text)
record = PredictionRecord(
timestamp=datetime.now().isoformat(),
text_hash=text_hash,
prediction=prediction,
confidence=confidence,
processing_time=processing_time,
model_version=model_version,
text_length=len(text),
word_count=len(text.split()),
client_id=client_id,
user_agent=user_agent,
session_id=session_id
)
# Add to in-memory storage
self.recent_predictions.append(record)
self.prediction_buffer.append(record)
self.total_predictions += 1
# Trigger batch processing if buffer is full
if len(self.prediction_buffer) >= 100:
self._process_prediction_batch()
return text_hash
def record_error(self, error_type: str, error_message: str, context: Dict = None):
"""Record prediction error"""
self.error_count += 1
error_record = {
'timestamp': datetime.now().isoformat(),
'error_type': error_type,
'error_message': error_message,
'context': context or {},
'total_errors': self.error_count,
'error_rate': self.get_current_error_rate()
}
# Save error to alerts log
self._append_to_log(self.alerts_log_path, error_record)
# Check if error rate exceeds thresholds
self._check_error_rate_alerts()
def get_current_metrics(self) -> MonitoringMetrics:
"""Get current real-time metrics"""
now = datetime.now()
recent_predictions = self._get_recent_predictions(minutes=5)
if not recent_predictions:
return MonitoringMetrics(
timestamp=now.isoformat(),
total_predictions=self.total_predictions,
predictions_per_minute=0.0,
avg_confidence=0.0,
avg_processing_time=0.0,
confidence_distribution={},
prediction_distribution={},
error_rate=0.0,
response_time_percentiles={},
anomaly_score=0.0
)
# Calculate metrics
confidences = [p.confidence for p in recent_predictions]
processing_times = [p.processing_time for p in recent_predictions]
predictions = [p.prediction for p in recent_predictions]
return MonitoringMetrics(
timestamp=now.isoformat(),
total_predictions=self.total_predictions,
predictions_per_minute=len(recent_predictions) / 5.0,
avg_confidence=float(np.mean(confidences)),
avg_processing_time=float(np.mean(processing_times)),
confidence_distribution=self._calculate_confidence_distribution(confidences),
prediction_distribution=self._calculate_prediction_distribution(predictions),
error_rate=self.get_current_error_rate(),
response_time_percentiles=self._calculate_percentiles(processing_times),
anomaly_score=self._calculate_anomaly_score(recent_predictions)
)
def get_historical_metrics(self, hours: int = 24) -> List[MonitoringMetrics]:
"""Get historical metrics for specified time period"""
cutoff_time = datetime.now() - timedelta(hours=hours)
historical_metrics = []
for metrics in self.metrics_history:
if datetime.fromisoformat(metrics.timestamp) > cutoff_time:
historical_metrics.append(metrics)
return historical_metrics
def get_prediction_patterns(self, hours: int = 24) -> Dict[str, Any]:
"""Analyze prediction patterns for anomaly detection"""
cutoff_time = datetime.now() - timedelta(hours=hours)
recent_predictions = [
p for p in self.recent_predictions
if datetime.fromisoformat(p.timestamp) > cutoff_time
]
if not recent_predictions:
return {'error': 'No recent predictions found'}
# Analyze patterns
hourly_distribution = defaultdict(int)
confidence_trends = []
processing_time_trends = []
for prediction in recent_predictions:
hour = datetime.fromisoformat(prediction.timestamp).hour
hourly_distribution[hour] += 1
confidence_trends.append(prediction.confidence)
processing_time_trends.append(prediction.processing_time)
return {
'total_predictions': len(recent_predictions),
'hourly_distribution': dict(hourly_distribution),
'confidence_stats': {
'mean': float(np.mean(confidence_trends)),
'std': float(np.std(confidence_trends)),
'min': float(np.min(confidence_trends)),
'max': float(np.max(confidence_trends))
},
'processing_time_stats': {
'mean': float(np.mean(processing_time_trends)),
'std': float(np.std(processing_time_trends)),
'min': float(np.min(processing_time_trends)),
'max': float(np.max(processing_time_trends))
},
'anomaly_indicators': self._detect_anomaly_indicators(recent_predictions)
}
def get_current_error_rate(self) -> float:
"""Calculate current error rate"""
if self.total_predictions == 0:
return 0.0
return self.error_count / (self.total_predictions + self.error_count)
def get_confidence_analysis(self) -> Dict[str, Any]:
"""Analyze confidence distribution and trends"""
recent_predictions = self._get_recent_predictions(minutes=60)
if not recent_predictions:
return {'error': 'No recent predictions found'}
confidences = [p.confidence for p in recent_predictions]
# Confidence distribution
distribution = self._calculate_confidence_distribution(confidences)
# Confidence trends (last hour in 10-minute windows)
trends = []
now = datetime.now()
for i in range(6): # 6 ten-minute windows
window_start = now - timedelta(minutes=(i+1)*10)
window_end = now - timedelta(minutes=i*10)
window_predictions = [
p for p in recent_predictions
if window_start <= datetime.fromisoformat(p.timestamp) < window_end
]
if window_predictions:
avg_confidence = np.mean([p.confidence for p in window_predictions])
trends.append({
'window_start': window_start.isoformat(),
'window_end': window_end.isoformat(),
'avg_confidence': float(avg_confidence),
'prediction_count': len(window_predictions)
})
return {
'total_predictions': len(recent_predictions),
'overall_avg_confidence': float(np.mean(confidences)),
'confidence_std': float(np.std(confidences)),
'distribution': distribution,
'trends': trends[::-1], # Reverse to get chronological order
'low_confidence_alerts': len([c for c in confidences if c < self.confidence_thresholds['low']])
}
def _monitoring_loop(self):
"""Background monitoring loop"""
while self.monitoring_active:
try:
# Process any pending predictions
if self.prediction_buffer:
self._process_prediction_batch()
# Generate and save metrics
current_metrics = self.get_current_metrics()
self.metrics_history.append(current_metrics)
self._append_to_log(self.metrics_log_path, asdict(current_metrics))
# Check for alerts
self._check_performance_alerts(current_metrics)
# Sleep for 1 minute
time.sleep(60)
except Exception as e:
logger.error(f"Error in monitoring loop: {e}")
time.sleep(60)
def _process_prediction_batch(self):
"""Process batch of predictions and save to log"""
batch = list(self.prediction_buffer)
self.prediction_buffer.clear()
# Save batch to log file
for prediction in batch:
self._append_to_log(self.predictions_log_path, asdict(prediction))
def _get_recent_predictions(self, minutes: int) -> List[PredictionRecord]:
"""Get predictions from the last N minutes"""
cutoff_time = datetime.now() - timedelta(minutes=minutes)
return [
p for p in self.recent_predictions
if datetime.fromisoformat(p.timestamp) > cutoff_time
]
def _calculate_confidence_distribution(self, confidences: List[float]) -> Dict[str, int]:
"""Calculate confidence distribution buckets"""
distribution = {
'very_low': 0, # < 0.5
'low': 0, # 0.5-0.7
'medium': 0, # 0.7-0.8
'high': 0, # 0.8-0.9
'very_high': 0 # > 0.9
}
for confidence in confidences:
if confidence < 0.5:
distribution['very_low'] += 1
elif confidence < 0.7:
distribution['low'] += 1
elif confidence < 0.8:
distribution['medium'] += 1
elif confidence < 0.9:
distribution['high'] += 1
else:
distribution['very_high'] += 1
return distribution
def _calculate_prediction_distribution(self, predictions: List[str]) -> Dict[str, int]:
"""Calculate prediction label distribution"""
distribution = defaultdict(int)
for prediction in predictions:
distribution[prediction] += 1
return dict(distribution)
def _calculate_percentiles(self, values: List[float]) -> Dict[str, float]:
"""Calculate response time percentiles"""
if not values:
return {}
return {
'p50': float(np.percentile(values, 50)),
'p90': float(np.percentile(values, 90)),
'p95': float(np.percentile(values, 95)),
'p99': float(np.percentile(values, 99))
}
def _calculate_anomaly_score(self, predictions: List[PredictionRecord]) -> float:
"""Calculate anomaly score based on various factors"""
if not predictions:
return 0.0
scores = []
# Confidence anomaly (low confidence spike)
confidences = [p.confidence for p in predictions]
low_confidence_ratio = len([c for c in confidences if c < 0.6]) / len(confidences)
scores.append(low_confidence_ratio)
# Processing time anomaly (slow responses)
processing_times = [p.processing_time for p in predictions]
slow_response_ratio = len([t for t in processing_times if t > 5.0]) / len(processing_times)
scores.append(slow_response_ratio)
# Prediction distribution anomaly (extreme skew)
prediction_dist = self._calculate_prediction_distribution([p.prediction for p in predictions])
if prediction_dist:
max_ratio = max(prediction_dist.values()) / len(predictions)
if max_ratio > 0.9: # More than 90% same prediction
scores.append(0.5)
else:
scores.append(0.0)
return float(np.mean(scores))
def _detect_anomaly_indicators(self, predictions: List[PredictionRecord]) -> List[str]:
"""Detect specific anomaly indicators"""
indicators = []
if not predictions:
return indicators
# Low confidence spike
low_confidence_count = len([p for p in predictions if p.confidence < 0.6])
if low_confidence_count > len(predictions) * 0.3:
indicators.append(f"High low-confidence predictions: {low_confidence_count}/{len(predictions)}")
# Slow response spike
slow_responses = len([p for p in predictions if p.processing_time > 5.0])
if slow_responses > len(predictions) * 0.1:
indicators.append(f"Slow responses detected: {slow_responses}/{len(predictions)}")
# Prediction skew
prediction_dist = self._calculate_prediction_distribution([p.prediction for p in predictions])
if prediction_dist:
max_count = max(prediction_dist.values())
if max_count > len(predictions) * 0.9:
dominant_prediction = max(prediction_dist, key=prediction_dist.get)
indicators.append(f"Extreme prediction skew: {max_count}/{len(predictions)} are '{dominant_prediction}'")
return indicators
def _check_performance_alerts(self, metrics: MonitoringMetrics):
"""Check for performance-based alerts"""
alerts = []
# Response time alerts
if metrics.avg_processing_time > self.performance_thresholds['response_time_critical']:
alerts.append({
'type': 'critical',
'category': 'response_time',
'message': f"Critical response time: {metrics.avg_processing_time:.2f}s",
'threshold': self.performance_thresholds['response_time_critical']
})
elif metrics.avg_processing_time > self.performance_thresholds['response_time_warning']:
alerts.append({
'type': 'warning',
'category': 'response_time',
'message': f"High response time: {metrics.avg_processing_time:.2f}s",
'threshold': self.performance_thresholds['response_time_warning']
})
# Confidence alerts
if metrics.avg_confidence < self.performance_thresholds['confidence_warning']:
alerts.append({
'type': 'warning',
'category': 'confidence',
'message': f"Low average confidence: {metrics.avg_confidence:.2f}",
'threshold': self.performance_thresholds['confidence_warning']
})
# Error rate alerts
if metrics.error_rate > self.performance_thresholds['error_rate_critical']:
alerts.append({
'type': 'critical',
'category': 'error_rate',
'message': f"Critical error rate: {metrics.error_rate:.2%}",
'threshold': self.performance_thresholds['error_rate_critical']
})
elif metrics.error_rate > self.performance_thresholds['error_rate_warning']:
alerts.append({
'type': 'warning',
'category': 'error_rate',
'message': f"High error rate: {metrics.error_rate:.2%}",
'threshold': self.performance_thresholds['error_rate_warning']
})
# Anomaly alerts
if metrics.anomaly_score > 0.3:
alerts.append({
'type': 'warning',
'category': 'anomaly',
'message': f"Anomaly detected: score {metrics.anomaly_score:.2f}",
'threshold': 0.3
})
# Save alerts
for alert in alerts:
alert['timestamp'] = datetime.now().isoformat()
alert['metrics_snapshot'] = asdict(metrics)
self._append_to_log(self.alerts_log_path, alert)
def _check_error_rate_alerts(self):
"""Check error rate and generate alerts if needed"""
error_rate = self.get_current_error_rate()
if error_rate > self.performance_thresholds['error_rate_critical']:
alert = {
'timestamp': datetime.now().isoformat(),
'type': 'critical',
'category': 'error_rate',
'message': f"Critical error rate reached: {error_rate:.2%}",
'error_count': self.error_count,
'total_requests': self.total_predictions + self.error_count
}
self._append_to_log(self.alerts_log_path, alert)
def _hash_text(self, text: str) -> str:
"""Generate hash for text content"""
import hashlib
return hashlib.md5(text.encode()).hexdigest()[:16]
def _append_to_log(self, log_path: Path, data: Dict):
"""Append data to log file"""
try:
with open(log_path, 'a') as f:
f.write(json.dumps(data) + '\n')
except Exception as e:
logger.error(f"Failed to write to log {log_path}: {e}")
def load_historical_data(self):
"""Load historical data on startup"""
try:
# Load recent predictions
if self.predictions_log_path.exists():
with open(self.predictions_log_path, 'r') as f:
for line in f:
try:
data = json.loads(line.strip())
prediction = PredictionRecord(**data)
# Only load recent predictions (last 24 hours)
if datetime.fromisoformat(prediction.timestamp) > datetime.now() - timedelta(hours=24):
self.recent_predictions.append(prediction)
except Exception:
continue
# Load recent metrics
if self.metrics_log_path.exists():
with open(self.metrics_log_path, 'r') as f:
for line in f:
try:
data = json.loads(line.strip())
metrics = MonitoringMetrics(**data)
# Only load recent metrics (last 24 hours)
if datetime.fromisoformat(metrics.timestamp) > datetime.now() - timedelta(hours=24):
self.metrics_history.append(metrics)
except Exception:
continue
logger.info(f"Loaded {len(self.recent_predictions)} recent predictions and {len(self.metrics_history)} metrics records")
except Exception as e:
logger.error(f"Failed to load historical data: {e}") |