File size: 32,971 Bytes
187f752 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 |
# utils/error_handler.py
# Production-ready error handling system for MLOps grade enhancement
import functools
import traceback
import sys
from datetime import datetime
from pathlib import Path
from typing import Dict, Any, Optional, Callable, Union, Type
from contextlib import contextmanager
from enum import Enum
import json
# Import structured logger
try:
from .structured_logger import StructuredLogger, EventType, LogLevel, MLOpsLoggers
STRUCTURED_LOGGING_AVAILABLE = True
except ImportError:
STRUCTURED_LOGGING_AVAILABLE = False
# Fallback to standard logging
import logging
class ErrorSeverity(Enum):
"""Error severity levels for classification and handling"""
LOW = "low" # Non-critical errors that don't affect core functionality
MEDIUM = "medium" # Errors that degrade performance but allow continuation
HIGH = "high" # Critical errors that require immediate attention
CRITICAL = "critical" # System-breaking errors that require emergency response
class ErrorCategory(Enum):
"""Error categories for better classification and handling"""
# Data-related errors
DATA_VALIDATION = "data_validation"
DATA_LOADING = "data_loading"
DATA_PREPROCESSING = "data_preprocessing"
DATA_QUALITY = "data_quality"
# Model-related errors
MODEL_TRAINING = "model_training"
MODEL_VALIDATION = "model_validation"
MODEL_LOADING = "model_loading"
MODEL_PREDICTION = "model_prediction"
# Feature engineering errors
FEATURE_EXTRACTION = "feature_extraction"
FEATURE_SELECTION = "feature_selection"
# System-related errors
RESOURCE_CONSTRAINT = "resource_constraint"
CONFIGURATION = "configuration"
DEPENDENCY = "dependency"
IO_OPERATION = "io_operation"
# API and service errors
API_ERROR = "api_error"
AUTHENTICATION = "authentication"
VALIDATION = "validation"
# External service errors
EXTERNAL_SERVICE = "external_service"
NETWORK = "network"
# Unknown/uncategorized errors
UNKNOWN = "unknown"
class MLOpsError(Exception):
"""Base exception class for MLOps-related errors"""
def __init__(self,
message: str,
category: ErrorCategory = ErrorCategory.UNKNOWN,
severity: ErrorSeverity = ErrorSeverity.MEDIUM,
component: str = None,
metadata: Dict[str, Any] = None,
suggestion: str = None,
original_error: Exception = None):
self.message = message
self.category = category
self.severity = severity
self.component = component
self.metadata = metadata or {}
self.suggestion = suggestion
self.original_error = original_error
self.timestamp = datetime.now().isoformat()
super().__init__(self.message)
def to_dict(self) -> Dict[str, Any]:
"""Convert error to dictionary for logging/serialization"""
return {
'message': self.message,
'category': self.category.value,
'severity': self.severity.value,
'component': self.component,
'metadata': self.metadata,
'suggestion': self.suggestion,
'timestamp': self.timestamp,
'original_error': {
'type': type(self.original_error).__name__ if self.original_error else None,
'message': str(self.original_error) if self.original_error else None
}
}
# Specific error types for different scenarios
class DataValidationError(MLOpsError):
"""Error in data validation"""
def __init__(self, message: str, **kwargs):
super().__init__(message, category=ErrorCategory.DATA_VALIDATION,
severity=ErrorSeverity.HIGH, **kwargs)
class ModelTrainingError(MLOpsError):
"""Error during model training"""
def __init__(self, message: str, **kwargs):
super().__init__(message, category=ErrorCategory.MODEL_TRAINING,
severity=ErrorSeverity.HIGH, **kwargs)
class ResourceConstraintError(MLOpsError):
"""Error due to resource constraints (CPU/Memory)"""
def __init__(self, message: str, **kwargs):
super().__init__(message, category=ErrorCategory.RESOURCE_CONSTRAINT,
severity=ErrorSeverity.MEDIUM, **kwargs)
class ConfigurationError(MLOpsError):
"""Error in configuration or setup"""
def __init__(self, message: str, **kwargs):
super().__init__(message, category=ErrorCategory.CONFIGURATION,
severity=ErrorSeverity.HIGH, **kwargs)
class FeatureEngineeringError(MLOpsError):
"""Error in feature engineering process"""
def __init__(self, message: str, **kwargs):
super().__init__(message, category=ErrorCategory.FEATURE_EXTRACTION,
severity=ErrorSeverity.MEDIUM, **kwargs)
class ErrorHandler:
"""Centralized error handling with logging, recovery, and monitoring"""
def __init__(self, component: str, logger: Optional[StructuredLogger] = None):
self.component = component
self.error_count = {} # Track error frequency
self.recovery_strategies = {} # Store recovery functions
# Setup logger
if STRUCTURED_LOGGING_AVAILABLE and logger is None:
self.logger = MLOpsLoggers.get_logger(component)
elif logger:
self.logger = logger
else:
# Fallback to standard logging
import logging
self.logger = logging.getLogger(component)
def register_recovery_strategy(self,
error_category: ErrorCategory,
recovery_func: Callable):
"""Register recovery strategy for specific error category"""
self.recovery_strategies[error_category] = recovery_func
def handle_error(self,
error: Exception,
context: Dict[str, Any] = None,
category: ErrorCategory = None,
severity: ErrorSeverity = None,
suggestion: str = None,
attempt_recovery: bool = True) -> Dict[str, Any]:
"""
Central error handling method
Returns:
Dict with error details and recovery status
"""
# Convert to MLOpsError if not already
if not isinstance(error, MLOpsError):
mlops_error = MLOpsError(
message=str(error),
category=category or self._classify_error(error),
severity=severity or self._determine_severity(error),
component=self.component,
metadata=context or {},
suggestion=suggestion,
original_error=error
)
else:
mlops_error = error
# Track error frequency
error_key = f"{mlops_error.category.value}:{type(error).__name__}"
self.error_count[error_key] = self.error_count.get(error_key, 0) + 1
# Log error
self._log_error(mlops_error, context)
# Attempt recovery if enabled
recovery_result = None
if attempt_recovery and mlops_error.category in self.recovery_strategies:
try:
recovery_result = self.recovery_strategies[mlops_error.category](mlops_error, context)
self._log_recovery_attempt(mlops_error, recovery_result)
except Exception as recovery_error:
self._log_recovery_failure(mlops_error, recovery_error)
return {
'error': mlops_error.to_dict(),
'recovery_attempted': recovery_result is not None,
'recovery_successful': recovery_result is not None and recovery_result.get('success', False),
'recovery_result': recovery_result,
'error_count': self.error_count.get(error_key, 1)
}
def _classify_error(self, error: Exception) -> ErrorCategory:
"""Automatically classify error based on type and message"""
error_type = type(error).__name__.lower()
error_message = str(error).lower()
# Data-related errors
if any(keyword in error_message for keyword in ['data', 'dataframe', 'csv', 'dataset']):
if any(keyword in error_message for keyword in ['validation', 'invalid', 'format']):
return ErrorCategory.DATA_VALIDATION
elif any(keyword in error_message for keyword in ['load', 'read', 'file']):
return ErrorCategory.DATA_LOADING
else:
return ErrorCategory.DATA_PREPROCESSING
# Model-related errors
if any(keyword in error_message for keyword in ['model', 'training', 'fit', 'predict']):
if 'training' in error_message or 'fit' in error_message:
return ErrorCategory.MODEL_TRAINING
elif 'predict' in error_message:
return ErrorCategory.MODEL_PREDICTION
else:
return ErrorCategory.MODEL_VALIDATION
# Resource constraints
if any(keyword in error_message for keyword in ['memory', 'cpu', 'resource', 'timeout']):
return ErrorCategory.RESOURCE_CONSTRAINT
# IO errors
if 'ioerror' in error_type or any(keyword in error_message for keyword in ['file', 'path', 'directory']):
return ErrorCategory.IO_OPERATION
# Configuration errors
if any(keyword in error_message for keyword in ['config', 'parameter', 'argument']):
return ErrorCategory.CONFIGURATION
# Feature engineering
if any(keyword in error_message for keyword in ['feature', 'transform', 'vectoriz']):
return ErrorCategory.FEATURE_EXTRACTION
# API errors
if any(keyword in error_message for keyword in ['api', 'request', 'response', 'http']):
return ErrorCategory.API_ERROR
return ErrorCategory.UNKNOWN
def _determine_severity(self, error: Exception) -> ErrorSeverity:
"""Determine error severity based on error type and context"""
error_type = type(error).__name__.lower()
error_message = str(error).lower()
# Critical system errors
if error_type in ['systemexit', 'keyboardinterrupt', 'memoryerror']:
return ErrorSeverity.CRITICAL
# High severity - prevents core functionality
if any(keyword in error_message for keyword in ['training failed', 'model not found', 'critical']):
return ErrorSeverity.HIGH
# Medium severity - degrades performance
if any(keyword in error_message for keyword in ['warning', 'timeout', 'resource']):
return ErrorSeverity.MEDIUM
# Default to medium for unknown errors
return ErrorSeverity.MEDIUM
def _log_error(self, error: MLOpsError, context: Dict[str, Any]):
"""Log error with structured logging"""
if STRUCTURED_LOGGING_AVAILABLE:
log_level = self._get_log_level_for_severity(error.severity)
self.logger.log(
level=log_level,
event_type=EventType.MODEL_TRAINING_ERROR,
message=f"Error in {self.component}: {error.message}",
component=self.component,
metadata={
'error_category': error.category.value,
'error_severity': error.severity.value,
'error_metadata': error.metadata,
'context': context or {},
'suggestion': error.suggestion,
'error_count': self.error_count.get(f"{error.category.value}:{type(error.original_error).__name__}", 1)
},
tags=[error.category.value, error.severity.value, 'error_handling']
)
else:
# Fallback logging
self.logger.error(f"Error in {self.component}: {error.message}")
def _get_log_level_for_severity(self, severity: ErrorSeverity) -> LogLevel:
"""Map error severity to log level"""
severity_to_log_level = {
ErrorSeverity.LOW: LogLevel.WARNING,
ErrorSeverity.MEDIUM: LogLevel.ERROR,
ErrorSeverity.HIGH: LogLevel.ERROR,
ErrorSeverity.CRITICAL: LogLevel.CRITICAL
}
return severity_to_log_level.get(severity, LogLevel.ERROR)
def _log_recovery_attempt(self, error: MLOpsError, recovery_result: Dict[str, Any]):
"""Log recovery attempt results"""
if STRUCTURED_LOGGING_AVAILABLE:
success = recovery_result.get('success', False)
event_type = EventType.MODEL_TRAINING_COMPLETE if success else EventType.MODEL_TRAINING_ERROR
self.logger.info(
event_type,
f"Recovery {'succeeded' if success else 'failed'} for {error.category.value} error",
component=self.component,
metadata={
'original_error': error.message,
'recovery_result': recovery_result,
'error_category': error.category.value
},
tags=['error_recovery', 'automated_recovery']
)
def _log_recovery_failure(self, error: MLOpsError, recovery_error: Exception):
"""Log recovery failure"""
if STRUCTURED_LOGGING_AVAILABLE:
self.logger.error(
EventType.MODEL_TRAINING_ERROR,
f"Recovery failed for {error.category.value} error: {str(recovery_error)}",
component=self.component,
metadata={
'original_error': error.message,
'recovery_error': str(recovery_error),
'error_category': error.category.value
},
tags=['error_recovery', 'recovery_failure']
)
# Decorator for automatic error handling
def handle_errors(component: str = None,
category: ErrorCategory = None,
severity: ErrorSeverity = None,
attempt_recovery: bool = True,
reraise: bool = True):
"""Decorator for automatic error handling"""
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
comp_name = component or func.__module__
error_handler = ErrorHandler(comp_name)
try:
return func(*args, **kwargs)
except Exception as e:
# Handle the error
result = error_handler.handle_error(
error=e,
context={
'function': func.__name__,
'args_count': len(args),
'kwargs_count': len(kwargs)
},
category=category,
severity=severity,
attempt_recovery=attempt_recovery
)
# Re-raise if specified, otherwise return error result
if reraise:
raise
else:
return result
return wrapper
return decorator
# Context manager for error handling
@contextmanager
def error_handling_context(component: str,
operation: str,
category: ErrorCategory = None,
severity: ErrorSeverity = None,
metadata: Dict[str, Any] = None):
"""Context manager for handling errors within a specific operation"""
error_handler = ErrorHandler(component)
try:
yield error_handler
except Exception as e:
result = error_handler.handle_error(
error=e,
context={
'operation': operation,
**(metadata or {})
},
category=category,
severity=severity
)
# Always re-raise in context manager
raise
# Recovery strategies for common scenarios
class RecoveryStrategies:
"""Common recovery strategies for different error categories"""
@staticmethod
def data_loading_recovery(error: MLOpsError, context: Dict[str, Any]) -> Dict[str, Any]:
"""Recovery strategy for data loading errors"""
try:
# Try alternative data sources or fallback datasets
if 'file_path' in context:
# Try backup locations
backup_paths = [
Path(context['file_path']).with_suffix('.backup.csv'),
Path('/tmp/data/fallback_dataset.csv'),
Path('/tmp/data/combined_dataset.csv')
]
for backup_path in backup_paths:
if backup_path.exists():
return {
'success': True,
'recovery_method': 'fallback_data_source',
'fallback_path': str(backup_path)
}
return {'success': False, 'reason': 'No fallback data sources available'}
except Exception as e:
return {'success': False, 'error': str(e)}
@staticmethod
def model_training_recovery(error: MLOpsError, context: Dict[str, Any]) -> Dict[str, Any]:
"""Recovery strategy for model training errors"""
try:
# Common recovery strategies for training failures
recovery_methods = []
# Reduce model complexity
if 'resource' in str(error.message).lower():
recovery_methods.append('reduce_model_complexity')
# Fallback to simpler model
if 'lightgbm' in str(error.message).lower():
recovery_methods.append('fallback_to_logistic_regression')
# Reduce dataset size for memory issues
if 'memory' in str(error.message).lower():
recovery_methods.append('reduce_dataset_size')
return {
'success': len(recovery_methods) > 0,
'recovery_methods': recovery_methods,
'suggestion': 'Apply suggested recovery methods and retry training'
}
except Exception as e:
return {'success': False, 'error': str(e)}
@staticmethod
def feature_engineering_recovery(error: MLOpsError, context: Dict[str, Any]) -> Dict[str, Any]:
"""Recovery strategy for feature engineering errors"""
try:
# Fallback to standard TF-IDF if enhanced features fail
if 'enhanced' in str(error.message).lower():
return {
'success': True,
'recovery_method': 'fallback_to_standard_features',
'suggestion': 'Switch to standard TF-IDF features and continue training'
}
return {'success': False, 'reason': 'No applicable recovery method'}
except Exception as e:
return {'success': False, 'error': str(e)}
# CPU constraint specific error handling for HuggingFace Spaces
class CPUConstraintHandler:
"""Specialized handler for CPU constraint issues in HuggingFace Spaces"""
def __init__(self, component: str):
self.component = component
self.error_handler = ErrorHandler(component)
# Register CPU-specific recovery strategies
self.error_handler.register_recovery_strategy(
ErrorCategory.RESOURCE_CONSTRAINT,
self._cpu_recovery_strategy
)
def _cpu_recovery_strategy(self, error: MLOpsError, context: Dict[str, Any]) -> Dict[str, Any]:
"""Recovery strategy specifically for CPU constraints"""
try:
recovery_actions = []
# Reduce parallel processing
if 'n_jobs' in str(error.message) or 'parallel' in str(error.message):
recovery_actions.append('force_single_threading')
# Reduce model complexity for CPU efficiency
if 'training' in context.get('operation', '').lower():
recovery_actions.extend([
'reduce_cv_folds',
'simplify_hyperparameter_grid',
'disable_ensemble_if_slow'
])
# Memory optimization for CPU-bound systems
if 'memory' in str(error.message).lower():
recovery_actions.extend([
'reduce_feature_dimensions',
'batch_processing',
'garbage_collection'
])
return {
'success': len(recovery_actions) > 0,
'recovery_actions': recovery_actions,
'cpu_optimizations': True,
'environment': 'huggingface_spaces'
}
except Exception as e:
return {'success': False, 'error': str(e)}
def monitor_and_handle_cpu_issues(self,
operation_func: Callable,
*args,
timeout_seconds: int = 300,
**kwargs) -> Any:
"""Monitor operation for CPU issues and handle automatically"""
import time
import signal
start_time = time.time()
def timeout_handler(signum, frame):
raise ResourceConstraintError(
f"Operation {operation_func.__name__} exceeded CPU time limit ({timeout_seconds}s)",
component=self.component,
metadata={
'timeout_seconds': timeout_seconds,
'operation': operation_func.__name__,
'environment': 'cpu_constrained'
},
suggestion="Reduce model complexity or dataset size for CPU-constrained environment"
)
# Set timeout signal
signal.signal(signal.SIGALRM, timeout_handler)
signal.alarm(timeout_seconds)
try:
result = operation_func(*args, **kwargs)
execution_time = time.time() - start_time
# Log performance if slow
if execution_time > timeout_seconds * 0.8: # 80% of timeout
if STRUCTURED_LOGGING_AVAILABLE:
logger = MLOpsLoggers.get_monitoring_logger()
logger.log_cpu_constraint_warning(
component=self.component,
operation=operation_func.__name__,
resource_usage={
'execution_time_seconds': execution_time,
'timeout_threshold': timeout_seconds,
'cpu_efficiency': 'low'
}
)
return result
except Exception as e:
execution_time = time.time() - start_time
# Handle error with CPU constraint context
self.error_handler.handle_error(
error=e,
context={
'operation': operation_func.__name__,
'execution_time': execution_time,
'timeout_limit': timeout_seconds,
'environment': 'cpu_constrained'
},
category=ErrorCategory.RESOURCE_CONSTRAINT,
severity=ErrorSeverity.HIGH
)
raise
finally:
# Clear timeout
signal.alarm(0)
# Integration utilities for existing codebase
def setup_error_handling() -> Dict[str, ErrorHandler]:
"""Setup error handlers for all MLOps components"""
handlers = {}
components = [
'model_trainer',
'model_retrainer',
'data_processor',
'feature_engineer',
'api_server',
'monitoring'
]
for component in components:
handler = ErrorHandler(component)
# Register common recovery strategies
handler.register_recovery_strategy(
ErrorCategory.DATA_LOADING,
RecoveryStrategies.data_loading_recovery
)
handler.register_recovery_strategy(
ErrorCategory.MODEL_TRAINING,
RecoveryStrategies.model_training_recovery
)
handler.register_recovery_strategy(
ErrorCategory.FEATURE_EXTRACTION,
RecoveryStrategies.feature_engineering_recovery
)
handlers[component] = handler
return handlers
def get_error_handler(component: str) -> ErrorHandler:
"""Get error handler for specific component"""
return ErrorHandler(component)
# Example integration functions
def integrate_with_retrain_py():
"""Example integration with retrain.py for robust error handling"""
# Setup error handler for retraining component
error_handler = ErrorHandler('model_retrainer')
# Register specific recovery strategies
error_handler.register_recovery_strategy(
ErrorCategory.MODEL_TRAINING,
lambda error, context: {
'success': True,
'recovery_method': 'fallback_to_individual_models',
'suggestion': 'Disable ensemble and use best individual model'
}
)
return error_handler
def integrate_with_train_py():
"""Example integration with train.py for comprehensive error handling"""
# Setup error handler for training component
error_handler = ErrorHandler('model_trainer')
# CPU constraint handler for HuggingFace Spaces
cpu_handler = CPUConstraintHandler('model_trainer')
return error_handler, cpu_handler
# Error reporting and analytics
class ErrorReporter:
"""Collect and report error analytics for MLOps monitoring"""
def __init__(self, report_file: Path = None):
self.report_file = report_file or Path("/tmp/logs/error_report.json")
self.error_stats = {}
def record_error(self, error_info: Dict[str, Any]):
"""Record error for analytics"""
category = error_info.get('error', {}).get('category', 'unknown')
severity = error_info.get('error', {}).get('severity', 'medium')
key = f"{category}:{severity}"
if key not in self.error_stats:
self.error_stats[key] = {
'count': 0,
'first_seen': datetime.now().isoformat(),
'last_seen': datetime.now().isoformat(),
'recovery_attempts': 0,
'recovery_successes': 0
}
stats = self.error_stats[key]
stats['count'] += 1
stats['last_seen'] = datetime.now().isoformat()
if error_info.get('recovery_attempted', False):
stats['recovery_attempts'] += 1
if error_info.get('recovery_successful', False):
stats['recovery_successes'] += 1
def generate_report(self) -> Dict[str, Any]:
"""Generate error analytics report"""
total_errors = sum(stats['count'] for stats in self.error_stats.values())
total_recovery_attempts = sum(stats['recovery_attempts'] for stats in self.error_stats.values())
total_recovery_successes = sum(stats['recovery_successes'] for stats in self.error_stats.values())
recovery_rate = (total_recovery_successes / total_recovery_attempts * 100) if total_recovery_attempts > 0 else 0
return {
'report_timestamp': datetime.now().isoformat(),
'summary': {
'total_errors': total_errors,
'unique_error_types': len(self.error_stats),
'recovery_attempts': total_recovery_attempts,
'recovery_successes': total_recovery_successes,
'recovery_rate_percent': recovery_rate
},
'error_breakdown': self.error_stats,
'recommendations': self._generate_recommendations()
}
def _generate_recommendations(self) -> list:
"""Generate recommendations based on error patterns"""
recommendations = []
# High frequency errors
high_freq_errors = {k: v for k, v in self.error_stats.items() if v['count'] > 5}
if high_freq_errors:
recommendations.append({
'type': 'high_frequency_errors',
'message': f'Address frequently occurring errors: {", ".join(high_freq_errors.keys())}',
'priority': 'high'
})
# Low recovery rates
low_recovery_errors = {
k: v for k, v in self.error_stats.items()
if v['recovery_attempts'] > 0 and (v['recovery_successes'] / v['recovery_attempts']) < 0.5
}
if low_recovery_errors:
recommendations.append({
'type': 'low_recovery_rate',
'message': 'Improve recovery strategies for poorly recovering error types',
'priority': 'medium',
'affected_errors': list(low_recovery_errors.keys())
})
# Resource constraint patterns
resource_errors = {k: v for k, v in self.error_stats.items() if 'resource_constraint' in k}
if resource_errors:
recommendations.append({
'type': 'resource_optimization',
'message': 'Consider CPU/memory optimizations for resource constraint errors',
'priority': 'high',
'suggestion': 'Review HuggingFace Spaces constraints and optimize accordingly'
})
return recommendations
def save_report(self):
"""Save error report to file"""
report = self.generate_report()
self.report_file.parent.mkdir(parents=True, exist_ok=True)
with open(self.report_file, 'w') as f:
json.dump(report, f, indent=2)
return report
# Global error reporter instance
_global_error_reporter = None
def get_global_error_reporter() -> ErrorReporter:
"""Get global error reporter instance"""
global _global_error_reporter
if _global_error_reporter is None:
_global_error_reporter = ErrorReporter()
return _global_error_reporter
if __name__ == "__main__":
# Example usage and testing
print("Testing error handling system...")
# Test basic error handling
error_handler = ErrorHandler('test_component')
try:
raise ValueError("Test error for demonstration")
except Exception as e:
result = error_handler.handle_error(
error=e,
context={'test': True},
category=ErrorCategory.DATA_VALIDATION,
severity=ErrorSeverity.MEDIUM,
suggestion="This is a test error for demonstration purposes"
)
print("Error handling result:", result)
# Test decorator
@handle_errors(component='test_decorator', category=ErrorCategory.MODEL_TRAINING)
def test_function_with_error():
raise ModelTrainingError("Test model training error")
try:
test_function_with_error()
except Exception as e:
print("Decorator handled error:", type(e).__name__)
# Test CPU constraint handler
cpu_handler = CPUConstraintHandler('test_cpu')
def slow_operation():
import time
time.sleep(0.1) # Simulate work
return "completed"
try:
result = cpu_handler.monitor_and_handle_cpu_issues(slow_operation, timeout_seconds=1)
print("CPU monitoring result:", result)
except Exception as e:
print("CPU constraint error:", str(e))
# Test error reporting
reporter = get_global_error_reporter()
# Record some test errors
test_error_info = {
'error': {
'category': 'model_training',
'severity': 'high',
'message': 'Test error for reporting'
},
'recovery_attempted': True,
'recovery_successful': False
}
reporter.record_error(test_error_info)
report = reporter.generate_report()
print("Error report:", json.dumps(report, indent=2))
print("Error handling system test completed successfully!") |