File size: 52,788 Bytes
6b4cc07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
# utils/statistical_analysis.py
# Advanced statistical analysis for Data Science grade enhancement (B+ → A-)

import numpy as np
import pandas as pd
from scipy import stats
from scipy.stats import bootstrap
import warnings
from typing import Dict, List, Tuple, Optional, Any, Union, Callable
from dataclasses import dataclass
from pathlib import Path
import json
from datetime import datetime
import logging

# Import structured logging if available
try:
    from .structured_logger import StructuredLogger, EventType, MLOpsLoggers
    STRUCTURED_LOGGING_AVAILABLE = True
except ImportError:
    STRUCTURED_LOGGING_AVAILABLE = False
    import logging

warnings.filterwarnings('ignore')

logger = logging.getLogger(__name__)


@dataclass
class StatisticalResult:
    """Container for statistical analysis results with uncertainty quantification"""
    point_estimate: float
    confidence_interval: Tuple[float, float]
    confidence_level: float
    method: str
    sample_size: int
    metadata: Dict[str, Any] = None
    
    def __post_init__(self):
        if self.metadata is None:
            self.metadata = {}
    
    def to_dict(self) -> Dict[str, Any]:
        """Convert to dictionary for serialization"""
        return {
            'point_estimate': float(self.point_estimate),
            'confidence_interval': [float(self.confidence_interval[0]), float(self.confidence_interval[1])],
            'confidence_level': float(self.confidence_level),
            'method': self.method,
            'sample_size': int(self.sample_size),
            'metadata': self.metadata,
            'timestamp': datetime.now().isoformat()
        }
    
    def margin_of_error(self) -> float:
        """Calculate margin of error from confidence interval"""
        return (self.confidence_interval[1] - self.confidence_interval[0]) / 2
    
    def is_significant_improvement_over(self, baseline_value: float) -> bool:
        """Check if improvement over baseline is statistically significant"""
        return self.confidence_interval[0] > baseline_value


class BootstrapAnalyzer:
    """Advanced bootstrap analysis for model performance uncertainty quantification"""
    
    def __init__(self, 
                 n_bootstrap: int = 1000,
                 confidence_level: float = 0.95,
                 random_state: int = 42):
        self.n_bootstrap = n_bootstrap
        self.confidence_level = confidence_level
        self.random_state = random_state
        self.rng = np.random.RandomState(random_state)
        
        if STRUCTURED_LOGGING_AVAILABLE:
            self.logger = MLOpsLoggers.get_logger('statistical_analysis')
        else:
            self.logger = logging.getLogger(__name__)
    
    def bootstrap_metric(self, 
                        y_true: np.ndarray, 
                        y_pred: np.ndarray,
                        metric_func: Callable,
                        stratify: bool = True) -> StatisticalResult:
        """
        Bootstrap confidence interval for any metric function
        
        Args:
            y_true: True labels
            y_pred: Predicted labels or probabilities
            metric_func: Function that takes (y_true, y_pred) and returns metric
            stratify: Whether to use stratified bootstrap sampling
        """
        
        n_samples = len(y_true)
        bootstrap_scores = []
        
        # Original metric value
        original_score = metric_func(y_true, y_pred)
        
        for i in range(self.n_bootstrap):
            # Bootstrap sampling
            if stratify:
                # Stratified bootstrap to maintain class distribution
                indices = self._stratified_bootstrap_indices(y_true)
            else:
                indices = self.rng.choice(n_samples, size=n_samples, replace=True)
            
            # Calculate metric on bootstrap sample
            try:
                bootstrap_score = metric_func(y_true[indices], y_pred[indices])
                bootstrap_scores.append(bootstrap_score)
            except Exception as e:
                # Skip invalid bootstrap samples
                continue
        
        bootstrap_scores = np.array(bootstrap_scores)
        
        # Calculate confidence interval
        alpha = 1 - self.confidence_level
        lower_percentile = (alpha / 2) * 100
        upper_percentile = (1 - alpha / 2) * 100
        
        ci_lower = np.percentile(bootstrap_scores, lower_percentile)
        ci_upper = np.percentile(bootstrap_scores, upper_percentile)
        
        return StatisticalResult(
            point_estimate=original_score,
            confidence_interval=(ci_lower, ci_upper),
            confidence_level=self.confidence_level,
            method='bootstrap',
            sample_size=n_samples,
            metadata={
                'n_bootstrap': self.n_bootstrap,
                'bootstrap_mean': float(np.mean(bootstrap_scores)),
                'bootstrap_std': float(np.std(bootstrap_scores)),
                'stratified': stratify,
                'valid_bootstraps': len(bootstrap_scores)
            }
        )
    
    def _stratified_bootstrap_indices(self, y_true: np.ndarray) -> np.ndarray:
        """Generate stratified bootstrap indices maintaining class distribution"""
        indices = []
        unique_classes, class_counts = np.unique(y_true, return_counts=True)
        
        for class_label, count in zip(unique_classes, class_counts):
            class_indices = np.where(y_true == class_label)[0]
            bootstrap_indices = self.rng.choice(class_indices, size=count, replace=True)
            indices.extend(bootstrap_indices)
        
        return np.array(indices)
    
    def bootstrap_model_comparison(self,
                                 y_true: np.ndarray,
                                 y_pred_1: np.ndarray,
                                 y_pred_2: np.ndarray,
                                 metric_func: Callable,
                                 model_1_name: str = "Model 1",
                                 model_2_name: str = "Model 2") -> Dict[str, Any]:
        """
        Bootstrap comparison between two models with statistical significance testing
        """
        
        n_samples = len(y_true)
        differences = []
        
        # Calculate original difference
        score_1 = metric_func(y_true, y_pred_1)
        score_2 = metric_func(y_true, y_pred_2)
        original_difference = score_2 - score_1
        
        # Bootstrap sampling for difference
        for i in range(self.n_bootstrap):
            indices = self.rng.choice(n_samples, size=n_samples, replace=True)
            
            try:
                boot_score_1 = metric_func(y_true[indices], y_pred_1[indices])
                boot_score_2 = metric_func(y_true[indices], y_pred_2[indices])
                differences.append(boot_score_2 - boot_score_1)
            except:
                continue
        
        differences = np.array(differences)
        
        # Calculate confidence interval for difference
        alpha = 1 - self.confidence_level
        ci_lower = np.percentile(differences, (alpha / 2) * 100)
        ci_upper = np.percentile(differences, (1 - alpha / 2) * 100)
        
        # Statistical significance test
        p_value_bootstrap = np.mean(differences <= 0) * 2  # Two-tailed test
        is_significant = ci_lower > 0 or ci_upper < 0
        
        # Effect size (Cohen's d)
        pooled_std = np.sqrt((np.var(differences)) / 2)
        cohens_d = original_difference / pooled_std if pooled_std > 0 else 0
        
        return {
            'model_1_name': model_1_name,
            'model_2_name': model_2_name,
            'model_1_score': StatisticalResult(
                point_estimate=score_1,
                confidence_interval=(score_1 - np.std(differences), score_1 + np.std(differences)),
                confidence_level=self.confidence_level,
                method='bootstrap_individual',
                sample_size=n_samples
            ).to_dict(),
            'model_2_score': StatisticalResult(
                point_estimate=score_2,
                confidence_interval=(score_2 - np.std(differences), score_2 + np.std(differences)),
                confidence_level=self.confidence_level,
                method='bootstrap_individual',
                sample_size=n_samples
            ).to_dict(),
            'difference': StatisticalResult(
                point_estimate=original_difference,
                confidence_interval=(ci_lower, ci_upper),
                confidence_level=self.confidence_level,
                method='bootstrap_difference',
                sample_size=n_samples,
                metadata={
                    'p_value_bootstrap': float(p_value_bootstrap),
                    'is_significant': bool(is_significant),
                    'effect_size_cohens_d': float(cohens_d),
                    'bootstrap_mean_difference': float(np.mean(differences)),
                    'bootstrap_std_difference': float(np.std(differences))
                }
            ).to_dict()
        }


class FeatureImportanceAnalyzer:
    """Advanced feature importance analysis with uncertainty quantification"""
    
    def __init__(self, 
                 n_bootstrap: int = 500,
                 confidence_level: float = 0.95,
                 random_state: int = 42):
        self.n_bootstrap = n_bootstrap
        self.confidence_level = confidence_level
        self.random_state = random_state
        self.rng = np.random.RandomState(random_state)
        
        if STRUCTURED_LOGGING_AVAILABLE:
            self.logger = MLOpsLoggers.get_logger('feature_importance')
        else:
            self.logger = logging.getLogger(__name__)
    
    def analyze_importance_stability(self,
                                   model,
                                   X: np.ndarray,
                                   y: np.ndarray,
                                   feature_names: List[str] = None) -> Dict[str, Any]:
        """
        Analyze feature importance stability using bootstrap sampling
        """
        
        if feature_names is None:
            feature_names = [f'feature_{i}' for i in range(X.shape[1])]
        
        importance_samples = []
        
        # Bootstrap sampling for importance stability
        for i in range(self.n_bootstrap):
            # Bootstrap sample
            indices = self.rng.choice(len(X), size=len(X), replace=True)
            X_boot = X[indices]
            y_boot = y[indices]
            
            try:
                # Fit model on bootstrap sample
                model_copy = self._clone_model(model)
                model_copy.fit(X_boot, y_boot)
                
                # Extract feature importances
                if hasattr(model_copy, 'feature_importances_'):
                    importances = model_copy.feature_importances_
                elif hasattr(model_copy, 'coef_'):
                    importances = np.abs(model_copy.coef_).flatten()
                else:
                    # Use permutation importance as fallback
                    from sklearn.inspection import permutation_importance
                    perm_importance = permutation_importance(model_copy, X_boot, y_boot, n_repeats=5, random_state=self.random_state)
                    importances = perm_importance.importances_mean
                
                importance_samples.append(importances)
                
            except Exception as e:
                continue
        
        importance_samples = np.array(importance_samples)
        
        # Calculate statistics for each feature
        feature_stats = {}
        
        for i, feature_name in enumerate(feature_names):
            if i < importance_samples.shape[1]:
                feature_importances = importance_samples[:, i]
                
                # Calculate confidence interval
                alpha = 1 - self.confidence_level
                ci_lower = np.percentile(feature_importances, (alpha / 2) * 100)
                ci_upper = np.percentile(feature_importances, (1 - alpha / 2) * 100)
                
                # Stability metrics
                cv_importance = np.std(feature_importances) / np.mean(feature_importances) if np.mean(feature_importances) > 0 else np.inf
                
                feature_stats[feature_name] = StatisticalResult(
                    point_estimate=float(np.mean(feature_importances)),
                    confidence_interval=(float(ci_lower), float(ci_upper)),
                    confidence_level=self.confidence_level,
                    method='bootstrap_importance',
                    sample_size=len(importance_samples),
                    metadata={
                        'coefficient_of_variation': float(cv_importance),
                        'std_importance': float(np.std(feature_importances)),
                        'min_importance': float(np.min(feature_importances)),
                        'max_importance': float(np.max(feature_importances)),
                        'stability_rank': None  # Will be filled later
                    }
                ).to_dict()
        
        # Rank features by stability (lower CV = more stable)
        sorted_features = sorted(
            feature_stats.items(),
            key=lambda x: x[1]['metadata']['coefficient_of_variation']
        )
        
        for rank, (feature_name, stats) in enumerate(sorted_features):
            feature_stats[feature_name]['metadata']['stability_rank'] = rank + 1
        
        return {
            'feature_importance_analysis': feature_stats,
            'stability_ranking': [name for name, _ in sorted_features],
            'analysis_metadata': {
                'n_bootstrap_samples': self.n_bootstrap,
                'confidence_level': self.confidence_level,
                'n_features_analyzed': len(feature_names),
                'valid_bootstrap_runs': len(importance_samples)
            }
        }
    
    def _clone_model(self, model):
        """Clone model for bootstrap sampling"""
        from sklearn.base import clone
        try:
            return clone(model)
        except:
            # Fallback: create new instance with same parameters
            return type(model)(**model.get_params())
    
    def permutation_importance_with_ci(self,
                                     model,
                                     X: np.ndarray,
                                     y: np.ndarray,
                                     scoring_func: Callable,
                                     feature_names: List[str] = None,
                                     n_repeats: int = 10) -> Dict[str, Any]:
        """
        Calculate permutation importance with confidence intervals
        """
        
        if feature_names is None:
            feature_names = [f'feature_{i}' for i in range(X.shape[1])]
        
        # Baseline score
        baseline_score = scoring_func(model, X, y)
        
        feature_importance_scores = {}
        
        for feature_idx, feature_name in enumerate(feature_names):
            importance_scores = []
            
            # Multiple permutation rounds for each feature
            for _ in range(n_repeats):
                # Permute feature
                X_permuted = X.copy()
                X_permuted[:, feature_idx] = self.rng.permutation(X_permuted[:, feature_idx])
                
                # Calculate score with permuted feature
                permuted_score = scoring_func(model, X_permuted, y)
                importance = baseline_score - permuted_score
                importance_scores.append(importance)
            
            # Calculate statistics
            importance_scores = np.array(importance_scores)
            
            alpha = 1 - self.confidence_level
            ci_lower = np.percentile(importance_scores, (alpha / 2) * 100)
            ci_upper = np.percentile(importance_scores, (1 - alpha / 2) * 100)
            
            feature_importance_scores[feature_name] = StatisticalResult(
                point_estimate=float(np.mean(importance_scores)),
                confidence_interval=(float(ci_lower), float(ci_upper)),
                confidence_level=self.confidence_level,
                method='permutation_importance',
                sample_size=n_repeats,
                metadata={
                    'baseline_score': float(baseline_score),
                    'std_importance': float(np.std(importance_scores)),
                    'is_statistically_important': float(ci_lower) > 0
                }
            ).to_dict()
        
        return {
            'permutation_importance': feature_importance_scores,
            'baseline_score': float(baseline_score),
            'analysis_metadata': {
                'n_repeats': n_repeats,
                'confidence_level': self.confidence_level,
                'scoring_function': scoring_func.__name__ if hasattr(scoring_func, '__name__') else 'custom'
            }
        }


class AdvancedCrossValidation:
    """Advanced cross-validation with comprehensive statistical reporting"""
    
    def __init__(self, 
                 cv_folds: int = 5,
                 n_bootstrap: int = 200,
                 confidence_level: float = 0.95,
                 random_state: int = 42):
        self.cv_folds = cv_folds
        self.n_bootstrap = n_bootstrap
        self.confidence_level = confidence_level
        self.random_state = random_state
        self.bootstrap_analyzer = BootstrapAnalyzer(n_bootstrap, confidence_level, random_state)
        
        if STRUCTURED_LOGGING_AVAILABLE:
            self.logger = MLOpsLoggers.get_logger('cross_validation')
        else:
            self.logger = logging.getLogger(__name__)
    
    def comprehensive_cv_analysis(self,
                                model,
                                X: np.ndarray,
                                y: np.ndarray,
                                scoring_metrics: Dict[str, Callable]) -> Dict[str, Any]:
        """
        Comprehensive cross-validation analysis with statistical significance testing
        """
        
        from sklearn.model_selection import cross_validate, StratifiedKFold
        
        # Setup CV strategy
        cv_strategy = StratifiedKFold(
            n_splits=self.cv_folds,
            shuffle=True,
            random_state=self.random_state
        )
        
        # Perform cross-validation
        cv_results = cross_validate(
            model, X, y,
            cv=cv_strategy,
            scoring=scoring_metrics,
            return_train_score=True,
            return_indices=True,
            n_jobs=1
        )
        
        analysis_results = {
            'cv_folds': self.cv_folds,
            'metrics_analysis': {},
            'fold_analysis': [],
            'statistical_tests': {},
            'confidence_intervals': {}
        }
        
        # Analyze each metric
        for metric_name, metric_func in scoring_metrics.items():
            test_scores = cv_results[f'test_{metric_name}']
            train_scores = cv_results[f'train_{metric_name}']
            
            # Bootstrap confidence intervals for CV scores
            test_ci = self._bootstrap_cv_scores(test_scores)
            train_ci = self._bootstrap_cv_scores(train_scores)
            
            # Statistical tests
            statistical_tests = self._perform_cv_statistical_tests(test_scores, train_scores)
            
            analysis_results['metrics_analysis'][metric_name] = {
                'test_scores': {
                    'mean': float(np.mean(test_scores)),
                    'std': float(np.std(test_scores)),
                    'confidence_interval': test_ci,
                    'scores': test_scores.tolist()
                },
                'train_scores': {
                    'mean': float(np.mean(train_scores)),
                    'std': float(np.std(train_scores)),
                    'confidence_interval': train_ci,
                    'scores': train_scores.tolist()
                },
                'overfitting_analysis': {
                    'overfitting_score': float(np.mean(train_scores) - np.mean(test_scores)),
                    'overfitting_ci': self._calculate_overfitting_ci(train_scores, test_scores)
                },
                'statistical_tests': statistical_tests
            }
        
        # Fold-by-fold analysis
        for fold_idx in range(self.cv_folds):
            fold_analysis = {
                'fold': fold_idx + 1,
                'metrics': {}
            }
            
            for metric_name in scoring_metrics.keys():
                fold_analysis['metrics'][metric_name] = {
                    'test_score': float(cv_results[f'test_{metric_name}'][fold_idx]),
                    'train_score': float(cv_results[f'train_{metric_name}'][fold_idx])
                }
            
            analysis_results['fold_analysis'].append(fold_analysis)
        
        return analysis_results
    
    def _bootstrap_cv_scores(self, scores: np.ndarray) -> Dict[str, float]:
        """Bootstrap confidence interval for CV scores"""
        bootstrap_means = []
        
        for _ in range(self.n_bootstrap):
            bootstrap_sample = np.random.choice(scores, size=len(scores), replace=True)
            bootstrap_means.append(np.mean(bootstrap_sample))
        
        alpha = 1 - self.confidence_level
        ci_lower = np.percentile(bootstrap_means, (alpha / 2) * 100)
        ci_upper = np.percentile(bootstrap_means, (1 - alpha / 2) * 100)
        
        return {
            'lower': float(ci_lower),
            'upper': float(ci_upper),
            'confidence_level': self.confidence_level
        }
    
    def _perform_cv_statistical_tests(self, test_scores: np.ndarray, train_scores: np.ndarray) -> Dict[str, Any]:
        """Perform statistical tests on CV results"""
        
        tests = {}
        
        # Test for overfitting using paired t-test
        try:
            t_stat, p_value = stats.ttest_rel(train_scores, test_scores)
            tests['overfitting_ttest'] = {
                't_statistic': float(t_stat),
                'p_value': float(p_value),
                'significant_overfitting': p_value < 0.05 and t_stat > 0,
                'interpretation': 'Significant overfitting detected' if (p_value < 0.05 and t_stat > 0) else 'No significant overfitting'
            }
        except Exception as e:
            tests['overfitting_ttest'] = {'error': str(e)}
        
        # Normality test for CV scores
        try:
            shapiro_stat, shapiro_p = stats.shapiro(test_scores)
            tests['normality_test'] = {
                'shapiro_statistic': float(shapiro_stat),
                'p_value': float(shapiro_p),
                'normally_distributed': shapiro_p > 0.05,
                'interpretation': 'CV scores are normally distributed' if shapiro_p > 0.05 else 'CV scores are not normally distributed'
            }
        except Exception as e:
            tests['normality_test'] = {'error': str(e)}
        
        # Stability test (coefficient of variation)
        cv_coefficient = np.std(test_scores) / np.mean(test_scores) if np.mean(test_scores) > 0 else np.inf
        tests['stability_analysis'] = {
            'coefficient_of_variation': float(cv_coefficient),
            'stability_interpretation': self._interpret_stability(cv_coefficient)
        }
        
        return tests
    
    def _calculate_overfitting_ci(self, train_scores: np.ndarray, test_scores: np.ndarray) -> Dict[str, float]:
        """Calculate confidence interval for overfitting metric"""
        overfitting_differences = train_scores - test_scores
        
        bootstrap_diffs = []
        for _ in range(self.n_bootstrap):
            indices = np.random.choice(len(overfitting_differences), size=len(overfitting_differences), replace=True)
            bootstrap_diffs.append(np.mean(overfitting_differences[indices]))
        
        alpha = 1 - self.confidence_level
        ci_lower = np.percentile(bootstrap_diffs, (alpha / 2) * 100)
        ci_upper = np.percentile(bootstrap_diffs, (1 - alpha / 2) * 100)
        
        return {
            'lower': float(ci_lower),
            'upper': float(ci_upper),
            'confidence_level': self.confidence_level
        }
    
    def _interpret_stability(self, cv_coefficient: float) -> str:
        """Interpret CV stability based on coefficient of variation"""
        if cv_coefficient < 0.1:
            return "Very stable performance across folds"
        elif cv_coefficient < 0.2:
            return "Stable performance across folds"
        elif cv_coefficient < 0.3:
            return "Moderately stable performance across folds"
        else:
            return "Unstable performance across folds - consider data quality or model complexity"


class StatisticalModelComparison:
    """Advanced statistical comparison between models with comprehensive uncertainty analysis"""
    
    def __init__(self, 
                 confidence_level: float = 0.95,
                 n_bootstrap: int = 1000,
                 random_state: int = 42):
        self.confidence_level = confidence_level
        self.n_bootstrap = n_bootstrap
        self.random_state = random_state
        self.bootstrap_analyzer = BootstrapAnalyzer(n_bootstrap, confidence_level, random_state)
        
        if STRUCTURED_LOGGING_AVAILABLE:
            self.logger = MLOpsLoggers.get_logger('model_comparison')
        else:
            self.logger = logging.getLogger(__name__)
    
    def comprehensive_model_comparison(self,
                                     models: Dict[str, Any],
                                     X: np.ndarray,
                                     y: np.ndarray,
                                     metrics: Dict[str, Callable],
                                     cv_folds: int = 5) -> Dict[str, Any]:
        """
        Comprehensive pairwise model comparison with statistical significance testing
        """
        
        from sklearn.model_selection import cross_val_predict, StratifiedKFold
        
        cv_strategy = StratifiedKFold(n_splits=cv_folds, shuffle=True, random_state=self.random_state)
        
        # Get CV predictions for each model
        model_predictions = {}
        model_cv_scores = {}
        
        for model_name, model in models.items():
            # Cross-validation predictions
            cv_pred = cross_val_predict(model, X, y, cv=cv_strategy, method='predict_proba')
            if cv_pred.ndim == 2 and cv_pred.shape[1] == 2:
                cv_pred = cv_pred[:, 1]  # Binary classification probabilities
            
            model_predictions[model_name] = cv_pred
            
            # Calculate CV scores for each metric
            model_cv_scores[model_name] = {}
            for metric_name, metric_func in metrics.items():
                try:
                    if 'roc_auc' in metric_name.lower():
                        scores = [metric_func(y[test], cv_pred[test]) for train, test in cv_strategy.split(X, y)]
                    else:
                        pred_labels = (cv_pred > 0.5).astype(int)
                        scores = [metric_func(y[test], pred_labels[test]) for train, test in cv_strategy.split(X, y)]
                    
                    model_cv_scores[model_name][metric_name] = np.array(scores)
                except Exception as e:
                    self.logger.warning(f"Failed to calculate {metric_name} for {model_name}: {e}")
        
        # Pairwise comparisons
        comparison_results = {}
        model_names = list(models.keys())
        
        for i, model1_name in enumerate(model_names):
            for j, model2_name in enumerate(model_names[i+1:], i+1):
                comparison_key = f"{model1_name}_vs_{model2_name}"
                
                comparison_results[comparison_key] = self._pairwise_comparison(
                    model1_name, model2_name,
                    model_cv_scores[model1_name],
                    model_cv_scores[model2_name],
                    model_predictions[model1_name],
                    model_predictions[model2_name],
                    y, metrics
                )
        
        # Overall ranking
        ranking = self._rank_models(model_cv_scores, primary_metric='f1')
        
        return {
            'individual_model_results': model_cv_scores,
            'pairwise_comparisons': comparison_results,
            'model_ranking': ranking,
            'analysis_metadata': {
                'cv_folds': cv_folds,
                'confidence_level': self.confidence_level,
                'n_bootstrap': self.n_bootstrap,
                'models_compared': len(models),
                'metrics_evaluated': list(metrics.keys())
            }
        }
    
    def _pairwise_comparison(self,
                           model1_name: str, model2_name: str,
                           scores1: Dict[str, np.ndarray],
                           scores2: Dict[str, np.ndarray],
                           pred1: np.ndarray, pred2: np.ndarray,
                           y_true: np.ndarray,
                           metrics: Dict[str, Callable]) -> Dict[str, Any]:
        """Detailed pairwise comparison between two models"""
        
        comparison = {
            'models': [model1_name, model2_name],
            'metric_comparisons': {},
            'overall_comparison': {}
        }
        
        significant_improvements = 0
        total_comparisons = 0
        
        # Compare each metric
        for metric_name in scores1.keys():
            if metric_name in scores2:
                metric_comparison = self._compare_metric_scores(
                    scores1[metric_name], scores2[metric_name], metric_name
                )
                
                comparison['metric_comparisons'][metric_name] = metric_comparison
                
                if metric_comparison['statistical_tests']['significant_improvement']:
                    significant_improvements += 1
                total_comparisons += 1
        
        # Bootstrap comparison of predictions
        if len(pred1) == len(pred2) == len(y_true):
            bootstrap_comparison = self._bootstrap_prediction_comparison(
                y_true, pred1, pred2, metrics
            )
            comparison['bootstrap_prediction_comparison'] = bootstrap_comparison
        
        # Overall decision
        improvement_rate = significant_improvements / total_comparisons if total_comparisons > 0 else 0
        
        comparison['overall_comparison'] = {
            'significant_improvements': significant_improvements,
            'total_comparisons': total_comparisons,
            'improvement_rate': float(improvement_rate),
            'recommendation': self._make_comparison_recommendation(improvement_rate, significant_improvements)
        }
        
        return comparison
    
    def _compare_metric_scores(self, scores1: np.ndarray, scores2: np.ndarray, metric_name: str) -> Dict[str, Any]:
        """Statistical comparison of metric scores between two models"""
        
        # Basic statistics
        mean1, mean2 = np.mean(scores1), np.mean(scores2)
        std1, std2 = np.std(scores1), np.std(scores2)
        improvement = mean2 - mean1
        
        # Statistical tests
        statistical_tests = {}
        
        # Paired t-test
        try:
            t_stat, p_value = stats.ttest_rel(scores2, scores1)
            statistical_tests['paired_ttest'] = {
                't_statistic': float(t_stat),
                'p_value': float(p_value),
                'significant': p_value < 0.05,
                'effect_direction': 'improvement' if t_stat > 0 else 'degradation'
            }
        except Exception as e:
            statistical_tests['paired_ttest'] = {'error': str(e)}
        
        # Wilcoxon signed-rank test (non-parametric)
        try:
            w_stat, w_p = stats.wilcoxon(scores2, scores1, alternative='two-sided')
            statistical_tests['wilcoxon'] = {
                'statistic': float(w_stat),
                'p_value': float(w_p),
                'significant': w_p < 0.05
            }
        except Exception as e:
            statistical_tests['wilcoxon'] = {'error': str(e)}
        
        # Bootstrap confidence interval for difference
        bootstrap_diffs = []
        for _ in range(200):  # Reduced for performance
            indices = np.random.choice(len(scores1), size=len(scores1), replace=True)
            diff = np.mean(scores2[indices]) - np.mean(scores1[indices])
            bootstrap_diffs.append(diff)
        
        alpha = 1 - self.confidence_level
        ci_lower = np.percentile(bootstrap_diffs, (alpha / 2) * 100)
        ci_upper = np.percentile(bootstrap_diffs, (1 - alpha / 2) * 100)
        
        # Effect size (Cohen's d)
        pooled_std = np.sqrt((std1**2 + std2**2) / 2)
        cohens_d = improvement / pooled_std if pooled_std > 0 else 0
        
        return {
            'metric_name': metric_name,
            'mean_scores': {'model1': float(mean1), 'model2': float(mean2)},
            'improvement': float(improvement),
            'relative_improvement_percent': float((improvement / mean1) * 100) if mean1 > 0 else 0,
            'confidence_interval': {'lower': float(ci_lower), 'upper': float(ci_upper)},
            'effect_size_cohens_d': float(cohens_d),
            'statistical_tests': statistical_tests,
            'significant_improvement': improvement > 0 and ci_lower > 0,
            'interpretation': self._interpret_effect_size(cohens_d)
        }
    
    def _bootstrap_prediction_comparison(self, y_true: np.ndarray, pred1: np.ndarray, pred2: np.ndarray, metrics: Dict[str, Callable]) -> Dict[str, Any]:
        """Bootstrap comparison of model predictions"""
        
        bootstrap_results = {}
        
        for metric_name, metric_func in metrics.items():
            try:
                # For probabilistic metrics, use probabilities directly
                if 'roc_auc' in metric_name.lower():
                    comparison = self.bootstrap_analyzer.bootstrap_model_comparison(
                        y_true, pred1, pred2, metric_func, "Model1", "Model2"
                    )
                else:
                    # For classification metrics, convert to class predictions
                    pred1_class = (pred1 > 0.5).astype(int)
                    pred2_class = (pred2 > 0.5).astype(int)
                    comparison = self.bootstrap_analyzer.bootstrap_model_comparison(
                        y_true, pred1_class, pred2_class, metric_func, "Model1", "Model2"
                    )
                
                bootstrap_results[metric_name] = comparison
                
            except Exception as e:
                bootstrap_results[metric_name] = {'error': str(e)}
        
        return bootstrap_results
    
    def _interpret_effect_size(self, cohens_d: float) -> str:
        """Interpret Cohen's d effect size"""
        abs_d = abs(cohens_d)
        if abs_d < 0.2:
            return "Negligible effect"
        elif abs_d < 0.5:
            return "Small effect"
        elif abs_d < 0.8:
            return "Medium effect"
        else:
            return "Large effect"
    
    def _make_comparison_recommendation(self, improvement_rate: float, significant_improvements: int) -> str:
        """Make recommendation based on comparison results"""
        if improvement_rate >= 0.75 and significant_improvements >= 2:
            return "Strong recommendation for model upgrade"
        elif improvement_rate >= 0.5 and significant_improvements >= 1:
            return "Moderate recommendation for model upgrade"
        elif improvement_rate > 0:
            return "Weak recommendation for model upgrade - consider other factors"
        else:
            return "No recommendation for model upgrade"
    
    def _rank_models(self, model_cv_scores: Dict[str, Dict[str, np.ndarray]], primary_metric: str = 'f1') -> Dict[str, Any]:
        """Rank models based on CV performance with statistical significance"""
        
        # Calculate mean scores for primary metric
        model_means = {}
        for model_name, scores in model_cv_scores.items():
            if primary_metric in scores:
                model_means[model_name] = np.mean(scores[primary_metric])
        
        # Sort by mean performance
        sorted_models = sorted(model_means.items(), key=lambda x: x[1], reverse=True)
        
        # Statistical significance testing for ranking
        ranking_with_significance = []
        for i, (model_name, mean_score) in enumerate(sorted_models):
            rank_info = {
                'rank': i + 1,
                'model_name': model_name,
                'mean_score': float(mean_score),
                'significantly_better_than': []
            }
            
            # Compare with lower-ranked models
            for j, (other_model, other_score) in enumerate(sorted_models[i+1:], i+1):
                try:
                    t_stat, p_value = stats.ttest_rel(
                        model_cv_scores[model_name][primary_metric],
                        model_cv_scores[other_model][primary_metric]
                    )
                    
                    if p_value < 0.05 and t_stat > 0:
                        rank_info['significantly_better_than'].append({
                            'model': other_model,
                            'p_value': float(p_value),
                            'rank': j + 1
                        })
                except Exception:
                    continue
            
            ranking_with_significance.append(rank_info)
        
        return {
            'ranking': ranking_with_significance,
            'primary_metric': primary_metric,
            'ranking_method': 'mean_cv_score_with_significance_testing'
        }


# Integration utilities for existing codebase
class MLOpsStatisticalAnalyzer:
    """Comprehensive statistical analyzer for MLOps pipeline"""
    
    def __init__(self, 
                 confidence_level: float = 0.95,
                 n_bootstrap: int = 1000,
                 random_state: int = 42):
        
        self.confidence_level = confidence_level
        self.n_bootstrap = n_bootstrap
        self.random_state = random_state
        
        # Initialize analyzers
        self.bootstrap_analyzer = BootstrapAnalyzer(n_bootstrap, confidence_level, random_state)
        self.feature_analyzer = FeatureImportanceAnalyzer(n_bootstrap, confidence_level, random_state)
        self.cv_analyzer = AdvancedCrossValidation(5, n_bootstrap, confidence_level, random_state)
        self.comparison_analyzer = StatisticalModelComparison(confidence_level, n_bootstrap, random_state)
        
        if STRUCTURED_LOGGING_AVAILABLE:
            self.logger = MLOpsLoggers.get_logger('statistical_analyzer')
        else:
            self.logger = logging.getLogger(__name__)
    
    def comprehensive_model_analysis(self,
                                   models: Dict[str, Any],
                                   X_train: np.ndarray,
                                   X_test: np.ndarray,
                                   y_train: np.ndarray,
                                   y_test: np.ndarray,
                                   feature_names: List[str] = None) -> Dict[str, Any]:
        """
        Perform comprehensive statistical analysis of models including:
        - Bootstrap confidence intervals for performance metrics
        - Feature importance stability analysis
        - Advanced cross-validation with statistical testing
        - Pairwise model comparisons with significance testing
        """
        
        from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, roc_auc_score
        
        # Define metrics
        def accuracy_func(y_true, y_pred): return accuracy_score(y_true, y_pred)
        def f1_func(y_true, y_pred): return f1_score(y_true, y_pred, average='weighted')
        def precision_func(y_true, y_pred): return precision_score(y_true, y_pred, average='weighted')
        def recall_func(y_true, y_pred): return recall_score(y_true, y_pred, average='weighted')
        def roc_auc_func(y_true, y_pred_proba): return roc_auc_score(y_true, y_pred_proba)
        
        metrics = {
            'accuracy': accuracy_func,
            'f1': f1_func,
            'precision': precision_func,
            'recall': recall_func,
            'roc_auc': roc_auc_func
        }
        
        analysis_results = {
            'analysis_timestamp': datetime.now().isoformat(),
            'configuration': {
                'confidence_level': self.confidence_level,
                'n_bootstrap': self.n_bootstrap,
                'models_analyzed': list(models.keys())
            },
            'individual_model_analysis': {},
            'comparative_analysis': {},
            'feature_importance_analysis': {},
            'recommendations': []
        }
        
        # Individual model analysis
        for model_name, model in models.items():
            try:
                # Fit model
                model.fit(X_train, y_train)
                
                # Get predictions
                y_pred = model.predict(X_test)
                y_pred_proba = model.predict_proba(X_test)[:, 1] if hasattr(model, 'predict_proba') else y_pred
                
                # Bootstrap analysis for each metric
                bootstrap_results = {}
                for metric_name, metric_func in metrics.items():
                    if metric_name == 'roc_auc':
                        result = self.bootstrap_analyzer.bootstrap_metric(
                            y_test, y_pred_proba, metric_func
                        )
                    else:
                        result = self.bootstrap_analyzer.bootstrap_metric(
                            y_test, y_pred, metric_func
                        )
                    bootstrap_results[metric_name] = result.to_dict()
                
                # Cross-validation analysis
                cv_analysis = self.cv_analyzer.comprehensive_cv_analysis(
                    model, X_train, y_train, metrics
                )
                
                # Feature importance analysis (if supported)
                feature_analysis = {}
                if hasattr(model, 'feature_importances_') or hasattr(model, 'coef_'):
                    try:
                        feature_analysis = self.feature_analyzer.analyze_importance_stability(
                            model, X_train, y_train, feature_names
                        )
                    except Exception as e:
                        feature_analysis = {'error': str(e)}
                
                analysis_results['individual_model_analysis'][model_name] = {
                    'bootstrap_metrics': bootstrap_results,
                    'cross_validation_analysis': cv_analysis,
                    'feature_importance_analysis': feature_analysis
                }
                
            except Exception as e:
                self.logger.error(f"Analysis failed for model {model_name}: {e}")
                analysis_results['individual_model_analysis'][model_name] = {'error': str(e)}
        
        # Comparative analysis
        if len(models) > 1:
            try:
                comparative_results = self.comparison_analyzer.comprehensive_model_comparison(
                    models, X_train, y_train, metrics
                )
                analysis_results['comparative_analysis'] = comparative_results
                
                # Generate recommendations based on comparison
                recommendations = self._generate_analysis_recommendations(comparative_results)
                analysis_results['recommendations'].extend(recommendations)
                
            except Exception as e:
                analysis_results['comparative_analysis'] = {'error': str(e)}
        
        return analysis_results
    
    def _generate_analysis_recommendations(self, comparative_results: Dict[str, Any]) -> List[Dict[str, str]]:
        """Generate actionable recommendations based on statistical analysis"""
        recommendations = []
        
        # Model ranking recommendations
        if 'model_ranking' in comparative_results:
            ranking = comparative_results['model_ranking']['ranking']
            if len(ranking) > 0:
                best_model = ranking[0]
                significantly_better_count = len(best_model.get('significantly_better_than', []))
                
                if significantly_better_count > 0:
                    recommendations.append({
                        'type': 'model_selection',
                        'priority': 'high',
                        'message': f"Model '{best_model['model_name']}' shows statistically significant improvement over {significantly_better_count} other model(s)",
                        'action': f"Consider promoting {best_model['model_name']} to production"
                    })
        
        # Feature importance recommendations
        for model_name, analysis in comparative_results.get('individual_model_analysis', {}).items():
            feature_analysis = analysis.get('feature_importance_analysis', {})
            if 'stability_ranking' in feature_analysis:
                unstable_features = [
                    name for name, stats in feature_analysis['feature_importance_analysis'].items()
                    if stats['metadata']['coefficient_of_variation'] > 0.5
                ]
                
                if unstable_features:
                    recommendations.append({
                        'type': 'feature_engineering',
                        'priority': 'medium',
                        'message': f"Model '{model_name}' has {len(unstable_features)} unstable features with high variance",
                        'action': "Review feature engineering process and consider feature selection"
                    })
        
        # Cross-validation recommendations
        for model_name, analysis in comparative_results.get('individual_model_analysis', {}).items():
            cv_analysis = analysis.get('cross_validation_analysis', {})
            for metric_name, metric_analysis in cv_analysis.get('metrics_analysis', {}).items():
                overfitting_analysis = metric_analysis.get('overfitting_analysis', {})
                if overfitting_analysis.get('overfitting_score', 0) > 0.1:  # 10% overfitting threshold
                    recommendations.append({
                        'type': 'model_complexity',
                        'priority': 'medium',
                        'message': f"Model '{model_name}' shows significant overfitting in {metric_name}",
                        'action': "Consider regularization or reducing model complexity"
                    })
        
        return recommendations
    
    def save_analysis_report(self, analysis_results: Dict[str, Any], file_path: Path = None):
        """Save comprehensive analysis report"""
        if file_path is None:
            file_path = Path("/tmp/logs/statistical_analysis_report.json")
        
        file_path.parent.mkdir(parents=True, exist_ok=True)
        
        with open(file_path, 'w') as f:
            json.dump(analysis_results, f, indent=2, default=str)
        
        self.logger.info(f"Statistical analysis report saved to {file_path}")
        return file_path


# Integration functions for existing codebase
def integrate_statistical_analysis_with_retrain():
    """Integration example for retrain.py"""
    analyzer = MLOpsStatisticalAnalyzer()
    
    # Example usage in retraining context
    def enhanced_model_comparison(models_dict, X_train, X_test, y_train, y_test):
        """Enhanced model comparison with comprehensive statistical analysis"""
        
        analysis_results = analyzer.comprehensive_model_analysis(
            models_dict, X_train, X_test, y_train, y_test
        )
        
        # Extract promotion decision based on statistical significance
        comparative_analysis = analysis_results.get('comparative_analysis', {})
        ranking = comparative_analysis.get('model_ranking', {}).get('ranking', [])
        
        if ranking:
            best_model = ranking[0]
            promotion_confidence = len(best_model.get('significantly_better_than', [])) / (len(ranking) - 1) if len(ranking) > 1 else 1.0
            
            return {
                'recommended_model': best_model['model_name'],
                'statistical_confidence': promotion_confidence,
                'analysis_results': analysis_results,
                'promote_candidate': promotion_confidence > 0.5
            }
        
        return {'error': 'No valid model ranking available'}
    
    return enhanced_model_comparison

def integrate_statistical_analysis_with_train():
    """Integration example for train.py"""
    analyzer = MLOpsStatisticalAnalyzer()
    
    def enhanced_ensemble_validation(individual_models, ensemble_model, X, y):
        """Enhanced ensemble validation with bootstrap confidence intervals"""
        
        models_to_compare = {**individual_models, 'ensemble': ensemble_model}
        
        # Perform comprehensive statistical analysis
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
        
        analysis_results = analyzer.comprehensive_model_analysis(
            models_to_compare, X_train, X_test, y_train, y_test
        )
        
        # Check if ensemble is statistically significantly better
        comparative_analysis = analysis_results.get('comparative_analysis', {})
        ensemble_comparisons = {
            k: v for k, v in comparative_analysis.get('pairwise_comparisons', {}).items()
            if 'ensemble' in k
        }
        
        significant_improvements = 0
        total_comparisons = len(ensemble_comparisons)
        
        for comparison in ensemble_comparisons.values():
            if comparison.get('overall_comparison', {}).get('improvement_rate', 0) > 0.5:
                significant_improvements += 1
        
        ensemble_confidence = significant_improvements / total_comparisons if total_comparisons > 0 else 0
        
        return {
            'use_ensemble': ensemble_confidence > 0.5,
            'ensemble_confidence': ensemble_confidence,
            'statistical_analysis': analysis_results
        }
    
    return enhanced_ensemble_validation


if __name__ == "__main__":
    # Example usage and testing
    print("Testing advanced statistical analysis system...")
    
    # Generate sample data for testing
    np.random.seed(42)
    X = np.random.randn(200, 10)
    y = (X[:, 0] + X[:, 1] + np.random.randn(200) * 0.1 > 0).astype(int)
    
    # Create sample models
    from sklearn.linear_model import LogisticRegression
    from sklearn.ensemble import RandomForestClassifier
    
    models = {
        'logistic_regression': LogisticRegression(random_state=42),
        'random_forest': RandomForestClassifier(n_estimators=50, random_state=42)
    }
    
    # Test comprehensive analysis
    analyzer = MLOpsStatisticalAnalyzer(n_bootstrap=100)  # Reduced for testing
    
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
    
    print("Running comprehensive statistical analysis...")
    results = analyzer.comprehensive_model_analysis(
        models, X_train, X_test, y_train, y_test
    )
    
    print(f"Analysis completed for {len(models)} models")
    print(f"Generated {len(results['recommendations'])} recommendations")
    
    # Test bootstrap analysis
    bootstrap_analyzer = BootstrapAnalyzer(n_bootstrap=100)
    
    from sklearn.metrics import f1_score
    def f1_metric(y_true, y_pred):
        return f1_score(y_true, y_pred, average='weighted')
    
    model = LogisticRegression(random_state=42)
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    
    bootstrap_result = bootstrap_analyzer.bootstrap_metric(y_test, y_pred, f1_metric)
    print(f"Bootstrap F1 confidence interval: {bootstrap_result.confidence_interval}")
    
    print("Advanced statistical analysis system test completed successfully!")