File size: 35,355 Bytes
5cb20e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
# utils/uncertainty_quantification.py
# Enhanced uncertainty quantification integration for existing MLOps pipeline

import numpy as np
from typing import Dict, Any, Tuple, Optional, List, Callable
from pathlib import Path
import json
from datetime import datetime
from dataclasses import dataclass
import logging

# Import statistical analysis components
try:
    from .statistical_analysis import (
        MLOpsStatisticalAnalyzer, BootstrapAnalyzer, 
        FeatureImportanceAnalyzer, StatisticalResult
    )
    STATISTICAL_ANALYSIS_AVAILABLE = True
except ImportError:
    STATISTICAL_ANALYSIS_AVAILABLE = False
    logging.warning("Statistical analysis components not available")

# Import structured logging
try:
    from .structured_logger import StructuredLogger, EventType, MLOpsLoggers
    STRUCTURED_LOGGING_AVAILABLE = True
except ImportError:
    STRUCTURED_LOGGING_AVAILABLE = False
    import logging


@dataclass
class UncertaintyReport:
    """Comprehensive uncertainty quantification report"""
    model_performance_uncertainty: Dict[str, Any]
    feature_importance_uncertainty: Dict[str, Any] 
    cross_validation_uncertainty: Dict[str, Any]
    prediction_uncertainty: Dict[str, Any]
    model_comparison_uncertainty: Dict[str, Any]
    recommendations: List[Dict[str, Any]]
    confidence_level: float
    analysis_timestamp: str
    
    def to_dict(self) -> Dict[str, Any]:
        """Convert to dictionary for serialization"""
        return {
            'model_performance_uncertainty': self.model_performance_uncertainty,
            'feature_importance_uncertainty': self.feature_importance_uncertainty,
            'cross_validation_uncertainty': self.cross_validation_uncertainty,
            'prediction_uncertainty': self.prediction_uncertainty,
            'model_comparison_uncertainty': self.model_comparison_uncertainty,
            'recommendations': self.recommendations,
            'confidence_level': self.confidence_level,
            'analysis_timestamp': self.analysis_timestamp
        }
    
    def save_report(self, file_path: Path = None) -> Path:
        """Save uncertainty report to file"""
        if file_path is None:
            file_path = Path("/tmp/logs/uncertainty_report.json")
        
        file_path.parent.mkdir(parents=True, exist_ok=True)
        
        with open(file_path, 'w') as f:
            json.dump(self.to_dict(), f, indent=2, default=str)
        
        return file_path


class EnhancedUncertaintyQuantifier:
    """Enhanced uncertainty quantification for MLOps pipeline integration"""
    
    def __init__(self, 
                 confidence_level: float = 0.95,
                 n_bootstrap: int = 1000,
                 random_state: int = 42):
        
        self.confidence_level = confidence_level
        self.n_bootstrap = n_bootstrap
        self.random_state = random_state
        
        if STATISTICAL_ANALYSIS_AVAILABLE:
            self.statistical_analyzer = MLOpsStatisticalAnalyzer(
                confidence_level, n_bootstrap, random_state
            )
            self.bootstrap_analyzer = BootstrapAnalyzer(n_bootstrap, confidence_level, random_state)
            self.feature_analyzer = FeatureImportanceAnalyzer(n_bootstrap, confidence_level, random_state)
        else:
            raise ImportError("Statistical analysis components required for uncertainty quantification")
        
        if STRUCTURED_LOGGING_AVAILABLE:
            self.logger = MLOpsLoggers.get_logger('uncertainty_quantification')
        else:
            self.logger = logging.getLogger(__name__)
    
    def quantify_model_uncertainty(self, 
                                  model, 
                                  X_train: np.ndarray, 
                                  X_test: np.ndarray,
                                  y_train: np.ndarray, 
                                  y_test: np.ndarray,
                                  model_name: str = "model") -> Dict[str, Any]:
        """Quantify uncertainty in model performance metrics"""
        
        from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, roc_auc_score
        
        # Fit model
        model.fit(X_train, y_train)
        y_pred = model.predict(X_test)
        y_pred_proba = model.predict_proba(X_test)[:, 1] if hasattr(model, 'predict_proba') else y_pred
        
        # Define metric functions
        metrics = {
            'accuracy': lambda y_true, y_pred: accuracy_score(y_true, y_pred),
            'f1': lambda y_true, y_pred: f1_score(y_true, y_pred, average='weighted'),
            'precision': lambda y_true, y_pred: precision_score(y_true, y_pred, average='weighted'),
            'recall': lambda y_true, y_pred: recall_score(y_true, y_pred, average='weighted'),
            'roc_auc': lambda y_true, y_pred_proba: roc_auc_score(y_true, y_pred_proba)
        }
        
        # Bootstrap confidence intervals for each metric
        uncertainty_results = {}
        
        for metric_name, metric_func in metrics.items():
            try:
                if metric_name == 'roc_auc':
                    result = self.bootstrap_analyzer.bootstrap_metric(
                        y_test, y_pred_proba, metric_func
                    )
                else:
                    result = self.bootstrap_analyzer.bootstrap_metric(
                        y_test, y_pred, metric_func
                    )
                
                uncertainty_results[metric_name] = {
                    'point_estimate': result.point_estimate,
                    'confidence_interval': result.confidence_interval,
                    'margin_of_error': result.margin_of_error(),
                    'relative_uncertainty': result.margin_of_error() / result.point_estimate if result.point_estimate > 0 else np.inf,
                    'confidence_level': result.confidence_level,
                    'sample_size': result.sample_size,
                    'metadata': result.metadata
                }
                
            except Exception as e:
                uncertainty_results[metric_name] = {'error': str(e)}
        
        # Overall uncertainty assessment
        valid_uncertainties = [
            r['relative_uncertainty'] for r in uncertainty_results.values() 
            if isinstance(r, dict) and 'relative_uncertainty' in r and np.isfinite(r['relative_uncertainty'])
        ]
        
        overall_assessment = {
            'model_name': model_name,
            'average_relative_uncertainty': float(np.mean(valid_uncertainties)) if valid_uncertainties else np.inf,
            'max_relative_uncertainty': float(np.max(valid_uncertainties)) if valid_uncertainties else np.inf,
            'uncertainty_level': self._classify_uncertainty_level(np.mean(valid_uncertainties)) if valid_uncertainties else 'unknown'
        }
        
        return {
            'metric_uncertainties': uncertainty_results,
            'overall_assessment': overall_assessment,
            'analysis_metadata': {
                'confidence_level': self.confidence_level,
                'n_bootstrap': self.n_bootstrap,
                'test_size': len(y_test),
                'train_size': len(y_train)
            }
        }
    
    def quantify_feature_importance_uncertainty(self,
                                              model,
                                              X: np.ndarray,
                                              y: np.ndarray,
                                              feature_names: List[str] = None) -> Dict[str, Any]:
        """Quantify uncertainty in feature importance rankings"""
        
        try:
            # Analyze feature importance stability
            stability_results = self.feature_analyzer.analyze_importance_stability(
                model, X, y, feature_names
            )
            
            # Extract uncertainty metrics
            feature_uncertainties = {}
            unstable_features = []
            
            for feature_name, analysis in stability_results['feature_importance_analysis'].items():
                cv = analysis['metadata']['coefficient_of_variation']
                
                feature_uncertainties[feature_name] = {
                    'importance_mean': analysis['point_estimate'],
                    'importance_ci': analysis['confidence_interval'],
                    'coefficient_of_variation': cv,
                    'stability_rank': analysis['metadata']['stability_rank'],
                    'uncertainty_level': self._classify_feature_uncertainty(cv)
                }
                
                # Flag highly uncertain features
                if cv > 0.5:  # 50% coefficient of variation threshold
                    unstable_features.append({
                        'feature': feature_name,
                        'cv': cv,
                        'reason': 'High variance in importance across bootstrap samples'
                    })
            
            return {
                'feature_importance_uncertainties': feature_uncertainties,
                'stability_ranking': stability_results['stability_ranking'],
                'unstable_features': unstable_features,
                'uncertainty_summary': {
                    'total_features': len(feature_uncertainties),
                    'unstable_features_count': len(unstable_features),
                    'uncertainty_rate': len(unstable_features) / len(feature_uncertainties) if feature_uncertainties else 0
                },
                'analysis_metadata': stability_results['analysis_metadata']
            }
            
        except Exception as e:
            return {'error': str(e)}
    
    def quantify_cross_validation_uncertainty(self,
                                            model,
                                            X: np.ndarray,
                                            y: np.ndarray,
                                            cv_folds: int = 5) -> Dict[str, Any]:
        """Quantify uncertainty in cross-validation results"""
        
        from sklearn.model_selection import cross_val_score, StratifiedKFold
        from sklearn.metrics import f1_score, accuracy_score
        
        try:
            # Define CV strategy
            cv_strategy = StratifiedKFold(n_splits=cv_folds, shuffle=True, random_state=self.random_state)
            
            # Comprehensive CV analysis with uncertainty quantification
            metrics = {
                'accuracy': lambda y_true, y_pred: accuracy_score(y_true, y_pred),
                'f1': lambda y_true, y_pred: f1_score(y_true, y_pred, average='weighted')
            }
            
            cv_analysis = self.statistical_analyzer.cv_analyzer.comprehensive_cv_analysis(
                model, X, y, metrics
            )
            
            # Extract uncertainty information
            cv_uncertainties = {}
            
            for metric_name, analysis in cv_analysis['metrics_analysis'].items():
                test_scores = analysis['test_scores']
                
                # Calculate additional uncertainty metrics
                cv_coefficient = test_scores['std'] / test_scores['mean'] if test_scores['mean'] > 0 else np.inf
                
                cv_uncertainties[metric_name] = {
                    'cv_mean': test_scores['mean'],
                    'cv_std': test_scores['std'],
                    'cv_scores': test_scores['scores'],
                    'coefficient_of_variation': cv_coefficient,
                    'confidence_interval': test_scores['confidence_interval'],
                    'stability_level': self._classify_cv_stability(cv_coefficient),
                    'overfitting_analysis': analysis.get('overfitting_analysis', {}),
                    'statistical_tests': analysis.get('statistical_tests', {})
                }
            
            return {
                'cv_uncertainties': cv_uncertainties,
                'cv_metadata': {
                    'cv_folds': cv_folds,
                    'sample_size': len(X),
                    'confidence_level': self.confidence_level
                },
                'stability_assessment': self._assess_cv_stability(cv_uncertainties)
            }
            
        except Exception as e:
            return {'error': str(e)}
    
    def quantify_prediction_uncertainty(self,
                                      model,
                                      X_new: np.ndarray,
                                      n_bootstrap_predictions: int = 100) -> Dict[str, Any]:
        """Quantify uncertainty in individual predictions using bootstrap"""
        
        try:
            # This requires the original training data - simplified version for demonstration
            # In practice, you'd need to store bootstrap models or use other uncertainty methods
            
            if hasattr(model, 'predict_proba'):
                # For probabilistic models, use prediction probabilities as uncertainty proxy
                probabilities = model.predict_proba(X_new)
                predictions = model.predict(X_new)
                
                # Calculate prediction uncertainty metrics
                prediction_uncertainties = []
                
                for i, (pred, proba) in enumerate(zip(predictions, probabilities)):
                    max_proba = np.max(proba)
                    entropy = -np.sum(proba * np.log(proba + 1e-8))  # Add small constant for numerical stability
                    
                    uncertainty_info = {
                        'prediction': int(pred),
                        'prediction_probability': float(max_proba),
                        'entropy': float(entropy),
                        'uncertainty_level': self._classify_prediction_uncertainty(max_proba),
                        'all_class_probabilities': proba.tolist()
                    }
                    
                    prediction_uncertainties.append(uncertainty_info)
                
                # Overall prediction uncertainty summary
                avg_entropy = np.mean([p['entropy'] for p in prediction_uncertainties])
                avg_confidence = np.mean([p['prediction_probability'] for p in prediction_uncertainties])
                
                uncertain_predictions = sum(1 for p in prediction_uncertainties if p['uncertainty_level'] in ['high', 'very_high'])
                
                return {
                    'individual_predictions': prediction_uncertainties,
                    'uncertainty_summary': {
                        'total_predictions': len(prediction_uncertainties),
                        'uncertain_predictions': uncertain_predictions,
                        'uncertainty_rate': uncertain_predictions / len(prediction_uncertainties),
                        'average_entropy': float(avg_entropy),
                        'average_confidence': float(avg_confidence)
                    }
                }
            else:
                return {
                    'error': 'Model does not support probability predictions - uncertainty quantification limited'
                }
                
        except Exception as e:
            return {'error': str(e)}
    
    def comprehensive_uncertainty_analysis(self,
                                         models: Dict[str, Any],
                                         X_train: np.ndarray,
                                         X_test: np.ndarray,
                                         y_train: np.ndarray,
                                         y_test: np.ndarray,
                                         feature_names: List[str] = None) -> UncertaintyReport:
        """Perform comprehensive uncertainty analysis across all components"""
        
        # Model performance uncertainty
        model_uncertainties = {}
        for model_name, model in models.items():
            model_uncertainties[model_name] = self.quantify_model_uncertainty(
                model, X_train, X_test, y_train, y_test, model_name
            )
        
        # Feature importance uncertainty (using best model)
        best_model_name = min(model_uncertainties.keys(), 
                             key=lambda k: model_uncertainties[k]['overall_assessment']['average_relative_uncertainty'])
        best_model = models[best_model_name]
        
        feature_uncertainty = self.quantify_feature_importance_uncertainty(
            best_model, X_train, y_train, feature_names
        )
        
        # Cross-validation uncertainty
        cv_uncertainty = self.quantify_cross_validation_uncertainty(
            best_model, X_train, y_train
        )
        
        # Prediction uncertainty on test set
        prediction_uncertainty = self.quantify_prediction_uncertainty(
            best_model, X_test
        )
        
        # Model comparison uncertainty
        if len(models) > 1:
            comparison_uncertainty = self._quantify_model_comparison_uncertainty(
                models, X_train, y_train
            )
        else:
            comparison_uncertainty = {'single_model': 'No comparison available'}
        
        # Generate recommendations
        recommendations = self._generate_uncertainty_recommendations(
            model_uncertainties, feature_uncertainty, cv_uncertainty, prediction_uncertainty
        )
        
        return UncertaintyReport(
            model_performance_uncertainty=model_uncertainties,
            feature_importance_uncertainty=feature_uncertainty,
            cross_validation_uncertainty=cv_uncertainty,
            prediction_uncertainty=prediction_uncertainty,
            model_comparison_uncertainty=comparison_uncertainty,
            recommendations=recommendations,
            confidence_level=self.confidence_level,
            analysis_timestamp=datetime.now().isoformat()
        )
    
    def _quantify_model_comparison_uncertainty(self,
                                             models: Dict[str, Any],
                                             X: np.ndarray,
                                             y: np.ndarray) -> Dict[str, Any]:
        """Quantify uncertainty in model comparisons"""
        
        try:
            # Use comprehensive model comparison with statistical analysis
            from sklearn.metrics import f1_score, accuracy_score
            
            metrics = {
                'f1': lambda y_true, y_pred: f1_score(y_true, y_pred, average='weighted'),
                'accuracy': lambda y_true, y_pred: accuracy_score(y_true, y_pred)
            }
            
            comparison_results = self.statistical_analyzer.comparison_analyzer.comprehensive_model_comparison(
                models, X, y, metrics
            )
            
            # Extract uncertainty information from comparisons
            comparison_uncertainties = {}
            
            for comparison_name, comparison_data in comparison_results.get('pairwise_comparisons', {}).items():
                overall_comp = comparison_data.get('overall_comparison', {})
                
                comparison_uncertainties[comparison_name] = {
                    'improvement_rate': overall_comp.get('improvement_rate', 0),
                    'significant_improvements': overall_comp.get('significant_improvements', 0),
                    'total_comparisons': overall_comp.get('total_comparisons', 0),
                    'recommendation': overall_comp.get('recommendation', 'No recommendation'),
                    'uncertainty_level': self._classify_comparison_uncertainty(overall_comp.get('improvement_rate', 0))
                }
            
            # Overall comparison uncertainty
            ranking = comparison_results.get('model_ranking', {})
            ranking_uncertainty = self._assess_ranking_uncertainty(ranking)
            
            return {
                'pairwise_comparison_uncertainties': comparison_uncertainties,
                'ranking_uncertainty': ranking_uncertainty,
                'comparison_metadata': comparison_results.get('analysis_metadata', {})
            }
            
        except Exception as e:
            return {'error': str(e)}
    
    def _classify_uncertainty_level(self, relative_uncertainty: float) -> str:
        """Classify overall uncertainty level"""
        if relative_uncertainty < 0.05:
            return 'very_low'
        elif relative_uncertainty < 0.1:
            return 'low'
        elif relative_uncertainty < 0.2:
            return 'medium'
        elif relative_uncertainty < 0.5:
            return 'high'
        else:
            return 'very_high'
    
    def _classify_feature_uncertainty(self, cv: float) -> str:
        """Classify feature importance uncertainty"""
        if cv < 0.2:
            return 'stable'
        elif cv < 0.5:
            return 'moderately_stable'
        elif cv < 1.0:
            return 'unstable'
        else:
            return 'very_unstable'
    
    def _classify_cv_stability(self, cv_coefficient: float) -> str:
        """Classify cross-validation stability"""
        if cv_coefficient < 0.1:
            return 'very_stable'
        elif cv_coefficient < 0.2:
            return 'stable'
        elif cv_coefficient < 0.3:
            return 'moderately_stable'
        else:
            return 'unstable'
    
    def _classify_prediction_uncertainty(self, max_probability: float) -> str:
        """Classify individual prediction uncertainty"""
        if max_probability > 0.95:
            return 'very_low'
        elif max_probability > 0.8:
            return 'low'
        elif max_probability > 0.6:
            return 'medium'
        elif max_probability > 0.5:
            return 'high'
        else:
            return 'very_high'
    
    def _classify_comparison_uncertainty(self, improvement_rate: float) -> str:
        """Classify model comparison uncertainty"""
        if improvement_rate > 0.8:
            return 'very_confident'
        elif improvement_rate > 0.6:
            return 'confident'
        elif improvement_rate > 0.4:
            return 'moderate'
        elif improvement_rate > 0.2:
            return 'uncertain'
        else:
            return 'very_uncertain'
    
    def _assess_cv_stability(self, cv_uncertainties: Dict[str, Any]) -> Dict[str, Any]:
        """Assess overall cross-validation stability"""
        
        stability_levels = [info.get('stability_level', 'unknown') for info in cv_uncertainties.values()]
        
        stable_count = sum(1 for level in stability_levels if level in ['very_stable', 'stable'])
        
        return {
            'stable_metrics': stable_count,
            'total_metrics': len(stability_levels),
            'stability_rate': stable_count / len(stability_levels) if stability_levels else 0,
            'overall_stability': 'stable' if stable_count / len(stability_levels) > 0.6 else 'unstable'
        }
    
    def _assess_ranking_uncertainty(self, ranking: Dict[str, Any]) -> Dict[str, Any]:
        """Assess uncertainty in model ranking"""
        
        if not ranking or 'ranking' not in ranking:
            return {'uncertainty': 'unknown', 'reason': 'No ranking data available'}
        
        ranking_data = ranking['ranking']
        
        if len(ranking_data) < 2:
            return {'uncertainty': 'low', 'reason': 'Only one model'}
        
        # Check if top model is significantly better than others
        top_model = ranking_data[0]
        significantly_better_count = len(top_model.get('significantly_better_than', []))
        total_other_models = len(ranking_data) - 1
        
        if significantly_better_count == total_other_models:
            return {
                'uncertainty': 'low',
                'reason': 'Top model significantly better than all others',
                'confidence': 'high'
            }
        elif significantly_better_count > total_other_models / 2:
            return {
                'uncertainty': 'medium',
                'reason': 'Top model significantly better than some others',
                'confidence': 'medium'
            }
        else:
            return {
                'uncertainty': 'high',
                'reason': 'No clear statistical winner among models',
                'confidence': 'low'
            }
    
    def _generate_uncertainty_recommendations(self,
                                            model_uncertainties: Dict[str, Any],
                                            feature_uncertainty: Dict[str, Any],
                                            cv_uncertainty: Dict[str, Any],
                                            prediction_uncertainty: Dict[str, Any]) -> List[Dict[str, Any]]:
        """Generate actionable recommendations based on uncertainty analysis"""
        
        recommendations = []
        
        # Model performance uncertainty recommendations
        for model_name, uncertainty in model_uncertainties.items():
            overall_assessment = uncertainty.get('overall_assessment', {})
            uncertainty_level = overall_assessment.get('uncertainty_level', 'unknown')
            
            if uncertainty_level in ['high', 'very_high']:
                recommendations.append({
                    'type': 'model_performance',
                    'priority': 'high',
                    'model': model_name,
                    'issue': f'High performance uncertainty ({uncertainty_level})',
                    'action': 'Collect more training data or consider model regularization',
                    'details': {
                        'avg_relative_uncertainty': overall_assessment.get('average_relative_uncertainty', 0),
                        'max_relative_uncertainty': overall_assessment.get('max_relative_uncertainty', 0)
                    }
                })
        
        # Feature importance uncertainty recommendations
        unstable_features = feature_uncertainty.get('unstable_features', [])
        if unstable_features:
            recommendations.append({
                'type': 'feature_importance',
                'priority': 'medium',
                'issue': f'{len(unstable_features)} features have unstable importance rankings',
                'action': 'Review feature engineering and consider feature selection',
                'details': {
                    'unstable_features': [f['feature'] for f in unstable_features],
                    'uncertainty_rate': feature_uncertainty.get('uncertainty_summary', {}).get('uncertainty_rate', 0)
                }
            })
        
        # Cross-validation stability recommendations
        cv_stability = cv_uncertainty.get('stability_assessment', {})
        if cv_stability.get('overall_stability') == 'unstable':
            recommendations.append({
                'type': 'cross_validation',
                'priority': 'medium',
                'issue': 'Unstable cross-validation performance',
                'action': 'Check data quality, consider stratified sampling, or increase CV folds',
                'details': {
                    'stability_rate': cv_stability.get('stability_rate', 0),
                    'stable_metrics': cv_stability.get('stable_metrics', 0),
                    'total_metrics': cv_stability.get('total_metrics', 0)
                }
            })
        
        # Prediction uncertainty recommendations
        pred_summary = prediction_uncertainty.get('uncertainty_summary', {})
        uncertainty_rate = pred_summary.get('uncertainty_rate', 0)
        
        if uncertainty_rate > 0.2:  # More than 20% uncertain predictions
            recommendations.append({
                'type': 'prediction_uncertainty',
                'priority': 'high',
                'issue': f'{uncertainty_rate:.1%} of predictions have high uncertainty',
                'action': 'Consider implementing prediction confidence thresholds or human review for uncertain cases',
                'details': {
                    'uncertain_predictions': pred_summary.get('uncertain_predictions', 0),
                    'total_predictions': pred_summary.get('total_predictions', 0),
                    'average_confidence': pred_summary.get('average_confidence', 0)
                }
            })
        
        return recommendations


# Integration functions for existing codebase
def integrate_uncertainty_quantification_with_retrain():
    """Integration function for retrain.py"""
    
    def enhanced_model_comparison_with_uncertainty(models_dict, X_train, X_test, y_train, y_test):
        """Enhanced model comparison with comprehensive uncertainty quantification"""
        
        try:
            quantifier = EnhancedUncertaintyQuantifier()
            
            # Perform comprehensive uncertainty analysis
            uncertainty_report = quantifier.comprehensive_uncertainty_analysis(
                models_dict, X_train, X_test, y_train, y_test
            )
            
            # Save uncertainty report
            report_path = uncertainty_report.save_report()
            
            # Extract promotion decision based on uncertainty analysis
            model_uncertainties = uncertainty_report.model_performance_uncertainty
            
            # Find model with lowest uncertainty
            best_model_name = min(
                model_uncertainties.keys(),
                key=lambda k: model_uncertainties[k]['overall_assessment']['average_relative_uncertainty']
            )
            
            best_uncertainty = model_uncertainties[best_model_name]['overall_assessment']['average_relative_uncertainty']
            uncertainty_level = model_uncertainties[best_model_name]['overall_assessment']['uncertainty_level']
            
            # Decision logic incorporating uncertainty
            promote_candidate = (
                uncertainty_level in ['very_low', 'low', 'medium'] and
                len(uncertainty_report.recommendations) <= 2
            )
            
            return {
                'recommended_model': best_model_name,
                'uncertainty_level': uncertainty_level,
                'average_uncertainty': best_uncertainty,
                'uncertainty_report': uncertainty_report.to_dict(),
                'report_path': str(report_path),
                'promote_candidate': promote_candidate,
                'recommendations': uncertainty_report.recommendations
            }
            
        except Exception as e:
            return {'error': f'Uncertainty quantification failed: {str(e)}'}
    
    return enhanced_model_comparison_with_uncertainty

def integrate_uncertainty_quantification_with_train():
    """Integration function for train.py"""
    
    def enhanced_ensemble_validation_with_uncertainty(individual_models, ensemble_model, X, y):
        """Enhanced ensemble validation with uncertainty quantification"""
        
        try:
            from sklearn.model_selection import train_test_split
            
            quantifier = EnhancedUncertaintyQuantifier()
            
            # Prepare models for analysis
            models_to_analyze = {**individual_models, 'ensemble': ensemble_model}
            
            # Split data for uncertainty analysis
            X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
            
            # Perform uncertainty analysis
            uncertainty_report = quantifier.comprehensive_uncertainty_analysis(
                models_to_analyze, X_train, X_test, y_train, y_test
            )
            
            # Determine ensemble recommendation based on uncertainty
            ensemble_uncertainty = uncertainty_report.model_performance_uncertainty.get('ensemble', {})
            ensemble_uncertainty_level = ensemble_uncertainty.get('overall_assessment', {}).get('uncertainty_level', 'unknown')
            
            # Compare ensemble uncertainty with individual models
            individual_uncertainties = [
                uncertainty_report.model_performance_uncertainty[name]['overall_assessment']['average_relative_uncertainty']
                for name in individual_models.keys()
                if name in uncertainty_report.model_performance_uncertainty
            ]
            
            ensemble_avg_uncertainty = ensemble_uncertainty.get('overall_assessment', {}).get('average_relative_uncertainty', np.inf)
            best_individual_uncertainty = min(individual_uncertainties) if individual_uncertainties else np.inf
            
            # Decision logic
            use_ensemble = (
                ensemble_uncertainty_level in ['very_low', 'low', 'medium'] and
                ensemble_avg_uncertainty <= best_individual_uncertainty * 1.1  # Allow 10% increase in uncertainty
            )
            
            return {
                'use_ensemble': use_ensemble,
                'ensemble_uncertainty_level': ensemble_uncertainty_level,
                'ensemble_avg_uncertainty': ensemble_avg_uncertainty,
                'best_individual_uncertainty': best_individual_uncertainty,
                'uncertainty_analysis': uncertainty_report.to_dict(),
                'recommendations': uncertainty_report.recommendations
            }
            
        except Exception as e:
            return {'error': f'Uncertainty quantification failed: {str(e)}'}
    
    return enhanced_ensemble_validation_with_uncertainty


if __name__ == "__main__":
    # Example usage and testing
    print("Testing enhanced uncertainty quantification system...")
    
    # Generate sample data
    np.random.seed(42)
    X = np.random.randn(300, 15)
    y = (X[:, 0] + X[:, 1] + np.random.randn(300) * 0.2 > 0).astype(int)
    
    # Create sample models
    from sklearn.linear_model import LogisticRegression
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import train_test_split
    
    models = {
        'logistic_regression': LogisticRegression(random_state=42),
        'random_forest': RandomForestClassifier(n_estimators=50, random_state=42)
    }
    
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
    
    # Test comprehensive uncertainty analysis
    if STATISTICAL_ANALYSIS_AVAILABLE:
        quantifier = EnhancedUncertaintyQuantifier(n_bootstrap=100)  # Reduced for testing
        
        print("Running comprehensive uncertainty analysis...")
        uncertainty_report = quantifier.comprehensive_uncertainty_analysis(
            models, X_train, X_test, y_train, y_test
        )
        
        print(f"Generated {len(uncertainty_report.recommendations)} uncertainty-based recommendations")
        print(f"Overall confidence level: {uncertainty_report.confidence_level}")
        
        # Save report
        report_path = uncertainty_report.save_report()
        print(f"Uncertainty report saved to: {report_path}")
        
        print("Enhanced uncertainty quantification system test completed successfully!")
        
    else:
        print("Statistical analysis components not available - skipping test")