File size: 30,188 Bytes
323d67d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
from diffusers.models.attention_processor import Attention
from diffusers.models.embeddings import ImageProjection, MultiIPAdapterImageProjection
import torch
import torch.nn as nn
import torch.nn.functional as F
import copy
from .resampler import Resampler
from typing import Optional
from diffusers.image_processor import IPAdapterMaskProcessor
import math
import warnings
from pulid.encoders_transformer import IDFormer


def save_ip_adapter(unet, path):
    state_dict = {}
    if (
        hasattr(unet, "encoder_hid_proj")
        and unet.encoder_hid_proj is not None
        and isinstance(unet.encoder_hid_proj, torch.nn.Module)
    ):
        state_dict["encoder_hid_proj"] = unet.encoder_hid_proj.state_dict()

    for name, module in unet.attn_processors.items():
        if isinstance(module, torch.nn.Module):
            state_dict[name] = module.state_dict()

    torch.save(state_dict, path)


def load_ip_adapter(
    unet,
    path=None,
    clip_embeddings_dim=1280,
    cross_attention_dim=2048,
    num_image_text_embeds=4,
    attn_blocks=["down", "mid", "up"],
):
    if path is None:
        state_dict = None
    else:
        state_dict = torch.load(path, map_location="cpu")
        clip_embeddings_dim = state_dict["encoder_hid_proj"][
            "image_embeds.weight"
        ].shape[-1]
        num_image_text_embeds = (
            state_dict["encoder_hid_proj"]["image_embeds.weight"].shape[0]
            // cross_attention_dim
        )

    if not hasattr(unet, "encoder_hid_proj") or unet.encoder_hid_proj is None:
        unet.encoder_hid_proj = ImageProjection(
            cross_attention_dim=cross_attention_dim,
            image_embed_dim=clip_embeddings_dim,
            num_image_text_embeds=num_image_text_embeds,
        ).to(unet.device, unet.dtype)
    if state_dict is not None:
        unet.encoder_hid_proj.load_state_dict(state_dict["encoder_hid_proj"])

    for name, module in unet.named_modules():
        if (
            "attn2" in name
            and isinstance(module, Attention)
            and any([attn in name for attn in attn_blocks])
        ):
            if not isinstance(module.processor, IPAttnProcessor2_0):
                module.set_processor(
                    IPAttnProcessor2_0(
                        hidden_size=module.query_dim,
                        cross_attention_dim=cross_attention_dim,
                    ).to(unet.device, unet.dtype)
                )
            if state_dict is not None:
                module.processor.load_state_dict(state_dict[f"{name}.processor"])
            else:
                module.processor.to_k_ip.load_state_dict(module.to_k.state_dict())
                module.processor.to_v_ip.load_state_dict(module.to_v.state_dict())


def parse_clip_embeddings_dim(
    path,
    state_dict,
):
    if "pulid" in path:
        return None
    else:
        return state_dict["encoder_hid_proj"]["image_embeds.weight"].shape[-1]


def parse_num_image_text_embeds(path, state_dict, cross_attention_dim=2048):
    if "pulid" in path:
        return None
    else:
        return (
            state_dict["encoder_hid_proj"]["image_embeds.weight"].shape[0]
            // cross_attention_dim
        )


def parse_encoder_hid_proj_module(
    path=None,
    cross_attention_dim=2048,
    image_embed_dim=None,
    num_image_text_embeds=None,
):
    if "pulid" in path:
        return IDFormer()
    else:
        return ImageProjection(
            cross_attention_dim=cross_attention_dim,
            image_embed_dim=image_embed_dim,
            num_image_text_embeds=num_image_text_embeds,
        )


def load_multi_ip_adapter(
    unet,
    paths=None,
    clip_embeddings_dim=[1280],
    cross_attention_dim=2048,
    num_image_text_embeds=[4],
):
    if paths is None:
        state_dict = None
    else:
        state_dict = [torch.load(path, map_location="cpu") for path in paths]
        clip_embeddings_dim = [
            parse_clip_embeddings_dim(path=single_path, state_dict=single_state_dict)
            for single_path, single_state_dict in zip(paths, state_dict)
        ]
        num_image_text_embeds = [
            parse_num_image_text_embeds(
                path=single_path,
                state_dict=single_state_dict,
                cross_attention_dim=unet.config.cross_attention_dim,
            )
            for single_path, single_state_dict in zip(paths, state_dict)
        ]

    if not hasattr(unet, "encoder_hid_proj") or unet.encoder_hid_proj is None:
        unet.encoder_hid_proj = MultiIPAdapterImageProjection(
            [
                parse_encoder_hid_proj_module(
                    path=single_path,
                    cross_attention_dim=unet.config.cross_attention_dim,
                    image_embed_dim=single_clip_embeddings_dim,
                    num_image_text_embeds=single_num_image_text_embeds,
                ).to(unet.device, unet.dtype)
                for single_path, single_clip_embeddings_dim, single_num_image_text_embeds in zip(
                    paths, clip_embeddings_dim, num_image_text_embeds
                )
            ]
        ).to(unet.device, unet.dtype)

    if state_dict is not None:
        for single_encoder_hid_proj, single_state_dict in zip(
            unet.encoder_hid_proj.image_projection_layers, state_dict
        ):
            single_encoder_hid_proj.load_state_dict(
                single_state_dict["encoder_hid_proj"]
            )

    for name, module in unet.named_modules():
        if "attn2" in name and isinstance(module, Attention):
            if not isinstance(module.processor, MultiIPAttnProcessor2_0):
                module.set_processor(
                    MultiIPAttnProcessor2_0(
                        hidden_size=module.query_dim,
                        cross_attention_dim=unet.config.cross_attention_dim,
                        num_tokens=num_image_text_embeds,
                    ).to(unet.device, unet.dtype)
                )
            if state_dict is not None:
                for (
                    to_k_ip,
                    to_v_ip,
                    single_state_dict,
                ) in zip(
                    module.processor.to_k_ip,
                    module.processor.to_v_ip,
                    state_dict,
                ):
                    if f"{name}.processor" in single_state_dict.keys():
                        to_k_ip.weight = nn.Parameter(
                            single_state_dict[f"{name}.processor"]["to_k_ip.weight"]
                        )
                        to_v_ip.weight = nn.Parameter(
                            single_state_dict[f"{name}.processor"]["to_v_ip.weight"]
                        )
            module.processor = module.processor.to(unet.device, unet.dtype)


def load_ip_adapter_plus(
    unet,
    path=None,
    embed_dims=1664,
    depth=4,
    dim_head=64,
    heads=12,
    num_queries=32,
    ff_mult=4,
    attn_blocks=["down", "mid", "up"],
):
    if path is not None:
        state_dict = torch.load(path)
    else:
        state_dict = None
    if not hasattr(unet, "encoder_hid_proj") or unet.encoder_hid_proj is None:
        unet.encoder_hid_proj = Resampler(
            dim=unet.config.cross_attention_dim,
            depth=depth,
            dim_head=dim_head,
            heads=heads,
            num_queries=num_queries,
            embedding_dim=embed_dims,
            output_dim=unet.config.cross_attention_dim,
            ff_mult=ff_mult,
        ).to(unet.device, unet.dtype)
    if state_dict is not None:
        unet.encoder_hid_proj.load_state_dict(state_dict["encoder_hid_proj"])

    for name, module in unet.named_modules():
        if (
            "attn2" in name
            and isinstance(module, Attention)
            and any([attn in name for attn in attn_blocks])
        ):
            if not isinstance(module.processor, IPAttnProcessor2_0):
                module.set_processor(
                    IPAttnProcessor2_0(
                        hidden_size=module.query_dim,
                        cross_attention_dim=unet.config.cross_attention_dim,
                    ).to(unet.device, unet.dtype)
                )
            if state_dict is not None and f"{name}.processor" in state_dict.keys():
                module.processor.load_state_dict(state_dict[f"{name}.processor"])
            else:
                module.processor.to_k_ip.load_state_dict(module.to_k.state_dict())
                module.processor.to_v_ip.load_state_dict(module.to_v.state_dict())


def set_ip_hidden_states(unet, image_embeds):
    for name, module in unet.attn_processors.items():
        if isinstance(module, IPAttnProcessor2_0) or isinstance(
            module, MultiIPAttnProcessor2_0
        ):
            module.ip_hidden_states = image_embeds.clone()


def set_multi_ip_hidden_states(unet, image_embeds):
    for name, module in unet.attn_processors.items():
        if isinstance(module, IPAttnProcessor2_0) or isinstance(
            module, MultiIPAttnProcessor2_0
        ):
            module.ip_hidden_states = image_embeds


def set_multi_ip_attn_masks(unet, attn_masks):
    for name, module in unet.attn_processors.items():
        if isinstance(module, IPAttnProcessor2_0) or isinstance(
            module, MultiIPAttnProcessor2_0
        ):
            module.ip_hidden_states = attn_masks


def clear_ip_hidden_states(model):
    for name, module in model.named_modules():
        if isinstance(module, IPAttnProcessor2_0):
            module.ip_hidden_states = None


def set_ip_adapter_scale(unet, scale=1.0, attn_blocks=["down", "mid", "up"]):
    for name, module in unet.named_modules():
        if isinstance(module, IPAttnProcessor2_0) and any(
            tarhet_module in name for tarhet_module in attn_blocks
        ):
            module.scale = scale


def downsample(
    mask: torch.Tensor, batch_size: int, num_queries: int, value_embed_dim: int
):
    """
    Downsamples the provided mask tensor to match the expected dimensions for scaled dot-product attention. If the
    aspect ratio of the mask does not match the aspect ratio of the output image, a warning is issued.

    Args:
        mask (`torch.Tensor`):
            The input mask tensor generated with `IPAdapterMaskProcessor.preprocess()`.
        batch_size (`int`):
            The batch size.
        num_queries (`int`):
            The number of queries.
        value_embed_dim (`int`):
            The dimensionality of the value embeddings.

    Returns:
        `torch.Tensor`:
            The downsampled mask tensor.

    """
    o_h = mask.shape[2]
    o_w = mask.shape[3]
    ratio = o_w / o_h
    mask_h = int(math.sqrt(num_queries / ratio))
    mask_h = int(mask_h) + int((num_queries % int(mask_h)) != 0)
    mask_w = num_queries // mask_h

    mask_downsample = F.interpolate(mask, size=(mask_h, mask_w), mode="bicubic")

    # Repeat batch_size times
    if mask_downsample.shape[0] < batch_size:
        mask_downsample = mask_downsample.repeat(batch_size, 1, 1, 1)

    mask_downsample = mask_downsample.view(mask_downsample.shape[0], -1)

    downsampled_area = mask_h * mask_w
    # If the output image and the mask do not have the same aspect ratio, tensor shapes will not match
    # Pad tensor if downsampled_mask.shape[1] is smaller than num_queries
    if downsampled_area < num_queries:
        warnings.warn(
            "The aspect ratio of the mask does not match the aspect ratio of the output image. "
            "Please update your masks or adjust the output size for optimal performance.",
            UserWarning,
        )
        mask_downsample = F.pad(
            mask_downsample, (0, num_queries - mask_downsample.shape[1]), value=0.0
        )
    # Discard last embeddings if downsampled_mask.shape[1] is bigger than num_queries
    if downsampled_area > num_queries:
        warnings.warn(
            "The aspect ratio of the mask does not match the aspect ratio of the output image. "
            "Please update your masks or adjust the output size for optimal performance.",
            UserWarning,
        )
        mask_downsample = mask_downsample[:, :num_queries]

    # Repeat last dimension to match SDPA output shape
    mask_downsample = mask_downsample.view(
        mask_downsample.shape[0], mask_downsample.shape[1], 1
    ).repeat(1, 1, value_embed_dim)

    return mask_downsample


class IPAttnProcessor2_0(torch.nn.Module):
    r"""
    Attention processor for IP-Adapater for PyTorch 2.0.
    Args:
        hidden_size (`int`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`):
            The number of channels in the `encoder_hidden_states`.
        scale (`float`, defaults to 1.0):
            the weight scale of image prompt.
        num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
            The context length of the image features.
    """

    def __init__(
        self,
        hidden_size,
        cross_attention_dim=None,
        scale=1.0,
        num_tokens=4,
        use_align_sem_and_layout_loss=False,
    ):
        super().__init__()

        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.scale = scale
        self.num_tokens = num_tokens

        self.to_k_ip = nn.Linear(
            cross_attention_dim or hidden_size, hidden_size, bias=False
        )
        self.to_v_ip = nn.Linear(
            cross_attention_dim or hidden_size, hidden_size, bias=False
        )
        self.ip_hidden_states = None

        self.use_align_sem_and_layout_loss = use_align_sem_and_layout_loss
        if self.use_align_sem_and_layout_loss:
            self.align_sem_loss = None
            self.align_layout_loss = None
            self.cache_query = None
            self.cache_attn_weights = None

    def __call__(
        self,
        attn,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        temb=None,
        ip_adapter_masks: Optional[torch.FloatTensor] = None,
        *args,
        **kwargs,
    ):
        residual = hidden_states

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(
                batch_size, channel, height * width
            ).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape
            if encoder_hidden_states is None
            else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(
                attention_mask, sequence_length, batch_size
            )
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(
                batch_size, attn.heads, -1, attention_mask.shape[-1]
            )

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
                1, 2
            )

        query = attn.to_q(hidden_states)

        if attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(
                encoder_hidden_states
            )

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )
        if self.use_align_sem_and_layout_loss:
            if self.cache_query is None:
                self.cache_query = query.clone().detach()
                self.cache_attn_weights = (key @ query.transpose(-2, -1)) / math.sqrt(
                    query.size(-1)
                )
                self.cache_attn_weights = torch.softmax(self.cache_attn_weights, dim=-1)
            else:
                self.attn_weights = (key @ query.transpose(-2, -1)) / math.sqrt(
                    query.size(-1)
                )
                self.query = query
                self.attn_weights = torch.softmax(self.attn_weights, dim=-1)

        hidden_states = hidden_states.transpose(1, 2).reshape(
            batch_size, -1, attn.heads * head_dim
        )
        hidden_states = hidden_states.to(query.dtype)

        if self.scale != 0.0:
            # for ip-adapter
            ip_key = self.to_k_ip(self.ip_hidden_states).to(dtype=query.dtype)
            ip_value = self.to_v_ip(self.ip_hidden_states).to(dtype=query.dtype)

            ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(
                1, 2
            )

            # the output of sdp = (batch, num_heads, seq_len, head_dim)
            # TODO: add support for attn.scale when we move to Torch 2.1
            ip_hidden_states = F.scaled_dot_product_attention(
                query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
            )
            # with torch.no_grad():
            #     self.attn_map = query @ ip_key.transpose(-2, -1).softmax(dim=-1)
            # print(self.attn_map.shape)

            ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(
                batch_size, -1, attn.heads * head_dim
            )
            ip_hidden_states = ip_hidden_states.to(query.dtype)

            if ip_adapter_masks is not None:
                mask_downsample = downsample(
                    ip_adapter_masks,
                    batch_size,
                    ip_hidden_states.shape[1],
                    ip_hidden_states.shape[2],
                )

                mask_downsample = mask_downsample.to(
                    dtype=query.dtype, device=query.device
                )

                ip_hidden_states = ip_hidden_states * mask_downsample

            hidden_states = hidden_states + self.scale * ip_hidden_states

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(
                batch_size, channel, height, width
            )

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


def set_ortho(unet, ortho):
    for name, module in unet.attn_processors.items():
        if isinstance(module, IPAttnProcessor2_0) or isinstance(
            module, MultiIPAttnProcessor2_0
        ):
            module.ortho = ortho


def set_num_zero(unet, num_zero):
    for name, module in unet.attn_processors.items():
        if isinstance(module, IPAttnProcessor2_0) or isinstance(
            module, MultiIPAttnProcessor2_0
        ):
            module.num_zero = num_zero


class MultiIPAttnProcessor2_0(torch.nn.Module):
    r"""
    Attention processor for IP-Adapater for PyTorch 2.0.

    Args:
        hidden_size (`int`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`):
            The number of channels in the `encoder_hidden_states`.
        num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`):
            The context length of the image features.
        scale (`float` or `List[float]`, defaults to 1.0):
            the weight scale of image prompt.
    """

    def __init__(
        self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0
    ):
        super().__init__()

        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                f"{self.__class__.__name__} requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim

        if not isinstance(num_tokens, (tuple, list)):
            num_tokens = [num_tokens]
        self.num_tokens = num_tokens

        if not isinstance(scale, list):
            scale = [scale] * len(num_tokens)
        if len(scale) != len(num_tokens):
            raise ValueError(
                "`scale` should be a list of integers with the same length as `num_tokens`."
            )
        self.scale = scale

        self.to_k_ip = nn.ModuleList(
            [
                nn.Linear(cross_attention_dim, hidden_size, bias=False)
                for _ in range(len(num_tokens))
            ]
        )
        self.to_v_ip = nn.ModuleList(
            [
                nn.Linear(cross_attention_dim, hidden_size, bias=False)
                for _ in range(len(num_tokens))
            ]
        )
        self.ip_hidden_states = None
        self.num_zero = [None] * (len(num_tokens))
        self.ortho = [None] * len(num_tokens)

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        temb: Optional[torch.FloatTensor] = None,
        scale: float = 1.0,
        ip_adapter_masks: Optional[torch.FloatTensor] = None,
    ):
        residual = hidden_states

        ip_hidden_states = self.ip_hidden_states

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(
                batch_size, channel, height * width
            ).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape
            if encoder_hidden_states is None
            else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(
                attention_mask, sequence_length, batch_size
            )
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(
                batch_size, attn.heads, -1, attention_mask.shape[-1]
            )

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
                1, 2
            )

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(
                encoder_hidden_states
            )

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(
            batch_size, -1, attn.heads * head_dim
        )
        hidden_states = hidden_states.to(query.dtype)

        if ip_adapter_masks is not None:
            if (
                not isinstance(ip_adapter_masks, torch.Tensor)
                or ip_adapter_masks.ndim != 4
            ):
                raise ValueError(
                    " ip_adapter_mask should be a tensor with shape [num_ip_adapter, 1, height, width]."
                    " Please use `IPAdapterMaskProcessor` to preprocess your mask"
                )
            if len(ip_adapter_masks) != len(self.scale):
                raise ValueError(
                    f"Number of ip_adapter_masks ({len(ip_adapter_masks)}) must match number of IP-Adapters ({len(self.scale)})"
                )
        else:
            ip_adapter_masks = [None] * len(self.scale)

        # for ip-adapter
        for (
            current_ip_hidden_states,
            scale,
            to_k_ip,
            to_v_ip,
            mask,
            num_zero,
            ortho,
        ) in zip(
            ip_hidden_states,
            self.scale,
            self.to_k_ip,
            self.to_v_ip,
            ip_adapter_masks,
            self.num_zero,
            self.ortho,
        ):
            if scale == 0:
                continue
            if num_zero is not None:
                zero_tensor = torch.zeros(
                    (
                        current_ip_hidden_states.size(0),
                        num_zero,
                        current_ip_hidden_states.size(-1),
                    ),
                    dtype=current_ip_hidden_states.dtype,
                    device=current_ip_hidden_states.device,
                )
                current_ip_hidden_states = torch.concat(
                    [current_ip_hidden_states, zero_tensor], dim=1
                )
            ip_key = to_k_ip(current_ip_hidden_states)
            ip_value = to_v_ip(current_ip_hidden_states)

            ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(
                1, 2
            )

            # the output of sdp = (batch, num_heads, seq_len, head_dim)
            # TODO: add support for attn.scale when we move to Torch 2.1
            current_ip_hidden_states = F.scaled_dot_product_attention(
                query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
            )

            current_ip_hidden_states = current_ip_hidden_states.transpose(1, 2).reshape(
                batch_size, -1, attn.heads * head_dim
            )
            current_ip_hidden_states = current_ip_hidden_states.to(query.dtype)

            if mask is not None:
                mask_downsample = IPAdapterMaskProcessor.downsample(
                    mask,
                    batch_size,
                    current_ip_hidden_states.shape[1],
                    current_ip_hidden_states.shape[2],
                )

                mask_downsample = mask_downsample.to(
                    dtype=query.dtype, device=query.device
                )

                current_ip_hidden_states = current_ip_hidden_states * mask_downsample
            if ortho is None:
                hidden_states = hidden_states + scale * current_ip_hidden_states
            elif ortho == "ortho":
                orig_dtype = hidden_states.dtype
                hidden_states = hidden_states.to(torch.float32)
                current_ip_hidden_states = current_ip_hidden_states.to(torch.float32)
                projection = (
                    torch.sum(
                        (hidden_states * current_ip_hidden_states), dim=-2, keepdim=True
                    )
                    / torch.sum((hidden_states * hidden_states), dim=-2, keepdim=True)
                    * hidden_states
                )
                orthogonal = current_ip_hidden_states - projection
                hidden_states = hidden_states + current_ip_hidden_states * orthogonal
                hidden_states = hidden_states.to(orig_dtype)
            elif ortho == "ortho_v2":
                orig_dtype = hidden_states.dtype
                hidden_states = hidden_states.to(torch.float32)
                current_ip_hidden_states = current_ip_hidden_states.to(torch.float32)
                attn_map = query @ ip_key.transpose(-2, -1)
                attn_mean = attn_map.softmax(dim=-1).mean(dim=1)
                attn_mean = attn_mean[:, :, :5].sum(dim=-1, keepdim=True)
                projection = (
                    torch.sum(
                        (hidden_states * current_ip_hidden_states), dim=-2, keepdim=True
                    )
                    / torch.sum((hidden_states * hidden_states), dim=-2, keepdim=True)
                    * hidden_states
                )
                orthogonal = current_ip_hidden_states + (attn_mean - 1) * projection
                hidden_states = hidden_states + current_ip_hidden_states * orthogonal
                hidden_states = hidden_states.to(orig_dtype)
            else:
                raise ValueError(f"{ortho} not supported")

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(
                batch_size, channel, height, width
            )

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states