from typing import Callable, List, Optional, Tuple, Union from diffusers.models.attention_processor import Attention from diffusers.models.embeddings import ( ImageProjection, Resampler, ) import torch import torch.nn as nn import torch.nn.functional as F import copy class IPAdapterAttnProcessor2_0(torch.nn.Module): r""" Attention processor for IP-Adapter for PyTorch 2.0. Args: hidden_size (`int`): The hidden size of the attention layer. cross_attention_dim (`int`): The number of channels in the `encoder_hidden_states`. num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`): The context length of the image features. scale (`float` or `List[float]`, defaults to 1.0): the weight scale of image prompt. """ def __init__( self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0 ): super().__init__() if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( f"{self.__class__.__name__} requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim if not isinstance(num_tokens, (tuple, list)): num_tokens = [num_tokens] self.num_tokens = num_tokens if not isinstance(scale, list): scale = [scale] * len(num_tokens) if len(scale) != len(num_tokens): raise ValueError( "`scale` should be a list of integers with the same length as `num_tokens`." ) self.scale = scale self.to_q_ip = nn.Linear(hidden_size, hidden_size, bias=False) self.to_k_ip = nn.Linear(cross_attention_dim, hidden_size, bias=False) self.to_v_ip = nn.Linear(cross_attention_dim, hidden_size, bias=False) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, scale: float = 1.0, ip_adapter_masks: Optional[torch.Tensor] = None, ): residual = hidden_states # separate ip_hidden_states from encoder_hidden_states if encoder_hidden_states is not None: if isinstance(encoder_hidden_states, tuple): encoder_hidden_states, ip_hidden_states = encoder_hidden_states ip_hidden_states = ip_hidden_states[0] if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view( batch_size, channel, height * width ).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask( attention_mask, sequence_length, batch_size ) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view( batch_size, attn.heads, -1, attention_mask.shape[-1] ) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( 1, 2 ) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states( encoder_hidden_states ) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) hidden_states = hidden_states.to(query.dtype) ip_query = self.to_q_ip(hidden_states) ip_key = self.to_k_ip(ip_hidden_states) ip_value = self.to_v_ip(ip_hidden_states) ip_query = ip_query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 current_ip_hidden_states = F.scaled_dot_product_attention( ip_query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False, ) current_ip_hidden_states = current_ip_hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) current_ip_hidden_states = current_ip_hidden_states.to(query.dtype) hidden_states = hidden_states + scale * current_ip_hidden_states # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape( batch_size, channel, height, width ) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states def save_ip_adapter(unet, path): state_dict = {} if ( hasattr(unet, "encoder_hid_proj") and unet.encoder_hid_proj is not None and isinstance(unet.encoder_hid_proj, torch.nn.Module) ): state_dict["encoder_hid_proj"] = unet.encoder_hid_proj.state_dict() for name, module in unet.attn_processors.items(): if isinstance(module, torch.nn.Module): state_dict[name] = module.state_dict() torch.save(state_dict, path) def load_ip_adapter( unet, path=None, clip_embeddings_dim=1280, cross_attention_dim=2048, num_image_text_embeds=4, ): if path is None: state_dict = None else: state_dict = torch.load(path, map_location="cpu") clip_embeddings_dim = state_dict["encoder_hid_proj"][ "image_projection_layers.0.image_embeds.weight" ].shape[-1] num_image_text_embeds = ( state_dict["encoder_hid_proj"][ "image_projection_layers.0.image_embeds.weight" ].shape[0] // cross_attention_dim ) if not hasattr(unet, "encoder_hid_proj") or unet.encoder_hid_proj is None: unet.encoder_hid_proj = MultiIPAdapterImageProjection( [ ImageProjection( cross_attention_dim=cross_attention_dim, image_embed_dim=clip_embeddings_dim, num_image_text_embeds=num_image_text_embeds, ) ] ).to(unet.device, unet.dtype) if state_dict is not None: unet.encoder_hid_proj.load_state_dict(state_dict["encoder_hid_proj"]) unet.config.encoder_hid_dim_type = "ip_image_proj" for name, module in unet.named_modules(): if "attn2" in name and isinstance(module, Attention): if not isinstance(module.processor, IPAdapterAttnProcessor2_0): module.set_processor( IPAdapterAttnProcessor2_0( hidden_size=module.query_dim, cross_attention_dim=cross_attention_dim, scale=1.0, ).to(unet.device, unet.dtype) ) if state_dict is not None: module.processor.load_state_dict(state_dict[f"{name}.processor"]) def set_ip_adapter_scale(unet, scale=1.0): for name, module in unet.named_modules(): if isinstance(module, IPAdapterAttnProcessor2_0): module.scale = scale