File size: 20,187 Bytes
f80b72f 61f69c5 f80b72f 61f69c5 f80b72f 61f69c5 f80b72f 61f69c5 f80b72f 61f69c5 f80b72f 61f69c5 f80b72f 61f69c5 f80b72f 61f69c5 f80b72f 61f69c5 f80b72f 61f69c5 f80b72f 61f69c5 f80b72f 61f69c5 f80b72f 61f69c5 f80b72f 61f69c5 f80b72f 61f69c5 f80b72f 61f69c5 f80b72f 323e6fc f80b72f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
import streamlit as st
import pandas as pd
from prophet import Prophet
from datetime import datetime, timedelta
import numpy as np
import plotly.graph_objects as go
import os
from dotenv import load_dotenv
from simple_salesforce import Salesforce
import logging
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
from reportlab.lib.units import inch
from io import BytesIO
import base64
from reportlab.platypus import Image
import plotly.io as pio
# Load environment variables from .env file
load_dotenv()
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Salesforce connection
try:
sf = Salesforce(
username=os.getenv("SF_USERNAME"),
password=os.getenv("SF_PASSWORD"),
security_token=os.getenv("SF_SECURITY_TOKEN"),
instance_url=os.getenv("SF_INSTANCE_URL")
)
logger.info("β
Connected to Salesforce")
logger.info(f"Connected Salesforce user: {sf.username}")
except Exception as e:
logger.error(f"β Salesforce connection failed: {e}")
sf = None
def prepare_prophet_data(usage_series):
end_date = datetime.now()
start_date = end_date - timedelta(days=len(usage_series) - 1)
dates = [start_date + timedelta(days=i) for i in range(len(usage_series))]
prophet_df = pd.DataFrame({'ds': dates, 'y': usage_series})
prophet_df['cap'] = 60
prophet_df['floor'] = 0
return prophet_df
def train_model_with_usage(usage_series):
prophet_df = prepare_prophet_data(usage_series)
model = Prophet(
yearly_seasonality=False,
weekly_seasonality=True,
daily_seasonality=True,
changepoint_prior_scale=0.002,
growth='logistic'
)
model.fit(prophet_df)
return model
def make_forecast(model, periods):
future = model.make_future_dataframe(periods=periods)
future['cap'] = 60
future['floor'] = 0
forecast = model.predict(future)
daily_forecasts = forecast['yhat'].tail(periods).tolist()
return round(sum(max(0, y) for y in daily_forecasts))
def get_daily_forecasts(model, periods=30):
future = model.make_future_dataframe(periods=periods)
future['cap'] = 60
future['floor'] = 0
forecast = model.predict(future)
daily_forecasts = forecast[['ds', 'yhat']].tail(periods)
daily_forecasts['yhat'] = daily_forecasts['yhat'].apply(lambda x: max(0, round(x)))
return daily_forecasts
def calculate_reorder_date(model, current_stock, lead_time_days=3, safety_threshold=0):
future = model.make_future_dataframe(periods=30)
future['cap'] = 60
future['floor'] = 0
forecast = model.predict(future)
daily_forecasts = forecast[['ds', 'yhat']].tail(30)
stock = current_stock
for _, row in daily_forecasts.iterrows():
daily_usage = max(0, round(row['yhat']))
stock -= daily_usage
if stock <= safety_threshold:
stockout_date = row['ds']
reorder_date = stockout_date - timedelta(days=lead_time_days)
if reorder_date < datetime.now():
reorder_date = datetime.now().date()
return reorder_date.strftime('%Y-%m-%d')
return None
def validate_usage_series(usage_str):
try:
usage_list = [float(x) for x in usage_str.split(',')]
logger.info(f"Input usage series length: {len(usage_list)}")
if len(usage_list) != 60:
return None, f"Usage series must contain exactly 60 values. Found {len(usage_list)} values."
if any(x < 0 for x in usage_list):
return None, "Usage values must be non-negative."
return usage_list, None
except:
return None, "Invalid usage series format. Please enter 60 comma-separated numbers."
def generate_forecast_pdf(forecast_data: dict, daily_forecasts: pd.DataFrame, alert_status: list, current_stock: int, forecast_7: int, forecast_14: int, forecast_30: int, fig_daily: go.Figure, fig_alerts: go.Figure, usage_series: str) -> BytesIO:
try:
logger.info("Starting PDF generation")
# Validate inputs
if not isinstance(forecast_data, dict) or not forecast_data:
logger.error("Invalid forecast_data: Must be a non-empty dictionary")
return None
if not isinstance(daily_forecasts, pd.DataFrame) or daily_forecasts.empty:
logger.error("Invalid daily_forecasts: Must be a non-empty DataFrame")
return None
if not isinstance(alert_status, list) or len(alert_status) != 3:
logger.error("Invalid alert_status: Must be a list of 3 booleans")
return None
if not isinstance(usage_series, str) or not usage_series:
logger.error("Invalid usage_series: Must be a non-empty string")
return None
if not isinstance(fig_daily, go.Figure) or not isinstance(fig_alerts, go.Figure):
logger.error("Invalid Plotly figures: fig_daily and fig_alerts must be valid go.Figure objects")
return None
pdf_file = BytesIO()
c = canvas.Canvas(pdf_file, pagesize=letter)
c.setFont("Helvetica", 12)
c.drawString(1 * inch, 10 * inch, "Consumables Forecast Report")
c.setFont("Helvetica", 10)
y_position = 9.5 * inch
logger.info("Initialized PDF canvas")
# Basic Forecast Data
logger.info("Writing forecast data")
for key, value in forecast_data.items():
display_key = key.replace('_', ' ').title()
value_str = str(value)
c.drawString(1 * inch, y_position, f"{display_key}: {value_str}")
y_position -= 0.3 * inch
# Add Last 60 Days Usage
y_position -= 0.3 * inch
c.drawString(1 * inch, y_position, "Last 60 Days Usage (comma-separated):")
y_position -= 0.3 * inch
text_object = c.beginText(1 * inch, y_position)
text_object.setFont("Helvetica", 10)
text_lines = [usage_series[i:i+50] for i in range(0, len(usage_series), 50)]
for line in text_lines:
text_object.textLine(line)
y_position -= 0.3 * inch
c.drawText(text_object)
logger.info("Added usage series")
# Add Daily Forecast Values
y_position -= 0.3 * inch
c.drawString(1 * inch, y_position, "Daily Forecast Values (Next 30 Days):")
y_position -= 0.3 * inch
daily_values = ", ".join([str(int(x)) for x in daily_forecasts['yhat'].tolist()])
text_object = c.beginText(1 * inch, y_position)
text_object.setFont("Helvetica", 10)
text_lines = [daily_values[i:i+50] for i in range(0, len(daily_values), 50)]
for line in text_lines:
text_object.textLine(line)
y_position -= 0.3 * inch
c.drawText(text_object)
logger.info("Added daily forecast values")
# Add Threshold Alerts
y_position -= 0.3 * inch
c.drawString(1 * inch, y_position, "Threshold Alerts:")
y_position -= 0.3 * inch
for forecast, period, alert in zip([forecast_7, forecast_14, forecast_30], ['7-day', '14-day', '30-day'], alert_status):
flag_indicator = "[Flag] " if alert else ""
if alert:
alert_text = f"{flag_indicator}Alert: Current stock ({current_stock}) is below {period} forecast ({forecast})."
else:
alert_text = f"No alert for {period} forecast."
c.drawString(1 * inch, y_position, alert_text)
y_position -= 0.3 * inch
logger.info("Added threshold alerts")
# Add Daily Forecast Visualization Data
y_position -= 0.3 * inch
c.drawString(1 * inch, y_position, "Daily Forecast Visualization Data (Next 30 Days):")
y_position -= 0.3 * inch
for index, row in daily_forecasts.iterrows():
date_str = row['ds'].strftime('%Y-%m-%d')
forecast_value = int(row['yhat'])
c.drawString(1 * inch, y_position, f"Date: {date_str}, Forecast: {forecast_value} units")
y_position -= 0.3 * inch
if y_position < 1 * inch:
c.showPage()
c.setFont("Helvetica", 10)
y_position = 10 * inch
logger.info("Added daily forecast visualization data")
# Add Daily Forecast Visualization Image
y_position -= 0.3 * inch
if y_position < 4 * inch:
c.showPage()
y_position = 10 * inch
c.drawString(1 * inch, y_position, "Daily Forecast Visualization (Next 30 Days):")
y_position -= 0.3 * inch
daily_chart_img = BytesIO()
try:
pio.write_image(fig_daily, daily_chart_img, format='png', width=600, height=400)
daily_chart_img.seek(0)
img = Image(daily_chart_img, width=6 * inch, height=4 * inch)
img.drawOn(c, 1 * inch, y_position - 4 * inch)
logger.info("Added daily forecast visualization image")
except Exception as e:
logger.error(f"Failed to export daily forecast image: {str(e)}")
c.drawString(1 * inch, y_position - 0.3 * inch, "Error: Could not include daily forecast visualization.")
y_position -= 4.5 * inch
# Add Threshold Alerts Visualization Data
if y_position < 2 * inch:
c.showPage()
c.setFont("Helvetica", 10)
y_position = 10 * inch
c.drawString(1 * inch, y_position, "Threshold Alerts Visualization Data:")
y_position -= 0.3 * inch
alert_data = pd.DataFrame({
'Category': ['Current Stock', '7-Day Forecast', '14-Day Forecast', '30-Day Forecast'],
'Units': [current_stock, forecast_7, forecast_14, forecast_30],
'Alert': [False] + alert_status
})
for _, row in alert_data.iterrows():
alert_text = f"Category: {row['Category']}, Units: {row['Units']}, Alert: {'Yes' if row['Alert'] else 'No'}"
c.drawString(1 * inch, y_position, alert_text)
y_position -= 0.3 * inch
if y_position < 1 * inch:
c.showPage()
c.setFont("Helvetica", 10)
y_position = 10 * inch
logger.info("Added threshold alerts visualization data")
# Add Threshold Alerts Visualization Image
y_position -= 0.3 * inch
if y_position < 4 * inch:
c.showPage()
y_position = 10 * inch
c.drawString(1 * inch, y_position, "Threshold Alerts Visualization:")
y_position -= 0.3 * inch
alerts_chart_img = BytesIO()
try:
pio.write_image(fig_alerts, alerts_chart_img, format='png', width=600, height=400)
alerts_chart_img.seek(0)
img = Image(alerts_chart_img, width=6 * inch, height=4 * inch)
img.drawOn(c, 1 * inch, y_position - 4 * inch)
logger.info("Added threshold alerts visualization image")
except Exception as e:
logger.error(f"Failed to export alerts visualization image: {str(e)}")
c.drawString(1 * inch, y_position - 0.3 * inch, "Error: Could not include threshold alerts visualization.")
c.showPage()
c.save()
pdf_file.seek(0)
logger.info("PDF generation completed successfully")
return pdf_file
except Exception as e:
logger.error(f"Error generating PDF: {str(e)}")
return None
def upload_pdf_to_salesforce(pdf_file: BytesIO, consumable_type: str, record_id: str) -> str:
try:
if not sf:
return None
encoded_pdf_data = base64.b64encode(pdf_file.getvalue()).decode('utf-8')
content_version_data = {
"Title": f"{consumable_type} - Consumables Forecast PDF",
"PathOnClient": f"{consumable_type}_Consumables_Forecast.pdf",
"VersionData": encoded_pdf_data,
"FirstPublishLocationId": record_id
}
content_version = sf.ContentVersion.create(content_version_data)
content_version_id = content_version["id"]
result = sf.query(f"SELECT Id, ContentDocumentId FROM ContentVersion WHERE Id = '{content_version_id}'")
if not result['records']:
return None
file_url = f"https://{sf.sf_instance}/sfc/servlet.shepherd/version/download/{content_version_id}"
return file_url
except Exception as e:
logger.error(f"Error uploading PDF to Salesforce: {str(e)}")
return None
def main():
st.title("SmartLab Consumables Forecast")
st.header("Input Parameters")
consumable_type_label = st.selectbox("Consumable Type", ['Filters', 'Reagents', 'Vials'])
consumable_type = consumable_type_label
usage_series = st.text_input("Last 60 Days Usage (comma-separated)", "")
current_stock = st.number_input("Current Stock", min_value=0, value=0)
if st.button("Generate Forecast"):
usage_list, error = validate_usage_series(usage_series)
if error:
st.error(error)
return
try:
model = train_model_with_usage(usage_list)
except Exception as e:
st.error(f"Error training model: {str(e)}")
return
forecast_7 = make_forecast(model, 7)
forecast_14 = make_forecast(model, 14)
forecast_30 = make_forecast(model, 30)
daily_forecasts = get_daily_forecasts(model, 30)
reorder_date = calculate_reorder_date(model, current_stock)
st.header("Forecast Results")
col1, col2, col3 = st.columns(3)
col1.metric("7-Day Forecast", f"{forecast_7} units")
col2.metric("14-Day Forecast", f"{forecast_14} units")
col3.metric("30-Day Forecast", f"{forecast_30} units")
st.header("Daily Forecast Values (Next 30 Days)")
daily_values = ", ".join([str(int(x)) for x in daily_forecasts['yhat'].tolist()])
st.text_area("Comma-separated daily forecasts", daily_values, height=100)
st.header("Threshold Alerts")
alert_status = []
for forecast, period in zip([forecast_7, forecast_14, forecast_30], ['7-day', '14-day', '30-day']):
if current_stock < forecast:
st.warning(f"Alert: Current stock ({current_stock}) is below {period} forecast ({forecast}). π©")
alert_status.append(True)
else:
st.info(f"No alert for {period} forecast.")
alert_status.append(False)
st.header("Order Suggestions")
st.write(f"**For 7 Days**: Order {max(0, forecast_7 - current_stock)} additional units.")
st.write(f"**For 14 Days**: Order {max(0, forecast_14 - current_stock)} additional units.")
st.write(f"**For 30 Days**: Order {max(0, forecast_30 - current_stock)} additional units.")
st.header("Reorder Information")
if any(alert_status):
st.warning(f"Reorder recommended. Suggested reorder date: {reorder_date if reorder_date else 'Not within 30 days'}")
else:
st.info("No reorder required within 30 days.")
st.header("Daily Forecast Visualization (Next 30 Days)")
fig_daily = go.Figure()
fig_daily.add_trace(go.Scatter(
x=daily_forecasts['ds'],
y=daily_forecasts['yhat'],
mode='lines+markers',
name='Daily Forecast',
line=dict(color='royalblue', width=2),
marker=dict(size=8, color='darkorange', line=dict(width=2, color='black')),
fill='tozeroy',
fillcolor='rgba(0, 176, 246, 0.2)'
))
y_values = daily_forecasts['yhat'].tolist()
fig_daily.update_layout(
title='Daily Consumable Usage Forecast (30 Days)',
xaxis_title='Date',
yaxis_title='Units',
template='plotly_white',
xaxis=dict(tickformat="%Y-%m-%d", tickangle=45, tickmode='auto', nticks=10),
yaxis=dict(range=[max(0, min(y_values) - 5), max(y_values) + 5], tickmode='linear', dtick=2),
showlegend=True,
legend=dict(x=0.01, y=0.99),
hovermode='x unified',
plot_bgcolor='rgba(0,0,0,0)',
paper_bgcolor='rgba(0,0,0,0)',
margin=dict(l=50, r=50, t=50, b=100)
)
st.plotly_chart(fig_daily, use_container_width=True)
st.header("Threshold Alerts Visualization")
alert_data = pd.DataFrame({
'Category': ['Current Stock', '7-Day Forecast', '14-Day Forecast', '30-Day Forecast'],
'Units': [current_stock, forecast_7, forecast_14, forecast_30],
'Alert': [False] + alert_status
})
fig_alerts = go.Figure()
fig_alerts.add_trace(go.Bar(
x=alert_data['Category'],
y=alert_data['Units'],
marker_color=['green'] + ['red' if alert else 'blue' for alert in alert_data['Alert'][1:]],
text=[f"π©" if alert else "" for alert in alert_data['Alert']],
textposition='auto'
))
fig_alerts.update_layout(
title='Stock vs Forecast with Alerts (π© indicates low stock)',
xaxis_title='Category',
yaxis_title='Units',
template='plotly_white'
)
st.plotly_chart(fig_alerts)
# Salesforce record creation with PDF upload
if sf is not None:
try:
order_suggestions_text = f"7 Days: {max(0, forecast_7 - current_stock)} units, 14 Days: {max(0, forecast_14 - current_stock)} units, 30 Days: {max(0, forecast_30 - current_stock)} units"
forecast_data = {
"Consumable Type": consumable_type,
"Current Stock": current_stock,
"7-Day Forecast": f"{forecast_7} units",
"14-Day Forecast": f"{forecast_14} units",
"30-Day Forecast": f"{forecast_30} units",
"Order Suggestions": order_suggestions_text,
"Reorder Recommendation": "Yes" if any(alert_status) else "No",
"Reorder Date": reorder_date if reorder_date else "Not within 30 days"
}
pdf_file = generate_forecast_pdf(forecast_data, daily_forecasts, alert_status, current_stock, forecast_7, forecast_14, forecast_30, fig_daily, fig_alerts, usage_series)
sf_data = {
'Consumable_Type__c': consumable_type,
'Forecast_Period__c': '7days',
'ForeCasted_Quantity__c': float(forecast_7),
'ForeCasted_Quantity_14days__c': float(forecast_14),
'ForeCasted_Quantity_30days__c': float(forecast_30),
'Current_Stock__c': float(current_stock),
'Order_Suggestions__c': order_suggestions_text,
'Reorder_Recommendation__c': any(alert_status),
'Reorder_Date__c': reorder_date,
'Pdf_report__c': '' # Placeholder for PDF URL
}
result = sf.Consumables_Forecaste__c.create(sf_data)
logger.info(f"Salesforce record created: {result}")
if pdf_file:
pdf_url = upload_pdf_to_salesforce(pdf_file, consumable_type, result['id'])
if pdf_url:
sf.Consumables_Forecaste__c.update(
result['id'],
{"Pdf_report__c": pdf_url}
)
logger.info(f"PDF uploaded to Salesforce: {pdf_url}")
else:
logger.error("Failed to upload PDF to Salesforce")
st.error("Failed to upload PDF to Salesforce")
else:
logger.error("Failed to generate PDF")
st.error("Failed to generate PDF")
except Exception as e:
logger.error(f"Error creating Salesforce record or uploading PDF: {e}", exc_info=True)
st.error(f"Error saving to Salesforce: {str(e)}")
if __name__ == "__main__":
main()
sf = None |